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Preface
pandas is a library for creating and manipulating structured data with Python. What do 
I mean by structured? I mean tabular data in rows and columns like what you would find 
in a spreadsheet or database. Data scientists, analysts, programmers, engineers, and more 
are leveraging it to mold their data.

pandas is limited to "small data" (data that can fit in memory on a single machine). 
However, the syntax and operations have been adopted or inspired other projects: PySpark, 
Dask, Modin, cuDF, Baloo, Dexplo, Tabel, StaticFrame, among others. These projects 
have different goals, but some of them will scale out to big data. So there is a value 
in understanding how pandas works as the features are becoming the defacto API for 
interacting with structured data.

I, Matt Harrison, run a company, MetaSnake, that does corporate training. My bread and 
butter is training large companies that want to level up on Python and data skills. As such, 
I've taught thousands of Python and pandas users over the years. My goal in producing the 
second version of this book is to highlight and help with the aspects that many find confusing 
when coming to pandas. For all of its benefits, there are some rough edges or confusing 
aspects of pandas. I intend to navigate you to these and then guide you through them, so you 
will be able to deal with them in the real world.

If your company is interested in such live training, feel free to reach out (matt@metasnake.
com).

Who this book is for
This book contains nearly 100 recipes, ranging from very simple to advanced. All recipes 
strive to be written in clear, concise, and modern idiomatic pandas code. The How it works... 
sections contain extremely detailed descriptions of the intricacies of each step of the recipe. 
Often, in the There's more... section, you will get what may seem like an entirely new recipe. 
This book is densely packed with an extraordinary amount of pandas code.
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As a generalization, the recipes in the first seven chapters tend to be simpler and more 
focused on the fundamental and essential operations of pandas than the later chapters, 
which focus on more advanced operations and are more project-driven. Due to the wide range 
of complexity, this book can be useful to both novice and everyday users alike. It has been my 
experience that even those who use pandas regularly will not master it without being exposed 
to idiomatic pandas code. This is somewhat fostered by the breadth that pandas offers. There 
are almost always multiple ways of completing the same operation, which can have users get 
the result they want but in a very inefficient manner. It is not uncommon to see an order of 
magnitude or more in performance difference between two sets of pandas solutions to the 
same problem.

The only real prerequisite for this book is a fundamental knowledge of Python. It is assumed 
that the reader is familiar with all the common built-in data containers in Python, such as lists, 
sets, dictionaries, and tuples.

What this book covers
Chapter 1, Pandas Foundations, covers the anatomy and vocabulary used to identify the 
components of the two main pandas data structures, the Series and the DataFrame. Each 
column must have exactly one type of data, and each of these data types is covered. You 
will learn how to unleash the power of the Series and the DataFrame by calling and chaining 
together their methods.

Chapter 2, Essential DataFrame Operations, focuses on the most crucial and typical 
operations that you will perform during data analysis.

Chapter 3, Creating and Persisting DataFrames, discusses the various ways to ingest data 
and create DataFrames.

Chapter 4, Beginning Data Analysis, helps you develop a routine to get started after reading 
in your data.

Chapter 5, Exploratory Data Analysis, covers basic analysis techniques for comparing numeric 
and categorical data. This chapter will also demonstrate common visualization techniques.

Chapter 6, Selecting Subsets of Data, covers the many varied and potentially confusing ways 
of selecting different subsets of data.

Chapter 7, Filtering Rows, covers the process of querying your data to select subsets of 
it based on Boolean conditions.

Chapter 8, Index Alignment, targets the very important and often misunderstood index object. 
Misuse of the Index is responsible for lots of erroneous results, and these recipes show you 
how to use it correctly to deliver powerful results.
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Chapter 9, Grouping for Aggregation, Filtration, and Transformation, covers the powerful 
grouping capabilities that are almost always necessary during data analysis. You will build 
customized functions to apply to your groups.

Chapter 10, Restructuring Data into a Tidy Form, explains what tidy data is and why it's so 
important, and then it shows you how to transform many different forms of messy datasets 
into tidy ones.

Chapter 11, Combining Pandas Objects, covers the many available methods to combine 
DataFrames and Series vertically or horizontally. We will also do some web-scraping and 
connect to a SQL relational database.

Chapter 12, Time Series Analysis, covers advanced and powerful time series capabilities 
to dissect by any dimension of time possible.

Chapter 13, Visualization with Matplotlib, Pandas, and Seaborn, introduces the matplotlib 
library, which is responsible for all of the plotting in pandas. We will then shift focus to 
the pandas plot method and, finally, to the seaborn library, which is capable of producing 
aesthetically pleasing visualizations not directly available in pandas.

Chapter 14, Debugging and Testing Pandas, explores mechanisms of testing our DataFrames 
and pandas code. If you are planning on deploying pandas in production, this chapter will help 
you have confidence in your code.

To get the most out of this book
There are a couple of things you can do to get the most out of this book. First, and most 
importantly, you should download all the code, which is stored in Jupyter Notebooks. While 
reading through each recipe, run each step of code in the notebook. Make sure you explore 
on your own as you run through the code. Second, have the pandas official documentation 
open (http://pandas.pydata.org/pandas-docs/stable/) in one of your browser 
tabs. The pandas documentation is an excellent resource containing over 1,000 pages of 
material. There are examples for most of the pandas operations in the documentation, and 
they will often be directly linked from the See also section. While it covers the basics of most 
operations, it does so with trivial examples and fake data that don't reflect situations that you 
are likely to encounter when analyzing datasets from the real world.

What you need for this book
pandas is a third-party package for the Python programming language and, as of the printing 
of this book, is on version 1.0.1. Currently, Python is at version 3.8. The examples in this book 
should work fine in versions 3.6 and above.

http://pandas.pydata.org/pandas-docs/stable/
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There are a wide variety of ways in which you can install pandas and the rest of the libraries 
mentioned on your computer, but an easy method is to install the Anaconda distribution. 
Created by Anaconda, it packages together all the popular libraries for scientific computing 
in a single downloadable file available on Windows, macOS, and Linux. Visit the download 
page to get the Anaconda distribution (https://www.anaconda.com/distribution).

In addition to all the scientific computing libraries, the Anaconda distribution comes with 
Jupyter Notebook, which is a browser-based program for developing in Python, among many 
other languages. All of the recipes for this book were developed inside of a Jupyter Notebook 
and all of the individual notebooks for each chapter will be available for you to use.

It is possible to install all the necessary libraries for this book without the use of the 
Anaconda distribution. For those that are interested, visit the pandas installation page 
(http://pandas.pydata.org/pandas-docs/stable/install.html).

Download the example code files
You can download the example code files for this book from your account at www.packt.com. 
If you purchased this book elsewhere, you can visit www.packtpub.com/support/errata 
and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the 
latest version of:

 f WinRAR / 7-Zip for Windows

 f Zipeg / iZip / UnRarX for Mac

 f 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Pandas-Cookbook-Second-Edition. In case there's an update 
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available 
at https://github.com/PacktPublishing/. Check them out!

https://www.anaconda.com/distribution
http://pandas.pydata.org/pandas-docs/stable/install.html
http://www.packt.com
http://www.packtpub.com/support/errata
http://www.packt.com
https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition
https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition
https://github.com/PacktPublishing/
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Running a Jupyter Notebook
The suggested method to work through the content of this book is to have a Jupyter Notebook 
up and running so that you can run the code while reading through the recipes. Following 
along on your computer allows you to go off exploring on your own and gain a deeper 
understanding than by just reading the book alone.

Assuming that you have installed the Anaconda distribution on your machine, you have two 
options available to start the Jupyter Notebook, from the Anaconda GUI or the command 
line. I highly encourage you to use the command line. If you are going to be doing much 
with Python, you will need to feel comfortable from there.

After installing Anaconda, open a command prompt (type cmd at the search bar on Windows, 
or open a Terminal on Mac or Linux) and type:

$ jupyter-notebook

It is not necessary to run this command from your home directory. You can run it from any 
location, and the contents in the browser will reflect that location.

Although we have now started the Jupyter Notebook program, we haven't actually launched 
a single individual notebook where we can start developing in Python. To do so, you can click 
on the New button on the right-hand side of the page, which will drop down a list of all the 
possible kernels available for you to use. If you just downloaded Anaconda, then you will only 
have a single kernel available to you (Python 3). After selecting the Python 3 kernel, a new tab 
will open in the browser, where you can start writing Python code.

You can, of course, open previously created notebooks instead of beginning a new one. To do 
so, navigate through the filesystem provided in the Jupyter Notebook browser home page and 
select the notebook you want to open. All Jupyter Notebook files end in .ipynb.

Alternatively, you may use cloud providers for a notebook environment. Both Google and 
Microsoft provide free notebook environments that come preloaded with pandas.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used 
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839213106_ColorImages.pdf.

 https://static.packt-cdn.com/downloads/9781839213106_ColorImages.pdf
 https://static.packt-cdn.com/downloads/9781839213106_ColorImages.pdf
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Conventions
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, 
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: 
"You may need to install xlwt or openpyxl to write XLS or XLSX files respectively."

A block of code is set as follows:

import pandas as pd
import numpy as np
movies = pd.read_csv("data/movie.csv")
movies

When we wish to draw your attention to a particular part of a code block, the relevant lines 
or items are set in bold:

import pandas as pd
import numpy as np
movies = pd.read_csv("data/movie.csv")
movies

Any command-line input or output is written as follows:

>>> employee = pd.read_csv('data/employee.csv')

>>> max_dept_salary = employee.groupby('DEPARTMENT')['BASE_SALARY'].max()

Bold: Indicates a new term, an important word, or words that you see on the screen, for 
example, in menus or dialog boxes, also appear in the text like this. Here is an example: 
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.
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Assumptions for every recipe
It should be assumed that at the beginning of each recipe pandas, NumPy, and matplotlib 
are imported into the namespace. For plots to be embedded directly within the notebook, 
you must also run the magic command %matplotlib inline. Also, all data is stored in 
the data directory and is most commonly stored as a CSV file, which can be read directly 
with the read_csv function:

>>> %matplotlib inline

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import pandas as pd

>>> my_dataframe = pd.read_csv('data/dataset_name.csv')

Dataset descriptions
There are about two dozen datasets that are used throughout this book. It can be very helpful 
to have background information on each dataset as you complete the steps in the recipes. A 
detailed description of each dataset may be found in the dataset_descriptions Jupyter 
Notebook found at https://github.com/PacktPublishing/Pandas-Cookbook-
Second-Edition. For each dataset, there will be a list of the columns, information about 
each column and notes on how the data was procured.

Sections
In this book, you will find several headings that appear frequently.

To give clear instructions on how to complete a recipe, we use these sections as follows:

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous 
section.

https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition
https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition
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There's more...
This section consists of additional information about the recipe in order to make the reader 
more knowledgeable about the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title 
in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you have found a mistake in this book we would be grateful if you would report this 
to us. Please visit, www.packtpub.com/support/errata, selecting your book, clicking on 
the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we 
would be grateful if you would provide us with the location address or website name. Please 
contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in 
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on 
the site that you purchased it from? Potential readers can then see and use your unbiased 
opinion to make purchase decisions, we at Packt can understand what you think about our 
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com
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1
Pandas Foundations

Importing pandas
Most users of the pandas library will use an import alias so they can refer to it as pd. In 
general in this book, we will not show the pandas and NumPy imports, but they look like this:

>>> import pandas as pd

>>> import numpy as np

Introduction
The goal of this chapter is to introduce a foundation of pandas by thoroughly inspecting the 
Series and DataFrame data structures. It is important for pandas users to know the difference 
between a Series and a DataFrame.

The pandas library is useful for dealing with structured data. What is structured data? Data 
that is stored in tables, such as CSV files, Excel spreadsheets, or database tables, is all 
structured. Unstructured data consists of free form text, images, sound, or video. If you find 
yourself dealing with structured data, pandas will be of great utility to you.

In this chapter, you will learn how to select a single column of data from a DataFrame (a two-
dimensional dataset), which is returned as a Series (a one-dimensional dataset). Working with 
this one-dimensional object makes it easy to show how different methods and operators work. 
Many Series methods return another Series as output. This leads to the possibility of calling 
further methods in succession, which is known as method chaining.
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The Index component of the Series and DataFrame is what separates pandas from most other 
data analysis libraries and is the key to understanding how many operations work. We will get 
a glimpse of this powerful object when we use it as a meaningful label for Series values. The 
final two recipes contain tasks that frequently occur during a data analysis.

The pandas DataFrame
Before diving deep into pandas, it is worth knowing the components of the DataFrame. 
Visually, the outputted display of a pandas DataFrame (in a Jupyter Notebook) appears to be 
nothing more than an ordinary table of data consisting of rows and columns. Hiding beneath 
the surface are the three components—the index, columns, and data that you must be aware 
of to maximize the DataFrame's full potential.

This recipe reads in the movie dataset into a pandas DataFrame and provides a labeled 
diagram of all its major components.

>>> movies = pd.read_csv("data/movie.csv")

>>> movies

      color        direc/_name  ...  aspec/ratio  movie/likes

0     Color      James Cameron  ...         1.78        33000

1     Color     Gore Verbinski  ...         2.35            0

2     Color         Sam Mendes  ...         2.35        85000

3     Color  Christopher Nolan  ...         2.35       164000

4       NaN        Doug Walker  ...          NaN            0

...     ...                ...  ...          ...          ...

4911  Color        Scott Smith  ...          NaN           84

4912  Color                NaN  ...        16.00        32000

4913  Color   Benjamin Roberds  ...          NaN           16

4914  Color        Daniel Hsia  ...         2.35          660

4915  Color           Jon Gunn  ...         1.85          456
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DataFrame anatomy

How it works…
pandas first reads the data from disk into memory and into a DataFrame using the read_
csv function. By convention, the terms index label and column name refer to the individual 
members of the index and columns, respectively. The term index refers to all the index labels 
as a whole, just as the term columns refers to all the column names as a whole.

The labels in index and column names allow for pulling out data based on the index and 
column name. We will show that later. The index is also used for alignment. When multiple 
Series or DataFrames are combined, the indexes align first before any calculation occurs. 
A later recipe will show this as well.

Collectively, the columns and the index are known as the axes. More specifically, the index 
is axis 0, and the columns are axis 1.

pandas uses NaN (not a number) to represent missing values. Notice that even though the 
color column has string values, it uses NaN to represent a missing value.
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The three consecutive dots, ..., in the middle of the columns indicate that there is at least 
one column that exists but is not displayed due to the number of columns exceeding the 
predefined display limits. By default, pandas shows 60 rows and 20 columns, but we have 
limited that in the book, so the data fits in a page.

The .head method accepts an optional parameter, n, which controls the number of rows 
displayed. The default value for n is 5. Similarly, the .tail method returns the last n rows.

DataFrame attributes
Each of the three DataFrame components–the index, columns, and data–may be accessed 
from a DataFrame. You might want to perform operations on the individual components and 
not on the DataFrame as a whole. In general, though we can pull out the data into a NumPy 
array, unless all the columns are numeric, we usually leave it in a DataFrame. DataFrames are 
ideal for managing heterogenous columns of data, NumPy arrays not so much.

This recipe pulls out the index, columns, and the data of the DataFrame into their own 
variables, and then shows how the columns and index are inherited from the same object.

How to do it…
1. Use the DataFrame attributes index, columns, and values to assign the index, 

columns, and data to their own variables:
>>> movies = pd.read_csv("data/movie.csv")

>>> columns = movies.columns

>>> index = movies.index

>>> data = movies.to_numpy()

2. Display each component's values:
>>> columns

Index(['color', 'director_name', 'num_critic_for_reviews', 
'duration',

       'director_facebook_likes', 'actor_3_facebook_likes', 
'actor_2_name',

       'actor_1_facebook_likes', 'gross', 'genres', 'actor_1_
name',

       'movie_title', 'num_voted_users', 'cast_total_facebook_
likes',

       'actor_3_name', 'facenumber_in_poster', 'plot_keywords',

       'movie_imdb_link', 'num_user_for_reviews', 'language', 
'country',

       'content_rating', 'budget', 'title_year', 'actor_2_
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facebook_likes',

       'imdb_score', 'aspect_ratio', 'movie_facebook_likes'], 
      dtype='object')

>>> index 
RangeIndex(start=0, stop=4916, step=1)

>>> data

array([['Color', 'James Cameron', 723.0, ..., 7.9, 1.78, 33000],

       ['Color', 'Gore Verbinski', 302.0, ..., 7.1, 2.35, 0],

       ['Color', 'Sam Mendes', 602.0, ..., 6.8, 2.35, 85000],

       ...,

       ['Color', 'Benjamin Roberds', 13.0, ..., 6.3, nan, 16],

       ['Color', 'Daniel Hsia', 14.0, ..., 6.3, 2.35, 660],

       ['Color', 'Jon Gunn', 43.0, ..., 6.6, 1.85, 456]], 
dtype=object)

3. Output the Python type of each DataFrame component (the word following the last 
dot of the output):
>>> type(index)

<class 'pandas.core.indexes.range.RangeIndex'>

>>> type(columns)

<class 'pandas.core.indexes.base.Index'>

>>> type(data)

<class 'numpy.ndarray'>

4. The index and the columns are closely related. Both of them are subclasses of 
Index. This allows you to perform similar operations on both the index and the 
columns:

>>> issubclass(pd.RangeIndex, pd.Index)

True

>>> issubclass(columns.__class__, pd.Index)

True

How it works…
The index and the columns represent the same thing but along different axes. They are 
occasionally referred to as the row index and column index.

There are many types of index objects in pandas. If you do not specify the index, pandas will 
use a RangeIndex. A RangeIndex is a subclass of an Index that is analogous to Python's 
range object. Its entire sequence of values is not loaded into memory until it is necessary 
to do so, thereby saving memory. It is completely defined by its start, stop, and step values.
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There's more...
When possible, Index objects are implemented using hash tables that allow for very fast 
selection and data alignment. They are similar to Python sets in that they support operations 
such as intersection and union, but are dissimilar because they are ordered and can have 
duplicate entries.

Notice how the .values DataFrame attribute returned a NumPy n-dimensional array, or 
ndarray. Most of pandas relies heavily on the ndarray. Beneath the index, columns, and 
data are NumPy ndarrays. They could be considered the base object for pandas that many 
other objects are built upon. To see this, we can look at the values of the index and columns:

>>> index.to_numpy()

array([   0,    1,    2, ..., 4913, 4914, 4915], dtype=int64))

>>> columns.to_numpy()

array(['color', 'director_name', 'num_critic_for_reviews', 'duration',

'director_facebook_likes', 'actor_3_facebook_likes',

'actor_2_name', 'actor_1_facebook_likes', 'gross', 'genres',

'actor_1_name', 'movie_title', 'num_voted_users',

'cast_total_facebook_likes', 'actor_3_name',

'facenumber_in_poster', 'plot_keywords', 'movie_imdb_link',

'num_user_for_reviews', 'language', 'country', 'content_rating',

'budget', 'title_year', 'actor_2_facebook_likes', 'imdb_score',

'aspect_ratio', 'movie_facebook_likes'], dtype=object)

Having said all of that, we usually do not access the underlying NumPy objects. We tend to 
leave the objects as pandas objects and use pandas operations. However, we regularly apply 
NumPy functions to pandas objects.

Understanding data types
In very broad terms, data may be classified as either continuous or categorical. Continuous 
data is always numeric and represents some kind of measurements, such as height, wage, or 
salary. Continuous data can take on an infinite number of possibilities. Categorical data, on 
the other hand, represents discrete, finite amounts of values such as car color, type of poker 
hand, or brand of cereal.
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pandas does not broadly classify data as either continuous or categorical. Instead, it has 
precise technical definitions for many distinct data types. The following describes common 
pandas data types:

 f float – The NumPy float type, which supports missing values

 f int – The NumPy integer type, which does not support missing values

 f 'Int64' – pandas nullable integer type

 f object – The NumPy type for storing strings (and mixed types)

 f 'category' – pandas categorical type, which does support missing values

 f bool – The NumPy Boolean type, which does not support missing values (None 
becomes False, np.nan becomes True)

 f 'boolean' – pandas nullable Boolean type

 f datetime64[ns] – The NumPy date type, which does support missing values (NaT)

In this recipe, we display the data type of each column in a DataFrame. After you ingest data, 
it is crucial to know the type of data held in each column as it fundamentally changes the kind 
of operations that are possible with it.

How to do it…
1. Use the .dtypes attribute to display each column name along with its data type:

>>> movies = pd.read_csv("data/movie.csv")

>>> movies.dtypes

color                       object

director_name               object

num_critic_for_reviews     float64

duration                   float64

director_facebook_likes    float64

                            ...   

title_year                 float64

actor_2_facebook_likes     float64

imdb_score                 float64

aspect_ratio               float64

movie_facebook_likes         int64

Length: 28, dtype: object
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2. Use the .value_counts method to return the counts of each data type:
>>> movies.dtypes.value_counts()

float64    13

int64       3

object     12

dtype: int64

3. Look at the .info method:

>>> movies.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4916 entries, 0 to 4915

Data columns (total 28 columns):

color                        4897 non-null object

director_name                4814 non-null object

num_critic_for_reviews       4867 non-null float64

duration                     4901 non-null float64

director_facebook_likes      4814 non-null float64

actor_3_facebook_likes       4893 non-null float64

actor_2_name                 4903 non-null object

actor_1_facebook_likes       4909 non-null float64

gross                        4054 non-null float64

genres                       4916 non-null object

actor_1_name                 4909 non-null object

movie_title                  4916 non-null object

num_voted_users              4916 non-null int64

cast_total_facebook_likes    4916 non-null int64

actor_3_name                 4893 non-null object

facenumber_in_poster         4903 non-null float64 
plot_keywords                4764 non-null object

movie_imdb_link              4916 non-null object

num_user_for_reviews         4895 non-null float64

language                     4904 non-null object

country                      4911 non-null object

content_rating               4616 non-null object

budget                       4432 non-null float64

title_year                   4810 non-null float64
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actor_2_facebook_likes       4903 non-null float64

imdb_score                   4916 non-null float64

aspect_ratio                 4590 non-null float64

movie_facebook_likes         4916 non-null int64

dtypes: float64(13), int64(3), object(12)

memory usage: 1.1+ MB

How it works…
Each DataFrame column lists one type. For instance, every value in the column aspect_
ratio is a 64-bit float, and every value in movie_facebook_likes is a 64-bit integer. 
pandas defaults its core numeric types, integers, and floats to 64 bits regardless of the size 
necessary for all data to fit in memory. Even if a column consists entirely of the integer value 
0, the data type will still be int64.

The .value_counts method returns the count of all the data types in the DataFrame when 
called on the .dtypes attribute.

The object data type is the one data type that is unlike the others. A column that is of the 
object data type may contain values that are of any valid Python object. Typically, when a 
column is of the object data type, it signals that the entire column is strings. When you load 
CSV files and string columns are missing values, pandas will stick in a NaN (float) for that cell. 
So the column might have both object and float (missing) values in it. The .dtypes attribute 
will show the column as an object (or O on the series). It will not show it as a mixed type 
column (that contains both strings and floats):

>>> pd.Series(["Paul", np.nan, "George"]).dtype

dtype('O')

The .info method prints the data type information in addition to the count of non-null 
values. It also lists the amount of memory used by the DataFrame. This is useful information, 
but is printed on the screen. The .dtypes attribute returns a pandas Series if you needed to 
use the data.

There's more…
Almost all of pandas data types are built from NumPy. This tight integration makes it easier 
for users to integrate pandas and NumPy operations. As pandas grew larger and more 
popular, the object data type proved to be too generic for all columns with string values. 
pandas created its own categorical data type to handle columns of strings (or numbers)  
with a fixed number of possible values.
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Selecting a column
Selected a single column from a DataFrame returns a Series (that has the same index as the 
DataFrame). It is a single dimension of data, composed of just an index and the data. You can 
also create a Series by itself without a DataFrame, but it is more common to pull them off of 
a DataFrame.

This recipe examines two different syntaxes to select a single column of data, a Series. 
One syntax uses the index operator and the other uses attribute access (or dot notation).

How to do it…
1. Pass a column name as a string to the indexing operator to select a Series of data:

>>> movies = pd.read_csv("data/movie.csv")

>>> movies["director_name"]

0           James Cameron

1          Gore Verbinski

2              Sam Mendes

3       Christopher Nolan

4             Doug Walker

              ...        

4911          Scott Smith

4912                  NaN

4913     Benjamin Roberds

4914          Daniel Hsia

4915             Jon Gunn

Name: director_name, Length: 4916, dtype: object

2. Alternatively, you may use attribute access to accomplish the same task:
>>> movies.director_name

0           James Cameron

1          Gore Verbinski

2              Sam Mendes

3       Christopher Nolan

4             Doug Walker

              ...        

4911          Scott Smith

4912                  NaN
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4913     Benjamin Roberds

4914          Daniel Hsia

4915             Jon Gunn

Name: director_name, Length: 4916, dtype: object

3. We can also index off of the .loc and .iloc attributes to pull out a Series. The 
former allows us to pull out by column name, while the latter by position. These 
are referred to as label-based and positional-based in the pandas documentation.

The usage of .loc specifies a selector for both rows and columns separated by 
a comma. The row selector is a slice with no start or end name (:) which means 
select all of the rows. The column selector will just pull out the column named 
director_name.

The .iloc index operation also specifies both row and column selectors. The row 
selector is the slice with no start or end index (:) that selects all of the rows. The 
column selector, 1, pulls off the second column (remember that Python is zero-
based):
>>> movies.loc[:, "director_name"]

0           James Cameron

1          Gore Verbinski

2              Sam Mendes

3       Christopher Nolan

4             Doug Walker

              ...        

4911          Scott Smith

4912                  NaN

4913     Benjamin Roberds

4914          Daniel Hsia

4915             Jon Gunn

Name: director_name, Length: 4916, dtype: object

>>> movies.iloc[:, 1]

0           James Cameron

1          Gore Verbinski

2              Sam Mendes

3       Christopher Nolan

4             Doug Walker

              ...        

4911          Scott Smith
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4912                  NaN

4913     Benjamin Roberds

4914          Daniel Hsia

4915             Jon Gunn

Name: director_name, Length: 4916, dtype: object

4. Jupyter shows the series in a monospace font, and shows the index, type, length, and 
name of the series. It will also truncate data according to the pandas configuration 
settings. See the image for a description of these.

Series anatomy

You can also view the index, type, length, and name of the series with the appropriate 
attributes:
>>> movies["director_name"].index

RangeIndex(start=0, stop=4916, step=1)

>>> movies["director_name"].dtype

dtype('O')

>>> movies["director_name"].size

4196

>>> movies["director_name"].name

'director_name'
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5. Verify that the output is a Series:
>>> type(movies["director_name"])

<class 'pandas.core.series.Series'>

6. Note that even though the type is reported as object, because there are missing 
values, the Series has both floats and strings in it. We can use the .apply method 
with the type function to get back a Series that has the type of every member. 
Rather than looking at the whole Series result, we will chain the .unique method 
onto the result, to look at just the unique types that are found in the director_
name column:

>>> movies["director_name"].apply(type).unique()

array([<class 'str'>, <class 'float'>], dtype=object)

How it works…
A pandas DataFrame typically has multiple columns (though it may also have only one 
column). Each of these columns can be pulled out and treated as a Series.

There are many mechanisms to pull out a column from a DataFrame. Typically the easiest is to 
try and access it as an attribute. Attribute access is done with the dot operator (.notation). 
There are good things about this:

 f Least amount of typing

 f Jupyter will provide completion on the name

 f Jupyter will provide completion on the Series attributes

There are some downsides as well:

 f Only works with columns that have names that are valid Python attributes and do not 
conflict with existing DataFrame attributes

 f Cannot create a new column, can only update existing ones

What is a valid Python attribute? A sequence of alphanumerics that starts with a character 
and includes underscores. Typically these are in lowercase to follow standard Python naming 
conventions. This means that column names with spaces or special characters will not work 
with an attribute.

Selecting column names using the index operator ([) will work with any column name. You 
can also create and update columns with this operator. Jupyter will provide completion on the 
column name when you use the index operator, but sadly, will not complete on subsequent 
Series attributes.
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I often find myself using attribute access because getting completion on the Series attribute 
is very handy. But, I also make sure that the column names are valid Python attribute names 
that don't conflict with existing DataFrame attributes. I also try not to update using either 
attribute or index assignment, but rather using the .assign method. You will see many 
examples of using .assign in this book.

There's more…
To get completion in Jupyter an press the Tab key following a dot, or after starting a string in 
an index access. Jupyter will pop up a list of completions, and you can use the up and down 
arrow keys to highlight one, and hit Enter to complete it.

Calling Series methods
A typical workflow in pandas will have you going back and forth between executing statements 
on Series and DataFrames. Calling Series methods is the primary way to use the abilities that 
the Series offers.

Both Series and DataFrames have a tremendous amount of power. We can use the built-in 
dir function to uncover all the attributes and methods of a Series. In the following code, we 
also show the number of attributes and methods common to both Series and DataFrames. 
Both of these objects share the vast majority of attribute and method names:

>>> s_attr_methods = set(dir(pd.Series))

>>> len(s_attr_methods)

471

>>> df_attr_methods = set(dir(pd.DataFrame))

>>> len(df_attr_methods)

458

>>> len(s_attr_methods & df_attr_methods)

400

As you can see there is a lot of functionality on both of these objects. Don't be overwhelmed 
by this. Most pandas users only use a subset of the functionality and get along just fine.

This recipe covers the most common and powerful Series methods and attributes. Many of 
the methods are nearly equivalent for DataFrames.
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How to do it…
1. After reading in the movies dataset, select two Series with different data types. 

The director_name column contains strings (pandas calls this an object or O 
data type), and the column actor_1_facebook_likes contains numerical data 
(formally float64):
>>> movies = pd.read_csv("data/movie.csv")

>>> director = movies["director_name"]

>>> fb_likes = movies["actor_1_facebook_likes"]

>>> director.dtype

dtype('O')

>>> fb_likes.dtype

dtype('float64')

2. The .head method lists the first five entries of a Series. You may provide an optional 
argument to change the number of entries returned. Another option is to use the 
.sample method to view some of the data. Depending on your dataset, this might 
provide better insight into your data as the first rows might be very different from 
subsequent rows:
>>> director.head()

0        James Cameron

1       Gore Verbinski

2           Sam Mendes

3    Christopher Nolan

4          Doug Walker

Name: director_name, dtype: object

>>> director.sample(n=5, random_state=42)

2347      Brian Percival

4687         Lucio Fulci

691        Phillip Noyce

3911       Sam Peckinpah

2488    Rowdy Herrington

Name: director_name, dtype: object

>>> fb_likes.head()
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0     1000.0

1    40000.0

2    11000.0

3    27000.0

4      131.0

Name: actor_1_facebook_likes, dtype: float64

3. The data type of the Series usually determines which of the methods will be the most 
useful. For instance, one of the most useful methods for the object data type Series 
is .value_counts, which calculates the frequencies:
>>> director.value_counts()

Steven Spielberg    26

Woody Allen         22

Clint Eastwood      20

Martin Scorsese     20

Ridley Scott        16

                    ..

Eric England         1

Moustapha Akkad      1

Jay Oliva            1

Scott Speer          1

Leon Ford            1

Name: director_name, Length: 2397, dtype: int64

4. The .value_counts method is typically more useful for Series with object data 
types but can occasionally provide insight into numeric Series as well. Used with fb_
likes, it appears that higher numbers have been rounded to the nearest thousand 
as it is unlikely that so many movies received exactly 1,000 likes:
>>> fb_likes.value_counts()

1000.0     436

11000.0    206

2000.0     189

3000.0     150

12000.0    131

          ... 

362.0        1

216.0        1

859.0        1
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225.0        1

334.0        1

Name: actor_1_facebook_likes, Length: 877, dtype: int64

5. Counting the number of elements in the Series may be done with the .size or 
.shape attribute or the built-in len function. The .unique method will return 
a NumPy array with the unique values:
>>> director.size

4916

>>> director.shape

(4916,)

>>> len(director)

4916

>>> director.unique()

array(['James Cameron', 'Gore Verbinski', 'Sam Mendes', ...,

       'Scott Smith', 'Benjamin Roberds', 'Daniel Hsia'], 
dtype=object)

6. Additionally, there is the .count method, which doesn't return the count of items, 
but the number of non-missing values:
>>> director.count()

4814

>>> fb_likes.count()

4909

7. Basic summary statistics are provided with .min, .max, .mean, .median, and .std:
>>> fb_likes.min()

0.0

>>> fb_likes.max()

640000.0

>>> fb_likes.mean()

6494.488490527602

>>> fb_likes.median()

982.0
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>>> fb_likes.std()

15106.986883848309

8. To simplify step 7, you may use the .describe method to return both the summary 
statistics and a few of the quantiles at once. When .describe is used with an 
object data type column, a completely different output is returned:
>>> fb_likes.describe()

count      4909.000000

mean       6494.488491

std       15106.986884

min           0.000000

25%         607.000000

50%         982.000000

75%       11000.000000

max      640000.000000

Name: actor_1_facebook_likes, dtype: float64

>>> director.describe()

count                 4814

unique                2397

top       Steven Spielberg

freq                    26

Name: director_name, dtype: object

9. The .quantile method calculates the quantile of numeric data. Note that if you 
pass in a scaler, you will get scalar output, but if you pass in a list, the output is 
a pandas Series:
>>> fb_likes.quantile(0.2)

510.0

>>> fb_likes.quantile(

...     [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

... )

0.1      240.0

0.2      510.0

0.3      694.0

0.4      854.0

0.5      982.0

0.6     1000.0
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0.7     8000.0

0.8    13000.0

0.9    18000.0

Name: actor_1_facebook_likes, dtype: float64

10. Since the .count method in step 6 returned a value less than the total number 
of Series elements found in step 5, we know that there are missing values in each 
Series. The .isna method can be used to determine whether each individual value is 
missing or not. The result is a Series. You may see this referred to as a Boolean array 
(a Series with Boolean values that has the same index and length as the original 
Series):
>>> director.isna()

0       False

1       False

2       False

3       False

4       False

        ...  

4911    False

4912     True

4913    False

4914    False

4915    False

Name: director_name, Length: 4916, dtype: bool

11. It is possible to replace all missing values within a Series with the .fillna method:
>>> fb_likes_filled = fb_likes.fillna(0)

>>> fb_likes_filled.count()

4916

12. To remove the entries in Series elements with missing values, use the .dropna 
method:

>>> fb_likes_dropped = fb_likes.dropna()

>>> fb_likes_dropped.size

4909
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How it works…
The methods used in this recipe were chosen because of how frequently they are used in data 
analysis.

The steps in this recipe return different types of objects.

The result from the .head method in step 1 is another Series. The .value_counts method 
also produces a Series but has the unique values from the original Series as the index and the 
count as its values. In step 5, the .size property and .count method return scalar values, 
but the .shape property returns a one-item tuple. This is a convention borrowed from NumPy, 
which allows for arrays of arbitrary dimensions.

In step 7, each individual method returns a scalar value.

In step 8, the .describe method returns a Series with all the summary statistic names as 
the index and the statistic as the values.

In step 9, the .quantile method is flexible and returns a scalar value when passed a single 
value but returns a Series when given a list.

In steps 10, 11, and 12, .isna, .fillna, and .dropna all return a Series.

There's more…
The .value_counts method is one of the most informative Series methods and heavily 
used during exploratory analysis, especially with categorical columns. It defaults to returning 
the counts, but by setting the normalize parameter to True, the relative frequencies are 
returned instead, which provides another view of the distribution:

>>> director.value_counts(normalize=True)

Steven Spielberg    0.005401

Woody Allen         0.004570

Clint Eastwood      0.004155

Martin Scorsese     0.004155

Ridley Scott        0.003324

                      ...

Eric England        0.000208

Moustapha Akkad     0.000208

Jay Oliva           0.000208

Scott Speer         0.000208

Leon Ford           0.000208

Name: director_name, Length: 2397, dtype: float64
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In this recipe, we determined that there were missing values in the Series by observing 
that the result from the .count method did not match the .size attribute. A more direct 
approach is to inspect the .hasnans attribute:

>>> director.hasnans

True

There exists a complement of .isna; the .notna method, which returns True for all the  
non-missing values:

>>> director.notna()

0        True

1        True

2        True

3        True

4        True

        ...  

4911     True

4912    False

4913     True

4914     True

4915     True

Name: director_name, Length: 4916, dtype: bool

There is also a .isnull method, which is an alias for .isna. I'm lazy so if I can type less 
while still being explicit about my intentions, then I'm all for it. Because pandas uses NaN all 
over the place, I prefer the spelling of .isna to .isnull. We don't ever see NULL anywhere 
in the pandas or Python world.

Series operations
There exist a vast number of operators in Python for manipulating objects. For instance, when 
the plus operator is placed between two integers, Python will add them together:

>>> 5 + 9  # plus operator example. Adds 5 and 9

14

Series and DataFrames support many of the Python operators. Typically, a new Series 
or DataFrame is returned when using an operator.

In this recipe, a variety of operators will be applied to different Series objects to produce 
a new Series with completely different values.
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How to do it…
1. Select the imdb_score column as a Series:

>>> movies = pd.read_csv("data/movie.csv")

>>> imdb_score = movies["imdb_score"]

>>> imdb_score

0       7.9

1       7.1

2       6.8

3       8.5

4       7.1

       ... 

4911    7.7

4912    7.5

4913    6.3

4914    6.3

4915    6.6

Name: imdb_score, Length: 4916, dtype: float64

2. Use the plus operator to add one to each Series element:
>>> imdb_score + 1

0       8.9

1       8.1

2       7.8

3       9.5

4       8.1

       ... 

4911    8.7

4912    8.5

4913    7.3

4914    7.3

4915    7.6

Name: imdb_score, Length: 4916, dtype: float64

3. The other basic arithmetic operators, minus (-), multiplication (*), division (/), and 
exponentiation (**) work similarly with scalar values. In this step, we will multiply the 
series by 2.5:
>>> imdb_score * 2.5
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0       19.75

1       17.75

2       17.00

3       21.25

4       17.75

        ...  

4911    19.25

4912    18.75

4913    15.75

4914    15.75

4915    16.50

Name: imdb_score, Length: 4916, dtype: float64

4. Python uses a double slash (//) for floor division. The floor division operator 
truncates the result of the division. The percent sign (%) is the modulus operator, 
which returns the remainder after a division. The Series instances also support 
these operations:
>>> imdb_score // 7

0       1.0

1       1.0

2       0.0

3       1.0

4       1.0

       ... 

4911    1.0

4912    1.0

4913    0.0

4914    0.0

4915    0.0

Name: imdb_score, Length: 4916, dtype: float64

5. There exist six comparison operators, greater than (>), less than (<), greater than or 
equal to (>=), less than or equal to (<=), equal to (==), and not equal to (!=). Each 
comparison operator turns each value in the Series to True or False based on the 
outcome of the condition. The result is a Boolean array, which we will see is very 
useful for filtering in later recipes:

>>> imdb_score > 7

0        True
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1        True

2       False

3        True

4        True

        ...  

4911     True

4912     True

4913    False

4914    False

4915    False

Name: imdb_score, Length: 4916, dtype: bool

>>> director = movies["director_name"]

>>> director == "James Cameron"

0        True

1       False

2       False

3       False

4       False

        ...  

4911    False

4912    False

4913    False

4914    False

4915    False

Name: director_name, Length: 4916, dtype: bool

How it works…
All the operators used in this recipe apply the same operation to each element in the Series. 
In native Python, this would require a for loop to iterate through each of the items in the 
sequence before applying the operation. pandas relies heavily on the NumPy library, which 
allows for vectorized computations, or the ability to operate on entire sequences of data 
without the explicit writing of for loops. Each operation returns a new Series with the same 
index, but with the new values.
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There's more…
All of the operators used in this recipe have method equivalents that produce the exact same 
result. For instance, in step 1, imdb_score + 1 can be reproduced with the .add method.

Using the method rather than the operator can be useful when we chain methods together.

Here are a few examples:

>>> imdb_score.add(1)  # imdb_score + 1

0       8.9

1       8.1

2       7.8

3       9.5

4       8.1

       ... 

4911    8.7

4912    8.5

4913    7.3

4914    7.3

4915    7.6

Name: imdb_score, Length: 4916, dtype: float64

>>> imdb_score.gt(7)  # imdb_score > 7

0        True

1        True

2       False

3        True

4        True

        ...  

4911     True

4912     True

4913    False

4914    False

4915    False

Name: imdb_score, Length: 4916, dtype: bool
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Why does pandas offer a method equivalent to these operators? By its nature, an operator 
only operates in exactly one manner. Methods, on the other hand, can have parameters that 
allow you to alter their default functionality.

Other recipes will dive into this further, but here is a small example. The .sub method 
performs subtraction on a Series. When you do subtraction with the - operator, missing 
values are ignored. However, the .sub method allows you to specify a fill_value 
parameter to use in place of missing values:

>>> money = pd.Series([100, 20, None])

>>> money – 15

0    85.0

1     5.0

2     NaN

dtype: float64

>>> money.sub(15, fill_value=0)

0    85.0

1     5.0

2   -15.0

dtype: float64

Following is a table of operators and the corresponding methods:

Operator group Operator Series method name

Arithmetic +,-,*,/,//,%,** .add, .sub, .mul, .div, .floordiv, .mod, .pow
Comparison <,>,<=,>=,==,!= .lt, .gt, .le, .ge, .eq, .ne

You may be curious as to how a Python Series object, or any object for that matter, knows 
what to do when it encounters an operator. For example, how does the expression imdb_
score * 2.5 know to multiply each element in the Series by 2.5? Python has a built-in, 
standardized way for objects to communicate with operators using special methods.

Special methods are what objects call internally whenever they encounter an operator. 
Special methods always begin and end with two underscores. Because of this, they are also 
called dunder methods as the method that implements the operator is surrounded by double 
underscores (dunder being a lazy geeky programmer way of saying "double underscores"). 
For instance, the special method .__mul__ is called whenever the multiplication operator 
is used. Python interprets the imdb_score * 2.5 expression as imdb_score.__mul__
(2.5).
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There is no difference between using the special method and using an operator as they 
are doing the exact same thing. The operator is just syntactic sugar for the special method. 
However, calling the .mul method is different than calling the .__mul__ method.

Chaining Series methods
In Python, every variable points to an object, and many attributes and methods return new 
objects. This allows sequential invocation of methods using attribute access. This is called 
method chaining or flow programming. pandas is a library that lends itself well to method 
chaining, as many Series and DataFrame methods return more Series and DataFrames, 
upon which more methods can be called.

To motivate method chaining, let's take an English sentence and translate the chain of events 
into a chain of methods. Consider the sentence: A person drives to the store to buy food, then 
drives home and prepares, cooks, serves, and eats the food before cleaning the dishes.

A Python version of this sentence might take the following form:

(person.drive('store')
.buy('food')
.drive('home')
.prepare('food')
.cook('food')
.serve('food')
.eat('food')
.cleanup('dishes')
)

In the preceding code, the person is the object (or instance of a class) that calls a method. 
Each method returns another instance that allows the chain of calls to happen. The 
parameter passed to each of the methods specifies how the method operates.

Although it is possible to write the entire method chain in a single unbroken line, it is far more 
palatable to write a single method per line. Since Python does not normally allow a single 
expression to be written on multiple lines, we have a couple of options. My preferred style is 
to wrap everything in parentheses. Alternatively, you may end each line with a backslash (\) 
to indicate that the line continues on the next line. To improve readability even more, you can 
align the method calls vertically.

This recipe shows a similar method chaining using a pandas Series.
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How to do it…
1. Load in the movie dataset, and pull two columns out of it:

>>> movies = pd.read_csv("data/movie.csv")

>>> fb_likes = movies["actor_1_facebook_likes"]

>>> director = movies["director_name"]

2. Two of the most common methods to append to the end of a chain are the .head or 
the .sample method. This suppresses long output. If the resultant DataFrame is very 
wide, I like to transpose the results using the .T property. (For shorter chains, there 
isn't as great a need to place each method on a different line):
>>> director.value_counts().head(3)

Steven Spielberg    26

Woody Allen         22

Clint Eastwood      20

Name: director_name, dtype: int64

3. A common way to count the number of missing values is to chain the .sum method 
after a call to .isna:
>>> fb_likes.isna().sum()

7

4. All the non-missing values of fb_likes should be integers as it is impossible to have 
a partial Facebook like. In most pandas versions, any numeric columns with missing 
values must have their data type as float (pandas 0.24 introduced the Int64 type, 
which supports missing values but is not used by default). If we fill missing values 
from fb_likes with zeros, we can then convert it to an integer with the .astype 
method:
>>> fb_likes.dtype

dtype('float64')

>>> (fb_likes.fillna(0).astype(int).head())

0     1000

1    40000

2    11000

3    27000

4      131

Name: actor_1_facebook_likes, dtype: int64
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How it works…
Step 2 first uses the .value_counts method to return a Series and then chains the .head 
method to select the first three elements. The final returned object is a Series, which could 
also have had more methods chained on it.

In step 3, the .isna method creates a Boolean array. pandas treats False and True as 
0 and 1, so the .sum method returns the number of missing values.

Each of the three chained methods in step 4 returns a Series. It may not seem intuitive, 
but the .astype method returns an entirely new Series with a different data type.

There's more…
One potential downside of chaining is that debugging becomes difficult. Because none of the 
intermediate objects created during the method calls is stored in a variable, it can be hard 
to trace the exact location in the chain where it occurred.

One of the nice aspects of putting each call on its own line is that it enables debugging of 
more complicated commands. I typically build up these chains one method at a time, but 
occasionally I need to come back to previous code or tweak it slightly.

To debug this code, I start by commenting out all of the commands except the first. Then 
I uncomment the first chain, make sure it works, and move on to the next.

If I were debugging the previous code, I would comment out the last two method calls and 
make sure I knew what .fillna was doing:

>>> (

...     fb_likes.fillna(0)

...     # .astype(int)

...     # .head()

... )

0        1000.0

1       40000.0

2       11000.0

3       27000.0

4         131.0

         ...   

4911      637.0

4912      841.0

4913        0.0
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4914      946.0

4915       86.0

Name: actor_1_facebook_likes, Length: 4916, dtype: float64

Then I would uncomment the next method and ensure that it was working correctly:

>>> (

...     fb_likes.fillna(0).astype(int)

...     # .head()

... )

0        1000

1       40000

2       11000

3       27000

4         131

        ...  

4911      637

4912      841

4913        0

4914      946

4915       86

Name: actor_1_facebook_likes, Length: 4916, dtype: int64

Another option for debugging chains is to call the .pipe method to show an intermediate 
value. The .pipe method on a Series needs to be passed a function that accepts a Series as 
input and can return anything (but we want to return a Series if we want to use it in a method 
chain).

This function, debug_ser, will print out the value of the intermediate result:

>>> def debug_ser(ser):

...     print("BEFORE")

...     print(ser)

...     print("AFTER")

...     return ser

>>> (fb_likes.fillna(0).pipe(debug_ser).astype(int).head())

BEFORE

0        1000.0

1       40000.0
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2       11000.0

3       27000.0

4         131.0

         ...   

4911      637.0

4912      841.0

4913        0.0

4914      946.0

4915       86.0

Name: actor_1_facebook_likes, Length: 4916, dtype: float64

AFTER

0     1000

1    40000

2    11000

3    27000

4      131

Name: actor_1_facebook_likes, dtype: int64

If you want to create a global variable to store an intermediate value you can also use .pipe:

>>> intermediate = None

>>> def get_intermediate(ser):

...     global intermediate

...     intermediate = ser

...     return ser

>>> res = (

...     fb_likes.fillna(0)

...     .pipe(get_intermediate)

...     .astype(int)

...     .head()

... )

>>> intermediate

0        1000.0

1       40000.0

2       11000.0
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3       27000.0

4         131.0

         ...   

4911      637.0

4912      841.0

4913        0.0

4914      946.0

4915       86.0

Name: actor_1_facebook_likes, Length: 4916, dtype: float64

As was mentioned at the beginning of the recipe, it is possible to use backslashes for  
multi line code. Step 4 may be rewritten this way:

>>> fb_likes.fillna(0)\

...    .astype(int)\

...    .head()

0     1000

1    40000

2    11000

3    27000

4      131

Name: actor_1_facebook_likes, dtype: int64

I prefer wrapping the chain with parentheses. Having to continually add trailing backslashes 
when you add a method to the chain is annoying.

Renaming column names
One of the most common operations on a DataFrame is to rename the column names. I like to 
rename my columns so that they are also valid Python attribute names. This means that they 
do not start with numbers and are lowercased alphanumerics with underscores. Good column 
names should also be descriptive, brief, and not clash with existing DataFrame or Series 
attributes.

In this recipe, the column names are renamed. The motivation for renaming is to make your 
code easier to understand, and also let your environment assist you. Recall that Jupyter will 
allow you to complete Series methods if you accessed the Series using dot notation (but will 
not allow method completion on index access).
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How to do it…
1. Read in the movie dataset, and make the index meaningful by setting it as the movie 

title:
>>> movies = pd.read_csv("data/movie.csv")

2. The renamed DataFrame method accepts dictionaries that map the old value to the 
new value. Let's create one for the columns:
>>> col_map = {

...     "director_name": "director",

...     "num_critic_for_reviews": "critic_reviews",

... }

3. Pass the dictionaries to the rename method, and assign the result to a new variable:
>>> movies.rename(columns=col_map).head()

   color           director  ...  aspec/ratio  movie/likes

0  Color      James Cameron  ...         1.78        33000

1  Color     Gore Verbinski  ...         2.35            0

2  Color         Sam Mendes  ...         2.35        85000

3  Color  Christopher Nolan  ...         2.35       164000

4    NaN        Doug Walker  ...          NaN            0

How it works…
The .rename method on a DataFrame allows for column labels to be renamed. We can 
rename the columns by assigning to the columns attribute. But we cannot chain on an 
assignment. As I keep saying, I prefer chaining because it makes our code easier to read. 
The next section shows an example of renaming via assignment to the .column attribute:

There's more…
In this recipe, we changed the names of the columns. You can also rename the index using 
the .rename method if you want to. This makes more sense if the columns are string values. 
So we will set the index to the movie_title column and then map those values to new ones:

>>> idx_map = {

...     "Avatar": "Ratava",

...     "Spectre": "Ertceps",

...     "Pirates of the Caribbean: At World's End": "POC",
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... }

>>> col_map = {

...     "aspect_ratio": "aspect",

...     "movie_facebook_likes": "fblikes",

... }

>>> (

...     movies.set_index("movie_title")

...     .rename(index=idx_map, columns=col_map)

...     .head(3)

... )

             color   director_name  ...  aspect  fblikes

movie_title                         ...                 

Ratava       Color   James Cameron  ...    1.78    33000

POC          Color  Gore Verbinski  ...    2.35        0

Ertceps      Color      Sam Mendes  ...    2.35    85000

There are multiple ways to rename row and column labels. It is possible to reassign the index 
and column attributes to a Python list. This assignment works when the list has the same 
number of elements as the row and column labels.

The following code shows an example. We will read the data from the CSV file, and use the 
index_col parameter to tell pandas to use the movie_title column as the index. Then 
we use the .tolist method on each Index object to create a Python list of labels. We then 
modify three values in each of the lists and reassign them to the .index and .column 
attributes:

>>> movies = pd.read_csv(

...     "data/movie.csv", index_col="movie_title"

... )

>>> ids = movies.index.to_list()

>>> columns = movies.columns.to_list()

# rename the row and column labels with list assignments

>>> ids[0] = "Ratava"

>>> ids[1] = "POC"

>>> ids[2] = "Ertceps"

>>> columns[1] = "director"

>>> columns[-2] = "aspect"

>>> columns[-1] = "fblikes"

>>> movies.index = ids
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>>> movies.columns = columns

>>> movies.head(3)

         color        director  ...  aspect  fblikes

Ratava   Color   James Cameron  ...    1.78    33000

POC      Color  Gore Verbinski  ...    2.35        0

Ertceps  Color      Sam Mendes  ...    2.35    85000

Another option is to pass a function into the .rename method. The function takes a column 
name and returns a new name. Assuming there are spaces and uppercases in the columns, 
this code will clean them up:

>>> def to_clean(val):

...     return val.strip().lower().replace(" ", "_")

>>> movies.rename(columns=to_clean).head(3)

         color        director  ...  aspect  fblikes

Ratava   Color   James Cameron  ...    1.78    33000

POC      Color  Gore Verbinski  ...    2.35        0

Ertceps  Color      Sam Mendes  ...    2.35    85000

In pandas code in the wild, you will also see list comprehensions used to clean up the column 
names. With the new cleaned up list, you can reassign the result back to the .columns 
attribute. Assuming there are spaces and uppercases in the columns, this code will clean 
them up:

>>> cols = [

...     col.strip().lower().replace(" ", "_")

...     for col in movies.columns

... ]

>>> movies.columns = cols

>>> movies.head(3)

         color        director  ...  aspect  fblikes

Ratava   Color   James Cameron  ...    1.78    33000

POC      Color  Gore Verbinski  ...    2.35        0

Ertceps  Color      Sam Mendes  ...    2.35    85000

Because this code mutates the original DataFrame, consider using the .rename method.
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Creating and deleting columns
During data analysis, it is likely that you will need to create new columns to represent new 
variables. Commonly, these new columns will be created from previous columns already in 
the dataset. pandas has a few different ways to add new columns to a DataFrame.

In this recipe, we create new columns in the movie dataset by using the .assign method 
and then delete columns with the .drop method.

How to do it…
1. One way to create a new column is to do an index assignment. Note that this will not 

return a new DataFrame but mutate the existing DataFrame. If you assign the column 
to a scalar value, it will use that value for every cell in the column. Let's create the 
has_seen column in the movie dataset to indicate whether or not we have seen the 
movie. We will assign zero for every value. By default, new columns are appended to 
the end:
>>> movies = pd.read_csv("data/movie.csv")

>>> movies["has_seen"] = 0

2. While this method works and is common, as I find myself chaining methods very 
often, I prefer to use the .assign method instead. This will return a new DataFrame 
with the new column. Because it uses the parameter name as the column name, the 
column name must be a valid parameter name:
>>> movies = pd.read_csv("data/movie.csv")

>>> idx_map = {

...     "Avatar": "Ratava",

...     "Spectre": "Ertceps",

...     "Pirates of the Caribbean: At World's End": "POC",

... }

>>> col_map = {

...     "aspect_ratio": "aspect",

...     "movie_facebook_likes": "fblikes",

... }

>>> (

...     movies.rename(

...         index=idx_map, columns=col_map

...     ).assign(has_seen=0)

... )
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      color      director_name  ...  fblikes  has_seen

0     Color      James Cameron  ...    33000         0

1     Color     Gore Verbinski  ...        0         0

2     Color         Sam Mendes  ...    85000         0

3     Color  Christopher Nolan  ...   164000         0

4       NaN        Doug Walker  ...        0         0

...     ...                ...  ...      ...       ...

4911  Color        Scott Smith  ...       84         0

4912  Color                NaN  ...    32000         0

4913  Color   Benjamin Roberds  ...       16         0

4914  Color        Daniel Hsia  ...      660         0

4915  Color           Jon Gunn  ...      456         0

3. There are several columns that contain data on the number of Facebook likes. Let's 
add up all actor and director Facebook like columns and assign them to the total_
likes column. We can do this in a couple of ways.

We can add each of the columns:
>>> total = (

...     movies["actor_1_facebook_likes"]

...     + movies["actor_2_facebook_likes"]

...     + movies["actor_3_facebook_likes"]

...     + movies["director_facebook_likes"]

... )

>>> total.head(5)

0     2791.0

1    46563.0

2    11554.0

3    95000.0

4        NaN

dtype: float64

My preference is to use methods that we can chain, so I prefer calling .sum here. 
I will pass in a list of columns to select to .loc to pull out just those columns that 
I want to sum:
>>> cols = [

...     "actor_1_facebook_likes",
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...     "actor_2_facebook_likes",

...     "actor_3_facebook_likes",

...     "director_facebook_likes",

... ]

>>> sum_col = movies.loc[:, cols].sum(axis="columns")

>>> sum_col.head(5)

0     2791.0

1    46563.0

2    11554.0

3    95000.0

4      274.0

dtype: float64

Then we can assign this Series to the new column. Note that when we called the 
+ operator, the result had missing numbers (NaN), but the .sum method ignores 
missing numbers by default, so we get a different result:
>>> movies.assign(total_likes=sum_col).head(5)

   color        direc/_name  ...  movie/likes  total/likes

0  Color      James Cameron  ...        33000       2791.0

1  Color     Gore Verbinski  ...            0      46563.0

2  Color         Sam Mendes  ...        85000      11554.0

3  Color  Christopher Nolan  ...       164000      95000.0

4    NaN        Doug Walker  ...            0        274.0

Another option is to pass in a function as the value of the parameter in the call 
to the .assign method. This function accepts a DataFrame as input and should 
return a Series:
>>> def sum_likes(df):

...     return df[

...         [

...             c

...             for c in df.columns

...             if "like" in c

...             and ("actor" in c or "director" in c)

...         ]

...     ].sum(axis=1)
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>>> movies.assign(total_likes=sum_likes).head(5)

   color        direc/_name  ...  movie/likes  total/likes

0  Color      James Cameron  ...        33000       2791.0

1  Color     Gore Verbinski  ...            0      46563.0

2  Color         Sam Mendes  ...        85000      11554.0

3  Color  Christopher Nolan  ...       164000      95000.0

4    NaN        Doug Walker  ...            0        274.0

4. From the Calling Series methods recipe in this chapter, we know that this dataset 
contains missing values. When numeric columns are added to one another as in the 
preceding step using the plus operator, the result is NaN if there is any value missing. 
However, with the .sum method it converts NaN to zero.

Let's check if there are missing values in our new column using both methods:
>>> (

...     movies.assign(total_likes=sum_col)["total_likes"]

...     .isna()

...     .sum()

... )

0

>>> (

...     movies.assign(total_likes=total)["total_likes"]

...     .isna()

...     .sum()

... )

122

We could fill in the missing values with zero as well:
>>> (

...     movies.assign(total_likes=total.fillna(0))[

...         "total_likes"

...     ]

...     .isna()

...     .sum()

... )

0
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5. There is another column in the dataset named cast_total_facebook_likes. 
It would be interesting to see what percentage of this column comes from our newly 
created column, total_likes. Before we create our percentage column, let's do 
some basic data validation. We will ensure that cast_total_facebook_likes 
is greater than or equal to total_likes:
>>> def cast_like_gt_actor(df):

...     return (

...         df["cast_total_facebook_likes"]

...         >= df["total_likes"]

...     )

>>> df2 = movies.assign(

...     total_likes=total,

...     is_cast_likes_more=cast_like_gt_actor,

... )

6. is_cast_likes_more is now a column from a Boolean array. We can check 
whether all the values of this column are True using the .all method:
>>> df2["is_cast_likes_more"].all()

False

7. It turns out that there is at least one movie with more total_likes than cast_
total_facebook_likes. It could be that director Facebook likes are not part of 
the cast total likes. Let's backtrack and delete the total_likes column. We can 
use the .drop method with the columns parameter to do that:
>>> df2 = df2.drop(columns="total_likes")

8. Let's recreate a Series of just the total actor likes:
>>> actor_sum = movies[

...     [

...         c

...         for c in movies.columns

...         if "actor_" in c and "_likes" in c

...     ]

... ].sum(axis="columns")

>>> actor_sum.head(5)

0     2791.0

1    46000.0
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2    11554.0

3    73000.0

4      143.0

dtype: float64

9. Check again whether all the values in cast_total_facebook_likes are greater 
than actor_sum. We can do this with the >= operator or the .ge method:
>>> movies["cast_total_facebook_likes"] >= actor_sum

0       True

1       True

2       True

3       True

4       True

        ... 

4911    True

4912    True

4913    True

4914    True

4915    True

Length: 4916, dtype: bool

>>> movies["cast_total_facebook_likes"].ge(actor_sum)

0       True

1       True

2       True

3       True

4       True

        ... 

4911    True

4912    True

4913    True

4914    True

4915    True

Length: 4916, dtype: bool

>>> movies["cast_total_facebook_likes"].ge(actor_sum).all()

True
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10. Finally, let's calculate the percentage of the cast_total_facebook_likes that 
come from actor_sum:
>>> pct_like = actor_sum.div(

...     movies["cast_total_facebook_likes"]

... ).mul(100)

11. Let's validate that the minimum and maximum of this Series fall between 0 and 1:
>>> pct_like.describe()

count    4883.000000

mean       83.327889

std        14.056578

min        30.076696

25%        73.528368

50%        86.928884

75%        95.477440

max       100.000000

dtype: float64

12. We can then create a Series using the movie_title column as the index. The 
Series constructor lets us pass in both the values and an index:

>>> pd.Series(

...     pct_like.to_numpy(), index=movies["movie_title"]

... ).head()

movie_title

Avatar                                         57.736864

Pirates of the Caribbean: At World's End       95.139607

Spectre                                        98.752137

The Dark Knight Rises                          68.378310

Star Wars: Episode VII - The Force Awakens    100.000000

dtype: float64

How it works…
Many pandas operations are flexible, and column creation is one of them. This recipe assigns 
both a scalar value, as seen in step 1, and a Series, as seen in step 2, to create a new 
column.
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Step 3 adds four different Series together with the plus operator and the .sum method. Step 
4 uses method chaining to find and fill missing values. Step 5 uses the greater than or equal 
comparison operator to return a Boolean Series, which is then evaluated with the .all 
method in step 6 to check whether every single value is True or not.

The .drop method accepts the name of the row or column to delete. It defaults to dropping 
rows by the index names. To drop columns, you must set the axis parameter to either 1 or 
'columns'. The default value for axis is 0 or 'index'.

Steps 8 and 9 redo the work of step 3 to step 6 without the total_likes column. Step 
10 finally calculates the desired column we wanted since step 4. Step 11 validates that the 
percentages are between 0 and 100.

There's more…
It is possible to insert a new column into a specific location in a DataFrame with the .insert 
method. The .insert method takes the integer position of the new column as its first 
argument, the name of the new column as its second, and the values as its third. You will 
need to use the .get_loc Index method to find the integer location of the column name.

The .insert method modifies the calling DataFrame in-place, so there won't be an 
assignment statement. It also returns None. For this reason, I prefer the .assign method to 
create new columns. If I need them in order, I can pass in an ordered list of columns into the 
index operator (or to .loc).

The profit of each movie is calculated by subtracting budget from gross and inserting it after 
gross with the following:

>>> profit_index = movies.columns.get_loc("gross") + 1

>>> profit_index

9

>>> movies.insert(

...     loc=profit_index,

...     column="profit",

...     value=movies["gross"] - movies["budget"],

... )

An alternative to deleting columns with the .drop method is to use the del statement. This 
also does not return a new DataFrame, so favor .drop over this:

>>> del movies["director_name"]
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2
Essential DataFrame 

Operations

Introduction
This chapter covers many fundamental operations of the DataFrame. Many of the recipes 
will be similar to those in Chapter 1, Pandas Foundations, which primarily covered operations 
on a Series.

Selecting multiple DataFrame columns
We can select a single column by passing the column name to the index operator of 
a DataFrame. This was covered in the Selecting a column recipe in Chapter 1, Pandas 
Foundations. It is often necessary to focus on a subset of the current working dataset, 
which is accomplished by selecting multiple columns.

In this recipe, all the actor and director columns will be selected from the movie dataset.

How to do it...
1. Read in the movie dataset, and pass in a list of the desired columns to the indexing 

operator:
>>> import pandas as pd

>>> import numpy as np
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>>> movies = pd.read_csv("data/movie.csv")

>>> movie_actor_director = movies[

...     [

...         "actor_1_name",

...         "actor_2_name",

...         "actor_3_name",

...         "director_name",

...     ]

... ]

>>> movie_actor_director.head()

  actor_1_name actor_2_name actor_3_name director_name

0  CCH Pounder  Joel Dav...    Wes Studi  James Ca...

1  Johnny Depp  Orlando ...  Jack Dav...  Gore Ver...

2  Christop...  Rory Kin...  Stephani...   Sam Mendes

3    Tom Hardy  Christia...  Joseph G...  Christop...

4  Doug Walker   Rob Walker          NaN  Doug Walker

2. There are instances when one column of a DataFrame needs to be selected. Using 
the index operation can return either a Series or a DataFrame. If we pass in a list 
with a single item, we will get back a DataFrame. If we pass in just a string with 
the column name, we will get a Series back:
>>> type(movies[["director_name"]])

<class 'pandas.core.frame.DataFrame'>

>>> type(movies["director_name"])

<class 'pandas.core.series.Series'>

3. We can also use .loc to pull out a column by name. Because this index operation 
requires that we pass in a row selector first, we will use a colon (:) to indicate a slice 
that selects all of the rows. This can also return either a DataFrame or a Series:

>>> type(movies.loc[:, ["director_name"]])

<class 'pandas.core.frame.DataFrame'>

>>> type(movies.loc[:, "director_name"])

<class 'pandas.core.series.Series'>
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How it works...
The DataFrame index operator is very flexible and capable of accepting a number of different 
objects. If a string is passed, it will return a single-dimensional Series. If a list is passed to the 
indexing operator, it returns a DataFrame of all the columns in the list in the specified order.

Step 2 shows how to select a single column as a DataFrame and as a Series. Usually, a single 
column is selected with a string, resulting in a Series. When a DataFrame is desired, put the 
column name in a single-element list.

Step 3 shows how to use the loc attribute to pull out a Series or a DataFrame.

There's more...
Passing a long list inside the indexing operator might cause readability issues. To help with 
this, you may save all your column names to a list variable first. The following code achieves 
the same result as step 1:

>>> cols = [

...     "actor_1_name",

...     "actor_2_name",

...     "actor_3_name",

...     "director_name",

... ]

>>> movie_actor_director = movies[cols]

One of the most common exceptions raised when working with pandas is KeyError. 
This error is mainly due to mistyping of a column or index name. This same error is 
raised whenever a multiple column selection is attempted without the use of a list:

>>> movies[

...     "actor_1_name",

...     "actor_2_name",

...     "actor_3_name",

...     "director_name",

... ]

Traceback (most recent call last):

  ...

KeyError: ('actor_1_name', 'actor_2_name', 'actor_3_name', 'director_
name')
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Selecting columns with methods
Although column selection is usually done with the indexing operator, there are some 
DataFrame methods that facilitate their selection in an alternative manner. The .select_
dtypes and .filter methods are two useful methods to do this.

If you want to select by type, you need to be familiar with pandas data types. The 
Understanding data types recipe in Chapter 1, Pandas Foundations, explains the types.

How to do it...
1. Read in the movie dataset. Shorten the column names for display. Use the .get_

dtype_counts method to output the number of columns with each specific data 
type:
>>> movies = pd.read_csv("data/movie.csv")

>>> def shorten(col):

...     return (

...         str(col)

...         .replace("facebook_likes", "fb")

...         .replace("_for_reviews", "")

...     )

>>> movies = movies.rename(columns=shorten)

>>> movies.dtypes.value_counts()

float64    13

int64       3

object     12

dtype: int64

2. Use the .select_dtypes method to select only the integer columns:
>>> movies.select_dtypes(include="int").head()

   num_voted_users  cast_total_fb  movie_fb

0           886204           4834     33000

1           471220          48350         0

2           275868          11700     85000

3          1144337         106759    164000

4                8            143         0
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3. If you would like to select all the numeric columns, you may pass the string number 
to the include parameter:
>>> movies.select_dtypes(include="number").head()

   num_critics  duration  ...  aspect_ratio  movie_fb

0        723.0     178.0  ...         1.78      33000

1        302.0     169.0  ...         2.35          0

2        602.0     148.0  ...         2.35      85000

3        813.0     164.0  ...         2.35     164000

4          NaN       NaN  ...          NaN          0

4. If we wanted integer and string columns we could do the following:
>>> movies.select_dtypes(include=["int", "object"]).head()

   color        direc/_name  ... conte/ating movie_fb

0  Color      James Cameron  ...       PG-13    33000

1  Color     Gore Verbinski  ...       PG-13        0

2  Color         Sam Mendes  ...       PG-13    85000

3  Color  Christopher Nolan  ...       PG-13   164000

4    NaN        Doug Walker  ...         NaN        0

5. To exclude only floating-point columns, do the following:
>>> movies.select_dtypes(exclude="float").head()

   color director_name  ... content_rating movie_fb

0  Color  James Ca...   ...        PG-13      33000

1  Color  Gore Ver...   ...        PG-13          0

2  Color   Sam Mendes   ...        PG-13      85000

3  Color  Christop...   ...        PG-13     164000

4    NaN  Doug Walker   ...          NaN          0

6. An alternative method to select columns is with the .filter method. This method 
is flexible and searches column names (or index labels) based on which parameter 
is used. Here, we use the like parameter to search for all the Facebook columns 
or the names that contain the exact string, fb. The like parameter is checking for 
substrings in column names:
>>> movies.filter(like="fb").head()

   director_fb  actor_3_fb  ...  actor_2_fb  movie_fb

0          0.0       855.0  ...       936.0     33000

1        563.0      1000.0  ...      5000.0         0

2          0.0       161.0  ...       393.0     85000

3      22000.0     23000.0  ...     23000.0    164000

4        131.0         NaN  ...        12.0         0
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7. The .filter method has more tricks (or parameters) up its sleeve. If you use the 
items parameters, you can pass in a list of column names:
>>> cols = [

...     "actor_1_name",

...     "actor_2_name",

...     "actor_3_name",

...     "director_name",

... ]

>>> movies.filter(items=cols).head()

      actor_1_name  ...      director_name

0      CCH Pounder  ...      James Cameron

1      Johnny Depp  ...     Gore Verbinski

2  Christoph Waltz  ...         Sam Mendes

3        Tom Hardy  ...  Christopher Nolan

4      Doug Walker  ...        Doug Walker

8. The .filter method allows columns to be searched with regular expressions using 
the regex parameter. Here, we search for all columns that have a digit somewhere 
in their name:

>>> movies.filter(regex=r"\d").head()

   actor_3_fb actor_2_name  ...  actor_3_name actor_2_fb

0       855.0  Joel Dav...  ...    Wes Studi       936.0

1      1000.0  Orlando ...  ...  Jack Dav...      5000.0

2       161.0  Rory Kin...  ...  Stephani...       393.0

3     23000.0  Christia...  ...  Joseph G...     23000.0

4         NaN   Rob Walker  ...          NaN        12.0

How it works...
Step 1 lists the frequencies of all the different data types. Alternatively, you may use the 
.dtypes attribute to get the exact data type for each column. The .select_dtypes method 
accepts either a list or single data type in its include or exclude parameters and returns 
a DataFrame with columns of just those given data types (or not those types if excluding 
columns). The list values may be either the string name of the data type or the actual 
Python object.

The .filter method selects columns by only inspecting the column names and not the 
actual data values. It has three mutually exclusive parameters: items, like, and regex, 
only one of which can be used at a time. 
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The like parameter takes a string and attempts to find all the column names that contain 
that exact string somewhere in the name. To gain more flexibility, you may use the regex 
parameter instead to select column names through a regular expression. This particular 
regular expression, r'\d', represents all digits from zero to nine and matches any string 
with at least a single digit in it.

The filter method comes with another parameter, items, which takes a list of exact column 
names. This is nearly an exact duplication of the index operation, except that a KeyError 
will not be raised if one of the strings does not match a column name. For instance, movies.
filter(items=['actor_1_name', 'asdf']) runs without error and returns a single 
column DataFrame.

There's more...
One confusing aspect of .select_dtypes is its flexibility to take both strings and Python 
objects. The following list should clarify all the possible ways to select the many different 
column data types. There is no standard or preferred method of referring to data types in 
pandas, so it's good to be aware of both ways:

 f np.number, 'number' – Selects both integers and floats regardless of size

 f np.float64, np.float_, float, 'float64', 'float_', 'float' – Selects 
only 64-bit floats

 f np.float16, np.float32, np.float128, 'float16', 'float32', 
'float128' – Respectively selects exactly 16, 32, and 128-bit floats

 f np.floating, 'floating' – Selects all floats regardless of size

 f np.int0, np.int64, np.int_, int, 'int0', 'int64', 'int_', 'int' – Selects 
only 64-bit integers

 f np.int8, np.int16, np.int32, 'int8', 'int16', 'int32' – Respectively 
selects exactly 8, 16, and 32-bit integers

 f np.integer, 'integer' – Selects all integers regardless of size

 f 'Int64' – Selects nullable integer; no NumPy equivalent

 f np.object, 'object', 'O' – Select all object data types

 f np.datetime64, 'datetime64', 'datetime' – All datetimes are 64 bits

 f np.timedelta64, 'timedelta64', 'timedelta' – All timedeltas are 64 bits

 f pd.Categorical, 'category' – Unique to pandas; no NumPy equivalent

Because all integers and floats default to 64 bits, you may select them by using the string 
'int' or 'float' as you can see from the preceding bullet list. If you want to select all 
integers and floats regardless of their specific size, use the string 'number'.
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Ordering column names
One of the first tasks to consider after initially importing a dataset as a DataFrame is to 
analyze the order of the columns. As humans we are used to reading languages from left 
to right, which impacts our interpretations of the data. It's far easier to find and interpret 
information when column order is given consideration.

There are no standardized set of rules that dictate how columns should be organized within 
a dataset. However, it is good practice to develop a set of guidelines that you consistently 
follow. This is especially true if you work with a group of analysts who share lots of datasets.

The following is a guideline to order columns:

 f Classify each column as either categorical or continuous

 f Group common columns within the categorical and continuous columns

 f Place the most important groups of columns first with categorical columns before 
continuous ones

This recipe shows you how to order the columns with this guideline. There are many possible 
orderings that are sensible.

How to do it...
1. Read in the movie dataset, and scan the data:

>>> movies = pd.read_csv("data/movie.csv")

>>> def shorten(col):

...     return col.replace("facebook_likes", "fb").replace(

...         "_for_reviews", ""

...     )

>>> movies = movies.rename(columns=shorten)

2. Output all the column names and scan for similar categorical and continuous 
columns:
>>> movies.columns

Index(['color', 'director_name', 'num_critic', 'duration', 
'director_fb',

       'actor_3_fb', 'actor_2_name', 'actor_1_fb', 'gross', 
'genres',

       'actor_1_name', 'movie_title', 'num_voted_users', 'cast_
total_fb',

       'actor_3_name', 'facenumber_in_poster', 'plot_keywords',
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       'movie_imdb_link', 'num_user', 'language', 'country', 
'content_rating',

       'budget', 'title_year', 'actor_2_fb', 'imdb_score', 
'aspect_ratio',

       'movie_fb'],

      dtype='object')

3. The columns don't appear to have any logical ordering to them. Organize the names 
sensibly into lists so that the guideline from the previous section is followed:
>>> cat_core = [

...     "movie_title",

...     "title_year",

...     "content_rating",

...     "genres",

... ]

>>> cat_people = [

...     "director_name",

...     "actor_1_name",

...     "actor_2_name",

...     "actor_3_name",

... ]

>>> cat_other = [

...     "color",

...     "country",

...     "language",

...     "plot_keywords",

...     "movie_imdb_link",

... ]

>>> cont_fb = [

...     "director_fb",

...     "actor_1_fb",

...     "actor_2_fb",

...     "actor_3_fb",

...     "cast_total_fb",

...     "movie_fb",

... ]

>>> cont_finance = ["budget", "gross"]
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>>> cont_num_reviews = [

...     "num_voted_users",

...     "num_user",

...     "num_critic",

... ]

>>> cont_other = [

...     "imdb_score",

...     "duration",

...     "aspect_ratio",

...     "facenumber_in_poster",

... ]

4. Concatenate all the lists together to get the final column order. Also, ensure that this 
list contains all the columns from the original:
>>> new_col_order = (

...     cat_core

...     + cat_people

...     + cat_other

...     + cont_fb

...     + cont_finance

...     + cont_num_reviews

...     + cont_other

... )

>>> set(movies.columns) == set(new_col_order)

True

5. Pass the list with the new column order to the indexing operator of the DataFrame to 
reorder the columns:

>>> movies[new_col_order].head()

   movie_title  title_year  ... aspect_ratio facenumber_in_poster

0       Avatar      2009.0  ...         1.78          0.0

1  Pirates ...      2007.0  ...         2.35          0.0

2      Spectre      2015.0  ...         2.35          1.0

3  The Dark...      2012.0  ...         2.35          0.0

4  Star War...         NaN  ...          NaN          0.0
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How it works...
You can select a subset of columns from a DataFrame, with a list of specific column names. 
For instance, movies[['movie_title', 'director_name']] creates a new DataFrame 
with only the movie_title and director_name columns. Selecting columns by name is 
the default behavior of the index operator for a pandas DataFrame.

Step 3 neatly organizes all of the column names into separate lists based on their type 
(categorical or continuous) and by how similar their data is. The most important columns, 
such as the title of the movie, are placed first.

Step 4 concatenates all of the lists of column names and validates that this new list 
contains the same exact values as the original column names. Python sets are unordered 
and the equality statement checks whether each member of one set is a member of the 
other. Manually ordering columns in this recipe is susceptible to human error as it's easy 
to mistakenly forget a column in the new column list.

Step 5 completes the reordering by passing the new column order as a list to the indexing 
operator. This new order is now much more sensible than the original.

There's more...
There are alternative guidelines for ordering columns besides the suggestion mentioned 
earlier. Hadley Wickham's seminal paper on Tidy Data suggests placing the fixed variables 
first, followed by measured variables. As this data does not come from a controlled 
experiment, there is some flexibility in determining which variables are fixed and which ones 
are measured. Good candidates for measured variables are those that we would like to 
predict, such as gross, the budget, or the imdb_score. For instance, in this ordering, we can 
mix categorical and continuous variables. It might make more sense to place the column for 
the number of Facebook likes directly after the name of that actor. You can, of course, come 
up with your own guidelines for column order as the computational parts are unaffected by it.

Summarizing a DataFrame
In the Calling Series methods recipe in Chapter 1, Pandas Foundations, a variety of methods 
operated on a single column or Series of data. Many of these were aggregation or reducing 
methods that returned a single scalar value. When these same methods are called from a 
DataFrame, they perform that operation for each column at once and reduce the results for 
each column in the DataFrame. They return a Series with the column names in the index and 
the summary for each column as the value.

In this recipe, we explore a variety of the most common DataFrame attributes and methods 
with the movie dataset.
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How to do it...
1. Read in the movie dataset, and examine the basic descriptive properties, .shape, 

.size, and .ndim, along with running the len function:
>>> movies = pd.read_csv("data/movie.csv")

>>> movies.shape

(4916, 28)

>>> movies.size

137648

>>> movies.ndim

2

>>> len(movies)

4916

2. The .count method shows the number of non-missing values for each column. It is 
an aggregation method as it summarizes every column in a single value. The output 
is a Series that has the original column names as its index:
>>> movies.count()

color                      4897

director_name              4814

num_critic_for_reviews     4867

duration                   4901

director_facebook_likes    4814

                           ... 

title_year                 4810

actor_2_facebook_likes     4903

imdb_score                 4916

aspect_ratio               4590

movie_facebook_likes       4916

Length: 28, dtype: int64

3. The other methods that compute summary statistics, .min, .max, .mean, .median, 
and .std, return Series that have the column names of the numeric columns in the 
index and their aggregations as the values:
>>> movies.min()

num_critic_for_reviews        1.00

duration                      7.00

director_facebook_likes       0.00
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actor_3_facebook_likes        0.00

actor_1_facebook_likes        0.00

                            ...   

title_year                 1916.00

actor_2_facebook_likes        0.00

imdb_score                    1.60

aspect_ratio                  1.18

movie_facebook_likes          0.00

Length: 16, dtype: float64

4. The .describe method is very powerful and calculates all the descriptive statistics 
and quartiles at once. The end result is a DataFrame with the descriptive statistics 
names as its index. I like to transpose the results using .T as I can usually fit more 
information on the screen that way:
>>> movies.describe().T

               count         mean  ...       75%       max

num_criti...  4867.0   137.988905  ...    191.00     813.0

duration      4901.0   107.090798  ...    118.00     511.0

director_...  4814.0   691.014541  ...    189.75   23000.0

actor_3_f...  4893.0   631.276313  ...    633.00   23000.0

actor_1_f...  4909.0  6494.488491  ...  11000.00  640000.0

...              ...          ...  ...       ...       ...

title_year    4810.0  2002.447609  ...   2011.00    2016.0

actor_2_f...  4903.0  1621.923516  ...    912.00  137000.0

imdb_score    4916.0     6.437429  ...      7.20       9.5

aspect_ratio  4590.0     2.222349  ...      2.35      16.0

movie_fac...  4916.0  7348.294142  ...   2000.00  349000.0

5. It is possible to specify exact quantiles in the .describe method using the 
percentiles parameter:
>>> movies.describe(percentiles=[0.01, 0.3, 0.99]).T

               count         mean  ...       99%       max

num_criti...  4867.0   137.988905  ...    546.68     813.0

duration      4901.0   107.090798  ...    189.00     511.0

director_...  4814.0   691.014541  ...  16000.00   23000.0

actor_3_f...  4893.0   631.276313  ...  11000.00   23000.0

actor_1_f...  4909.0  6494.488491  ...  44920.00  640000.0

...              ...          ...  ...       ...       ...
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title_year    4810.0  2002.447609  ...   2016.00    2016.0

actor_2_f...  4903.0  1621.923516  ...  17000.00  137000.0

imdb_score    4916.0     6.437429  ...      8.50       9.5

aspect_ratio  4590.0     2.222349  ...      4.00      16.0

movie_fac...  4916.0  7348.294142  ...  93850.00  349000.0

How it works...
Step 1 gives basic information on the size of the dataset. The .shape attribute returns 
a tuple with the number of rows and columns. The .size attribute returns the total number 
of elements in the DataFrame, which is just the product of the number of rows and columns. 
The .ndim attribute returns the number of dimensions, which is two for all DataFrames. 
When a DataFrame is passed to the built-in len function, it returns the number of rows.

The methods in step 2 and step 3 aggregate each column down to a single number. 
Each column name is now the index label in a Series with its aggregated result as the 
corresponding value.

If you look closely, you will notice that the output from step 3 is missing all the object columns 
from step 2. This method ignores string columns by default.

Note that numeric columns have missing values but have a result returned by .describe. 
By default, pandas handles missing values in numeric columns by skipping them. It is possible 
to change this behavior by setting the skipna parameter to False. This will cause pandas 
to return NaN for all these aggregation methods if there exists at least a single missing value.

The .describe method displays the summary statistics of the numeric columns. You can 
expand its summary to include more quantiles by passing a list of numbers between 0 and 
1 to the percentiles parameter. See the Developing a data analysis routine recipe for more 
on the .describe method.

There's more...
To see how the .skipna parameter affects the outcome, we can set its value to False and 
rerun step 3 from the preceding recipe. Only numeric columns without missing values will 
calculate a result:

>>> movies.min(skipna=False)

num_critic_for_reviews     NaN

duration                   NaN

director_facebook_likes    NaN

actor_3_facebook_likes     NaN
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actor_1_facebook_likes     NaN

                          ... 

title_year                 NaN

actor_2_facebook_likes     NaN

imdb_score                 1.6

aspect_ratio               NaN

movie_facebook_likes       0.0

Length: 16, dtype: float64

Chaining DataFrame methods
The Chaining Series methods recipe in Chapter 1, Pandas Foundations, showcased several 
examples of chaining Series methods together. All the method chains in this chapter will begin 
from a DataFrame. One of the keys to method chaining is to know the exact object being 
returned during each step of the chain. In pandas, this will nearly always  
be a DataFrame, Series, or scalar value.

In this recipe, we count all the missing values in each column of the movie dataset.

How to do it...
1. We will use the .isnull method to get a count of the missing values. This method 

will change every value to a Boolean, indicating whether it is missing:
>>> movies = pd.read_csv("data/movie.csv")

>>> def shorten(col):

...     return col.replace("facebook_likes", "fb").replace(

...         "_for_reviews", ""

...     )

>>> movies = movies.rename(columns=shorten)

>>> movies.isnull().head()

   color  director_name  ...  aspect_ratio  movie_fb

0  False        False    ...        False      False

1  False        False    ...        False      False

2  False        False    ...        False      False

3  False        False    ...        False      False

4   True        False    ...         True      False
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2. We will chain the .sum method that interprets True and False as 1 and 
0, respectively. Because this is a reduction method, it aggregates the results  
into a Series:
>>> (movies.isnull().sum().head())

color             19

director_name    102

num_critic        49

duration          15

director_fb      102

dtype: int64

3. We can go one step further and take the sum of this Series and return the count 
of the total number of missing values in the entire DataFrame as a scalar value:
>>> movies.isnull().sum().sum()

2654

4. A way to determine whether there are any missing values in the DataFrame is to use 
the .any method twice in succession:
>>> movies.isnull().any().any()

True

How it works...
The .isnull method returns a DataFrame the same size as the calling DataFrame but with 
all values transformed to Booleans. See the counts of the following data types to verify this:

>>> movies.isnull().dtypes.value_counts()

bool    28

dtype: int64

In Python, Booleans evaluate to 0 and 1, and this makes it possible to sum them by column, 
as done in step 2. The resulting Series itself also has a .sum method, which gets us the grand 
total of missing values in the DataFrame.

In step 4, the .any method on a DataFrame returns a Series of Booleans indicating if there 
exists at least one True for each column. The .any method is chained again on this resulting 
Series of Booleans to determine if any of the columns have missing values. If step 4 evaluates 
as True, then there is at least one missing value in the entire DataFrame.
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There's more...
Most of the columns in the movie dataset with the object data type contain missing values. 
By default, aggregation methods (.min, .max, and .sum), do not return anything for object 
columns. as seen in the following code snippet, which selects three object columns and 
attempts to find the maximum value of each one:

>>> movies[["color", "movie_title", "color"]].max()

Series([], dtype: float64)

To force pandas to return something for each column, we must fill in the missing values. Here, 
we choose an empty string:

>>> movies.select_dtypes(["object"]).fillna("").max()

color                            Color

director_name            Étienne Faure

actor_2_name             Zubaida Sahar

genres                         Western

actor_1_name             Óscar Jaenada

                          ...         

plot_keywords      zombie|zombie spoof

movie_imdb_link    http://www.imdb....

language                          Zulu

country                   West Germany

content_rating                       X

Length: 12, dtype: object

For purposes of readability, method chains are often written as one method call per line 
surrounded by parentheses. This makes it easier to read and insert comments on what is 
returned at each step of the chain, or comment out lines to debug what is happening:

>>> (movies.select_dtypes(["object"]).fillna("").max())

color                            Color

director_name            Étienne Faure

actor_2_name             Zubaida Sahar

genres                         Western

actor_1_name             Óscar Jaenada

                          ...         

plot_keywords      zombie|zombie spoof

movie_imdb_link    http://www.imdb....

language                          Zulu
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country                   West Germany

content_rating                       X

Length: 12, dtype: object

DataFrame operations
A primer on operators was given in the Series operations recipe from Chapter 1, Pandas 
Foundations, which will be helpful here. The Python arithmetic and comparison operators 
work with DataFrames, as they do with Series.

When an arithmetic or comparison operator is used with a DataFrame, each value of each 
column gets the operation applied to it. Typically, when an operator is used with a DataFrame, 
the columns are either all numeric or all object (usually strings). If the DataFrame does 
not contain homogeneous data, then the operation is likely to fail. Let's see an example 
of this failure with the college dataset, which contains both numeric and object data types. 
Attempting to add 5 to each value of the DataFrame raises a TypeError as integers cannot 
be added to strings:

>>> colleges = pd.read_csv("data/college.csv")

>>> colleges + 5

Traceback (most recent call last):

  ...

TypeError: can only concatenate str (not "int") to str

To successfully use an operator with a DataFrame, first select homogeneous data. For this 
recipe, we will select all the columns that begin with 'UGDS_'. These columns represent the 
fraction of undergraduate students by race. To get started, we import the data and use the 
institution name as the label for our index, and then select the columns we desire with the 
.filter method:

>>> colleges = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college_ugds = colleges.filter(like="UGDS_")

>>> college_ugds.head()

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...      0.0333      0.9353  ...    0.0059     0.0138

Universit...      0.5922      0.2600  ...    0.0179     0.0100

Amridge U...      0.2990      0.4192  ...    0.0000     0.2715

Universit...      0.6988      0.1255  ...    0.0332     0.0350

Alabama S...      0.0158      0.9208  ...    0.0243     0.0137
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This recipe uses multiple operators with a DataFrame to round the undergraduate columns to 
the nearest hundredth. We will then see how this result is equivalent to the .round method.

How to do it...
1. pandas does bankers rounding, numbers that are exactly halfway between either side 

to the even side. Look at what happens to the UGDS_BLACK row of this series when 
we round it to two decimal places:
>>> name = "Northwest-Shoals Community College"

>>> college_ugds.loc[name]

UGDS_WHITE    0.7912

UGDS_BLACK    0.1250

UGDS_HISP     0.0339

UGDS_ASIAN    0.0036

UGDS_AIAN     0.0088

UGDS_NHPI     0.0006

UGDS_2MOR     0.0012

UGDS_NRA      0.0033

UGDS_UNKN     0.0324

Name: Northwest-Shoals Community College, dtype: float64

>>> college_ugds.loc[name].round(2)

UGDS_WHITE    0.79

UGDS_BLACK    0.12

UGDS_HISP     0.03

UGDS_ASIAN    0.00

UGDS_AIAN     0.01

UGDS_NHPI     0.00

UGDS_2MOR     0.00

UGDS_NRA      0.00

UGDS_UNKN     0.03

Name: Northwest-Shoals Community College, dtype: float64

If we add .0001 before rounding, it changes to rounding up:
>>> (college_ugds.loc[name] + 0.0001).round(2)

UGDS_WHITE    0.79

UGDS_BLACK    0.13
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UGDS_HISP     0.03

UGDS_ASIAN    0.00

UGDS_AIAN     0.01

UGDS_NHPI     0.00

UGDS_2MOR     0.00

UGDS_NRA      0.00

UGDS_UNKN     0.03

Name: Northwest-Shoals Community College, dtype: float64

2. Let's do this to the DataFrame. To begin our rounding adventure with operators, 
we will first add .00501 to each value of college_ugds:
>>> college_ugds + 0.00501

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...     0.03831     0.94031  ...   0.01091    0.01881

Universit...     0.59721     0.26501  ...   0.02291    0.01501

Amridge U...     0.30401     0.42421  ...   0.00501    0.27651

Universit...     0.70381     0.13051  ...   0.03821    0.04001

Alabama S...     0.02081     0.92581  ...   0.02931    0.01871

...                  ...         ...  ...       ...        ...

SAE Insti...         NaN         NaN  ...       NaN        NaN

Rasmussen...         NaN         NaN  ...       NaN        NaN

National ...         NaN         NaN  ...       NaN        NaN

Bay Area ...         NaN         NaN  ...       NaN        NaN

Excel Lea...         NaN         NaN  ...       NaN        NaN

3. Use the floor division operator, //, to round down to the nearest whole number 
percentage:
>>> (college_ugds + 0.00501) // 0.01

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...         3.0        94.0  ...       1.0        1.0

Universit...        59.0        26.0  ...       2.0        1.0

Amridge U...        30.0        42.0  ...       0.0       27.0

Universit...        70.0        13.0  ...       3.0        4.0

Alabama S...         2.0        92.0  ...       2.0        1.0

...                  ...         ...  ...       ...        ...
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SAE Insti...         NaN         NaN  ...       NaN        NaN

Rasmussen...         NaN         NaN  ...       NaN        NaN

National ...         NaN         NaN  ...       NaN        NaN

Bay Area ...         NaN         NaN  ...       NaN        NaN

Excel Lea...         NaN         NaN  ...       NaN        NaN

4. To complete the rounding exercise, divide by 100:
>>> college_ugds_op_round = (

...     (college_ugds + 0.00501) // 0.01 / 100

... )

>>> college_ugds_op_round.head()

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...        0.03        0.94  ...      0.01       0.01

Universit...        0.59        0.26  ...      0.02       0.01

Amridge U...        0.30        0.42  ...      0.00       0.27

Universit...        0.70        0.13  ...      0.03       0.04

Alabama S...        0.02        0.92  ...      0.02       0.01

5. Now use the round DataFrame method to do the rounding automatically for us. Due 
to bankers rounding, we add a small fraction before rounding:
>>> college_ugds_round = (college_ugds + 0.00001).round(2)

>>> college_ugds_round

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...        0.03        0.94  ...      0.01       0.01

Universit...        0.59        0.26  ...      0.02       0.01

Amridge U...        0.30        0.42  ...      0.00       0.27

Universit...        0.70        0.13  ...      0.03       0.04

Alabama S...        0.02        0.92  ...      0.02       0.01

...                  ...         ...  ...       ...        ....

SAE Insti...         NaN         NaN  ...       NaN        NaN

Rasmussen...         NaN         NaN  ...       NaN        NaN

National ...         NaN         NaN  ...       NaN        NaN

Bay Area ...         NaN         NaN  ...       NaN        NaN

Excel Lea...         NaN         NaN  ...       NaN        NaN
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6. Use the equals DataFrame method to test the equality of two DataFrames:

>>> college_ugds_op_round.equals(college_ugds_round)

True

How it works...
Steps 1 and 2 use the plus operator, which attempts to add a scalar value to each value 
of each column of the DataFrame. As the columns are all numeric, this operation works as 
expected. There are some missing values in each of the columns but they stay missing after 
the operation.

Mathematically, adding .005 should be enough so that the floor division in the next step 
correctly rounds to the nearest whole percentage. The trouble appears because of the 
inexactness of floating-point numbers:

>>> 0.045 + 0.005

0.049999999999999996

There is an extra .00001 added to each number to ensure that the floating-point 
representation has the first four digits the same as the actual value. This works because 
the maximum precision of all the points in the dataset is four decimal places.

Step 3 applies the floor division operator, //, to all the values in the DataFrame. As we are 
dividing by a fraction, in essence, it is multiplying each value by 100 and truncating any 
decimals. Parentheses are needed around the first part of the expression, as floor division 
has higher precedence than addition. Step 4 uses the division operator to return the decimal 
to the correct position.

In step 5, we reproduce the previous steps with the round method. Before we can do this, we 
must again add an extra .00001 to each DataFrame value for a different reason from step 2. 
NumPy and Python 3 round numbers that are exactly halfway between either side to the even 
number. The bankers rounding (or ties to even http://bit.ly/2x3V5TU) technique is not 
usually what is formally taught in schools. It does not consistently bias numbers to the higher 
side (http://bit.ly/2zhsPy8).

It is necessary here to round up so that both DataFrame values are equal. The .equals 
method determines if all the elements and indexes between two DataFrames are exactly 
the same and returns a Boolean.

There's more...
Just as with Series, DataFrames have method equivalents of the operators. You may replace 
the operators with their method equivalents:

http://bit.ly/2x3V5TU
http://bit.ly/2zhsPy8


Chapter 2

67

>>> college2 = (

...     college_ugds.add(0.00501).floordiv(0.01).div(100)

... )

>>> college2.equals(college_ugds_op_round)

True

Comparing missing values
pandas uses the NumPy NaN (np.nan) object to represent a missing value. This is an 
unusual object and has interesting mathematical properties. For instance, it is not equal to 
itself. Even Python's None object evaluates as True when compared to itself:

>>> np.nan == np.nan

False

>>> None == None

True

All other comparisons against np.nan also return False, except not equal to (!=):

>>> np.nan > 5

False

>>> 5 > np.nan

False

>>> np.nan != 5

True

Getting ready
Series and DataFrames use the equals operator, ==, to make element-by-element 
comparisons. The result is an object with the same dimensions. This recipe shows you how to 
use the equals operator, which is very different from the .equals method.

As in the previous recipe, the columns representing the fraction of each race of 
undergraduate students from the college dataset will be used:

>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college_ugds = college.filter(like="UGDS_")
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How to do it...
1. To get an idea of how the equals operator works, let's compare each element to 

a scalar value:
>>> college_ugds == 0.0019

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...       False       False  ...     False      False

Universit...       False       False  ...     False      False

Amridge U...       False       False  ...     False      False

Universit...       False       False  ...     False      False

Alabama S...       False       False  ...     False      False

...                  ...         ...  ...       ...        ...

SAE Insti...       False       False  ...     False      False

Rasmussen...       False       False  ...     False      False

National ...       False       False  ...     False      False

Bay Area ...       False       False  ...     False      False

Excel Lea...       False       False  ...     False      False

2. This works as expected but becomes problematic whenever you attempt to compare 
DataFrames with missing values. You may be tempted to use the equals operator 
to compare two DataFrames with one another on an element-by-element basis. 
Take, for instance, college_ugds compared against itself, as follows:
>>> college_self_compare = college_ugds == college_ugds

>>> college_self_compare.head()

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...

Alabama A...        True        True  ...      True       True

Universit...        True        True  ...      True       True

Amridge U...        True        True  ...      True       True

Universit...        True        True  ...      True       True

Alabama S...        True        True  ...      True       True

3. At first glance, all the values appear to be equal, as you would expect. However, using 
the .all method to determine if each column contains only True values yields an 
unexpected result:
>>> college_self_compare.all()

UGDS_WHITE    False

UGDS_BLACK    False
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UGDS_HISP     False

UGDS_ASIAN    False

UGDS_AIAN     False

UGDS_NHPI     False

UGDS_2MOR     False

UGDS_NRA      False

UGDS_UNKN     False

dtype: bool

4. This happens because missing values do not compare equally with one another. 
If you tried to count missing values using the equal operator and summing up the 
Boolean columns, you would get zero for each one:
>>> (college_ugds == np.nan).sum()

UGDS_WHITE    0

UGDS_BLACK    0

UGDS_HISP     0

UGDS_ASIAN    0

UGDS_AIAN     0

UGDS_NHPI     0

UGDS_2MOR     0

UGDS_NRA      0

UGDS_UNKN     0

dtype: int64

5. Instead of using == to find missing numbers, use the .isna method:
>>> college_ugds.isna().sum()

UGDS_WHITE    661

UGDS_BLACK    661

UGDS_HISP     661

UGDS_ASIAN    661

UGDS_AIAN     661

UGDS_NHPI     661

UGDS_2MOR     661

UGDS_NRA      661

UGDS_UNKN     661

dtype: int64
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6. The correct way to compare two entire DataFrames with one another is not with the 
equals operator (==) but with the .equals method. This method treats NaNs that 
are in the same location as equal (note that the .eq method is the equivalent of ==):

>>> college_ugds.equals(college_ugds)

True

How it works...
Step 1 compares a DataFrame to a scalar value while step 2 compares a DataFrame with 
another DataFrame. Both operations appear to be quite simple and intuitive at first glance. 
The second operation is checking whether the DataFrames have identically labeled indexes 
and thus the same number of elements. The operation will fail if this isn't the case.

Step 3 verifies that none of the columns in the DataFrames are equivalent to each other. 
Step 4 further shows the non-equivalence of np.nan and itself. Step 5 verifies that there are 
indeed missing values in the DataFrame. Finally, step 6 shows the correct way to compare 
DataFrames with the .equals method, which always returns a Boolean scalar value.

There's more...
All the comparison operators have method counterparts that allow for more functionality. 
Somewhat confusingly, the .eq DataFrame method does element-by-element comparison, 
just like the equals (==) operator. The .eq method is not at all the same as the .equals 
method. The following code duplicates step 1:

>>> college_ugds.eq(0.0019)  # same as college_ugds == .0019

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...       False       False  ...     False      False

Universit...       False       False  ...     False      False

Amridge U...       False       False  ...     False      False

Universit...       False       False  ...     False      False

Alabama S...       False       False  ...     False      False

...                  ...         ...  ...       ...        ...

SAE Insti...       False       False  ...     False      False

Rasmussen...       False       False  ...     False      False

National ...       False       False  ...     False      False

Bay Area ...       False       False  ...     False      False

Excel Lea...       False       False  ...     False      False
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Inside the pandas.testing sub-package, a function exists that developers should use when 
creating unit tests. The assert_frame_equal function raises an AssertionError if two 
DataFrames are not equal. It returns None if the two DataFrames are equal:

>>> from pandas.testing import assert_frame_equal

>>> assert_frame_equal(college_ugds, college_ugds) is None

True

Unit tests are a very important part of software development and ensure that the code 
is running correctly. pandas contains many thousands of unit tests that help ensure that 
it is running properly. To read more on how pandas runs its unit tests, see the Contributing 
to pandas section in the documentation (http://bit.ly/2vmCSU6).

Transposing the direction of a DataFrame 
operation

Many DataFrame methods have an axis parameter. This parameter controls the direction 
in which the operation takes place. Axis parameters can be 'index' (or 0) or 'columns' 
(or 1). I prefer the string versions are they are more explicit and tend to make the code easier 
to read.

Nearly all DataFrame methods default the axis parameter to 0, which applies to operations 
along the index. This recipe shows you how to invoke the same method along both axes.

How to do it...
1. Read in the college dataset; the columns that begin with UGDS represent the 

percentage of the undergraduate students of a particular race. Use the filter method 
to select these columns:
>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college_ugds = college.filter(like="UGDS_")

>>> college_ugds.head()

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...      0.0333      0.9353  ...    0.0059     0.0138

Universit...      0.5922      0.2600  ...    0.0179     0.0100

Amridge U...      0.2990      0.4192  ...    0.0000     0.2715

http://bit.ly/2vmCSU6
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Universit...      0.6988      0.1255  ...    0.0332     0.0350

Alabama S...      0.0158      0.9208  ...    0.0243     0.0137

2. Now that the DataFrame contains homogenous column data, operations can be 
sensibly done both vertically and horizontally. The .count method returns the 
number of non-missing values. By default, its axis parameter is set to 0:
>>> college_ugds.count()

UGDS_WHITE    6874

UGDS_BLACK    6874

UGDS_HISP     6874

UGDS_ASIAN    6874

UGDS_AIAN     6874

UGDS_NHPI     6874

UGDS_2MOR     6874

UGDS_NRA      6874

UGDS_UNKN     6874

dtype: int64

The axis parameter is almost always set to 0. So, step 2 is equivalent to both 
college_ugds.count(axis=0) and college_ugds.count(axis='index').

3. Changing the axis parameter to 'columns' changes the direction of the operation 
so that we get back a count of non-missing items in each row:
>>> college_ugds.count(axis="columns").head()

INSTNM

Alabama A & M University               9

University of Alabama at Birmingham    9

Amridge University                     9

University of Alabama in Huntsville    9

Alabama State University               9

dtype: int64

4. Instead of counting non-missing values, we can sum all the values in each row. Each 
row of percentages should add up to 1. The .sum method may be used to verify this:
>>> college_ugds.sum(axis="columns").head()

INSTNM

Alabama A & M University               1.0000

University of Alabama at Birmingham    0.9999

Amridge University                     1.0000

University of Alabama in Huntsville    1.0000
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Alabama State University               1.0000

dtype: float64

5. To get an idea of the distribution of each column, the .median method can be used:

>>> college_ugds.median(axis="index")

UGDS_WHITE    0.55570

UGDS_BLACK    0.10005

UGDS_HISP     0.07140

UGDS_ASIAN    0.01290

UGDS_AIAN     0.00260

UGDS_NHPI     0.00000

UGDS_2MOR     0.01750

UGDS_NRA      0.00000

UGDS_UNKN     0.01430

dtype: float64

How it works...
The direction of operation on the axis is one of the more confusing aspects of pandas. Many 
pandas users have difficulty remembering the meaning of the axis parameter. I remember 
them by reminding myself that a Series only has one axis, the index (or 0). A DataFrame also 
has an index (axis 0) and columns (axis 1).

There's more...
The .cumsum method with axis=1 accumulates the race percentages across each row. 
It gives a slightly different view of the data. For example, it is very easy to see the exact 
percentage of white and black students for each school:

>>> college_ugds_cumsum = college_ugds.cumsum(axis=1)

>>> college_ugds_cumsum.head()

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Alabama A...      0.0333      0.9686  ...    0.9862     1.0000

Universit...      0.5922      0.8522  ...    0.9899     0.9999

Amridge U...      0.2990      0.7182  ...    0.7285     1.0000

Universit...      0.6988      0.8243  ...    0.9650     1.0000

Alabama S...      0.0158      0.9366  ...    0.9863     1.0000
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Determining college campus diversity
Many articles are written every year on the different aspects and impacts of diversity on 
college campuses. Various organizations have developed metrics attempting to measure 
diversity. US News is a leader in providing rankings for many different categories of colleges, 
with diversity being one of them. Their top 10 diverse colleges with Diversity Index are given 
as follows:

>>> pd.read_csv(

...     "data/college_diversity.csv", index_col="School"

... )

                                                   Diversity Index

School

Rutgers University--Newark  Newark, NJ                        0.76

Andrews University  Berrien Springs, MI                       0.74

Stanford University  Stanford, CA                             0.74

University of Houston  Houston, TX                            0.74

University of Nevada--Las Vegas  Las Vegas, NV                0.74

University of San Francisco  San Francisco, CA                0.74

San Francisco State University  San Francisco, CA             0.73

University of Illinois--Chicago  Chicago, IL                  0.73

New Jersey Institute of Technology  Newark, NJ                0.72

Texas Woman's University  Denton, TX                          0.72

Our college dataset classifies race into nine different categories. When trying to quantify 
something without an obvious definition, such as diversity, it helps to start with something 
simple. In this recipe, our diversity metric will equal the count of the number of races having 
greater than 15% of the student population.

How to do it...
1. Read in the college dataset, and filter for just the undergraduate race columns:

>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college_ugds = college.filter(like="UGDS_")
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2. Many of these colleges have missing values for all their race columns. We can count 
all the missing values for each row and sort the resulting Series from the highest 
to lowest. This will reveal the colleges that have missing values:
>>> (

...     college_ugds.isnull()

...     .sum(axis="columns")

...     .sort_values(ascending=False)

...     .head()

... )

INSTNM

Excel Learning Center-San Antonio South         9

Philadelphia College of Osteopathic Medicine    9

Assemblies of God Theological Seminary          9

Episcopal Divinity School                       9

Phillips Graduate Institute                     9

dtype: int64

3. Now that we have seen the colleges that are missing all their race columns, we 
can use the .dropna method to drop all rows that have all nine race percentages 
missing. We can then count the remaining missing values:
>>> college_ugds = college_ugds.dropna(how="all")

>>> college_ugds.isnull().sum()

UGDS_WHITE    0

UGDS_BLACK    0

UGDS_HISP     0

UGDS_ASIAN    0

UGDS_AIAN     0

UGDS_NHPI     0

UGDS_2MOR     0

UGDS_NRA      0

UGDS_UNKN     0

dtype: int64

4. There are no missing values left in the dataset. We can now calculate our diversity 
metric. To get started, we will use the greater than or equal DataFrame method, 
.ge, to return a DataFrame with a Boolean value for each cell:
>>> college_ugds.ge(0.15)

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN
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INSTNM                                ...                     

Alabama A...       False        True  ...     False      False

Universit...        True        True  ...     False      False

Amridge U...        True        True  ...     False       True

Universit...        True       False  ...     False      False

Alabama S...       False        True  ...     False      False

...                  ...         ...  ...       ...        ...

Hollywood...        True        True  ...     False      False

Hollywood...       False        True  ...     False      False

Coachella...        True       False  ...     False      False

Dewey Uni...       False       False  ...     False      False

Coastal P...        True        True  ...     False      False

5. From here, we can use the .sum method to count the True values for each college. 
Notice that a Series is returned:
>>> diversity_metric = college_ugds.ge(0.15).sum(

...     axis="columns"

... )

>>> diversity_metric.head()

INSTNM

Alabama A & M University               1

University of Alabama at Birmingham    2

Amridge University                     3

University of Alabama in Huntsville    1

Alabama State University               1

dtype: int64

6. To get an idea of the distribution, we will use the .value_counts method on this 
Series:
>>> diversity_metric.value_counts()

1    3042

2    2884

3     876

4      63

0       7

5       2

dtype: int64
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7. Amazingly, two schools have more than 15% in five different race categories. Let's 
sort the diversity_metric Series to find out which ones they are:
>>> diversity_metric.sort_values(ascending=False).head()

INSTNM

Regency Beauty Institute-Austin          5

Central Texas Beauty College-Temple      5

Sullivan and Cogliano Training Center    4

Ambria College of Nursing                4

Berkeley College-New York                4

dtype: int64

8. It seems a little suspicious that schools can be that diverse. Let's look at the raw 
percentages from these top two schools. We will use .loc to select rows based 
on the index label:
>>> college_ugds.loc[

...     [

...         "Regency Beauty Institute-Austin",

...         "Central Texas Beauty College-Temple",

...     ]

... ]

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...

Regency B...      0.1867      0.2133  ...       0.0     0.2667

Central T...      0.1616      0.2323  ...       0.0     0.1515

9. It appears that several categories were aggregated into the unknown and two or more 
races column. Regardless of this, they both appear to be quite diverse. We can see 
how the top five US News schools fared with this basic diversity metric:

>>> us_news_top = [

...     "Rutgers University-Newark",

...     "Andrews University",

...     "Stanford University",

...     "University of Houston",

...     "University of Nevada-Las Vegas",

... ]

>>> diversity_metric.loc[us_news_top]

INSTNM

Rutgers University-Newark         4
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Andrews University                3

Stanford University               3

University of Houston             3

University of Nevada-Las Vegas    3

dtype: int64

How it works...
Step 2 counts and then displays the schools with the highest number of missing values. As 
there are nine columns in the DataFrame, the maximum number of missing values per school 
is nine. Many schools are missing values for each column. Step 3 removes rows that have all 
their values missing. The .dropna method in step 3 has the how parameter, which defaults 
to the string 'any', but may also be changed to 'all'. When set to 'any', it drops rows 
that contain one or more missing values. When set to 'all', it only drops rows where all 
values are missing.

In this case, we conservatively drop rows that are missing all values. This is because it's 
possible that some missing values represent 0 percent. This did not happen to be the case 
here, as there were no missing values after the dropna method was performed. If there 
were still missing values, we could have run the .fillna(0) method to fill all the remaining 
values with 0.

Step 5 begins our diversity metric calculation using the greater than or equal to method, 
.ge. This results in a DataFrame of all Booleans, which is summed horizontally by setting 
axis='columns'.

The .value_counts method is used in step 6 to produce a distribution of our diversity 
metric. It is quite rare for schools to have three races with 15% or more of the undergraduate 
student population. Step 7 and step 8 find two schools that are the most diverse based on our 
metric. Although they are diverse, it appears that many of the races are not fully accounted for 
and are defaulted into the unknown and two or more categories.

Step 9 selects the top five schools from the US News article. It then selects their diversity 
metric from our newly created Series. It turns out that these schools also score highly with 
our simple ranking system.

There's more...
Alternatively, we can find the schools that are least diverse by ordering them by their 
maximum race percentage:

>>> (

...     college_ugds.max(axis=1)
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...     .sort_values(ascending=False)

...     .head(10)

... )

INSTNM

Dewey University-Manati                               1.0

Yeshiva and Kollel Harbotzas Torah                    1.0

Mr Leon's School of Hair Design-Lewiston              1.0

Dewey University-Bayamon                              1.0

Shepherds Theological Seminary                        1.0

Yeshiva Gedolah Kesser Torah                          1.0

Monteclaro Escuela de Hoteleria y Artes Culinarias    1.0

Yeshiva Shaar Hatorah                                 1.0

Bais Medrash Elyon                                    1.0

Yeshiva of Nitra Rabbinical College                   1.0

dtype: float64

We can also determine if any school has all nine race categories exceeding 1%:

>>> (college_ugds > 0.01).all(axis=1).any()

True
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3
Creating and 

Persisting DataFrames

Introduction
There are many ways to create a DataFrame. This chapter will cover some of the most 
common ones. It will also show how to persist them.

Creating DataFrames from scratch
Usually, we create a DataFrame from an existing file or a database, but we can also create 
one from scratch. We can create a DataFrame from parallel lists of data.

How to do it...
1. Create parallel lists with your data in them. Each of these lists will be a column in the 

DataFrame, so they should have the same type:
>>> import pandas as pd

>>> import numpy as np

>>> fname = ["Paul", "John", "Richard", "George"]

>>> lname = ["McCartney", "Lennon", "Starkey", "Harrison"]

>>> birth = [1942, 1940, 1940, 1943]



Creating and Persisting DataFrames

82

2. Create a dictionary from the lists, mapping the column name to the list:
>>> people = {"first": fname, "last": lname, "birth": birth}

3. Create a DataFrame from the dictionary:

>>> beatles = pd.DataFrame(people)

>>> beatles

     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943

How it works...
By default, pandas will create a RangeIndex for our DataFrame when we call the constructor:

>>> beatles.index

RangeIndex(start=0, stop=4, step=1)

We can specify another index for the DataFrame if we desire:

>>> pd.DataFrame(people, index=["a", "b", "c", "d"])

     first       last  birth

a     Paul  McCartney   1942

b     John     Lennon   1940

c  Richard    Starkey   1940

d   George   Harrison   1943

There's more...
You can also create a DataFrame from a list of dictionaries:

>>> pd.DataFrame(

...     [

...         {

...             "first": "Paul",

...             "last": "McCartney",

...             "birth": 1942,

...         },
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...         {

...             "first": "John",

...             "last": "Lennon",

...             "birth": 1940,

...         },

...         {

...             "first": "Richard",

...             "last": "Starkey",

...             "birth": 1940,

...         },

...         {

...             "first": "George",

...             "last": "Harrison",

...             "birth": 1943,

...         },

...     ]

... )

   birth    first       last

0   1942     Paul  McCartney

1   1940     John     Lennon

2   1940  Richard    Starkey

3   1943   George   Harrison

Note that the columns are ordered by the alphabetic ordering of the keys when you use rows 
of dictionaries. You can use the columns parameter to specify the column order if that is 
important to you:

>>> pd.DataFrame(

...     [

...         {

...             "first": "Paul",

...             "last": "McCartney",

...             "birth": 1942,

...         },

...         {

...             "first": "John",

...             "last": "Lennon",

...             "birth": 1940,
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...         },

...         {

...             "first": "Richard",

...             "last": "Starkey",

...             "birth": 1940,

...         },

...         {

...             "first": "George",

...             "last": "Harrison",

...             "birth": 1943,

...         },

...     ],

...     columns=["last", "first", "birth"],

... )

        last    first  birth

0  McCartney     Paul   1942

1     Lennon     John   1940

2    Starkey  Richard   1940

3   Harrison   George   1943

Writing CSV
For better or worse, there are a lot of CSV files in the world. Like most technologies, there are 
good and bad parts to CSV files. On the plus side, they are human-readable, can be opened in 
any text editor, and most spreadsheet software can load them. On the downside, there is no 
standard for CSV files, so encoding may be weird, there is no way to enforce types, and they 
can be large because they are text-based (though they can be compressed).

In this recipe, we will show how to create a CSV file from a pandas DataFrame.

There are a few methods on the DataFrame that start with to_. These are methods that 
export DataFrames. We are going to use the .to_csv method. We will write out to a string 
buffer in the examples, but you will usually use a filename instead.

How to do it...
1. Write the DataFrame to a CSV file:

>>> beatles
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     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943

>>> from io import StringIO

>>> fout = StringIO()

>>> beatles.to_csv(fout)  # use a filename instead of fout

2. Look at the file contents:

>>> print(fout.getvalue())

,first,last,birth

0,Paul,McCartney,1942

1,John,Lennon,1940

2,Richard,Starkey,1940

3,George,Harrison,1943

There's more...
The .to_csv method has a few options. You will notice that it included the index in the 
output but did not give the index a column name. If you were to read this CSV file into 
a DataFrame using the read_csv function, it would not use this as the index by default. 
Instead, you will get a column named Unnamed: 0 in addition to an index. These columns 
are redundant:

>>> _ = fout.seek(0)

>>> pd.read_csv(fout)

   Unnamed: 0    first       last  birth

0           0     Paul  McCartney   1942

1           1     John     Lennon   1940

2           2  Richard    Starkey   1940

3           3   George   Harrison   1943

The read_csv function has an index_col parameter that you can use to specify the 
location of the index:

>>> _ = fout.seek(0)

>>> pd.read_csv(fout, index_col=0)
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     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943

Alternatively, if we didn't want to include the index when writing the CSV file, we can set the 
index parameter to False:

>>> fout = StringIO()

>>> beatles.to_csv(fout, index=False)

>>> print(fout.getvalue())

first,last,birth

Paul,McCartney,1942

John,Lennon,1940

Richard,Starkey,1940

George,Harrison,1943

Reading large CSV files
The pandas library is an in-memory tool. You need to be able to fit your data in memory to use 
pandas with it. If you come across a large CSV file that you want to process, you have a few 
options. If you can process portions of it at a time, you can read it into chunks and process 
each chunk. Alternatively, if you know that you should have enough memory to load the file, 
there are a few hints to help pare down the file size.

Note that in general, you should have three to ten times the amount of memory as the size 
of the DataFrame that you want to manipulate. Extra memory should give you enough extra 
space to perform many of the common operations.

How to do it...
In this section, we will look at the diamonds dataset. This dataset easily fits into the memory 
of my 2015 MacBook, but let's pretend that the file is a lot bigger than it is, or that the 
memory of my machine is limited such that when pandas tries to load it with the read_csv 
function, I get a memory error.

1. Determine how much memory the whole file will take up. We will use the nrows 
parameter of read_csv to limit how much data we load to a small sample:
>>> diamonds = pd.read_csv("data/diamonds.csv", nrows=1000)
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>>> diamonds

     carat      cut color clarity  ...  price     x     y     z

0     0.23    Ideal     E     SI2  ...    326  3.95  3.98  2.43

1     0.21  Premium     E     SI1  ...    326  3.89  3.84  2.31

2     0.23     Good     E     VS1  ...    327  4.05  4.07  2.31

3     0.29  Premium     I     VS2  ...    334  4.20  4.23  2.63

4     0.31     Good     J     SI2  ...    335  4.34  4.35  2.75

..     ...      ...   ...     ...  ...    ...   ...   ...   ...

995   0.54    Ideal     D    VVS2  ...   2897  5.30  5.34  3.26

996   0.72    Ideal     E     SI1  ...   2897  5.69  5.74  3.57

997   0.72     Good     F     VS1  ...   2897  5.82  5.89  3.48

998   0.74  Premium     D     VS2  ...   2897  5.81  5.77  3.58

999   1.12  Premium     J     SI2  ...   2898  6.68  6.61  4.03

2. Use the .info method to see how much memory the sample of data uses:
>>> diamonds.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 10 columns):

carat      1000 non-null float64

cut        1000 non-null object

color      1000 non-null object

clarity    1000 non-null object

depth      1000 non-null float64

table      1000 non-null float64

price      1000 non-null int64

x          1000 non-null float64

y          1000 non-null float64

z          1000 non-null float64

dtypes: float64(6), int64(1), object(3)

memory usage: 78.2+ KB

We can see that 1,000 rows use about 78.2 KB of memory. If we had 1 billion 
rows, that would take about 78 GB of memory. It turns out that it is possible to rent 
machines in the cloud that have that much memory but let's see if we can take it 
down a little.
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3. Use the dtype parameter to read_csv to tell it to use the correct (or smaller) 
numeric types:
>>> diamonds2 = pd.read_csv(

...     "data/diamonds.csv",

...     nrows=1000,

...     dtype={

...         "carat": np.float32,

...         "depth": np.float32,

...         "table": np.float32,

...         "x": np.float32,

...         "y": np.float32,

...         "z": np.float32,

...         "price": np.int16,

...     },

... )

>>> diamonds2.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 10 columns):

carat      1000 non-null float32

cut        1000 non-null object

color      1000 non-null object

clarity    1000 non-null object

depth      1000 non-null float32

table      1000 non-null float32

price      1000 non-null int16

x          1000 non-null float32

y          1000 non-null float32

z          1000 non-null float32

dtypes: float32(6), int16(1), object(3)

memory usage: 49.0+ KB

Make sure that summary statistics are similar with our new dataset to the original:
>>> diamonds.describe()

             carat        depth  ...            y            z

count  1000.000000  1000.000000  ...  1000.000000  1000.000000
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mean      0.689280    61.722800  ...     5.599180     3.457530

std       0.195291     1.758879  ...     0.611974     0.389819

min       0.200000    53.000000  ...     3.750000     2.270000

25%       0.700000    60.900000  ...     5.630000     3.450000

50%       0.710000    61.800000  ...     5.760000     3.550000

75%       0.790000    62.600000  ...     5.910000     3.640000

max       1.270000    69.500000  ...     7.050000     4.330000

>>> diamonds2.describe()

             carat        depth  ...            y            z

count  1000.000000  1000.000000  ...  1000.000000  1000.000000

mean      0.689453    61.718750  ...     5.601562     3.457031

std       0.195312     1.759766  ...     0.611816     0.389648

min       0.199951    53.000000  ...     3.750000     2.269531

25%       0.700195    60.906250  ...     5.628906     3.449219

50%       0.709961    61.812500  ...     5.761719     3.550781

75%       0.790039    62.593750  ...     5.910156     3.640625

max       1.269531    69.500000  ...     7.050781     4.328125

By changing the numeric types, we use about 62% of the memory. Note that we lose 
some precision, which may or may not be acceptable.

4. Use the dtype parameter to use change object types to categoricals. First, inspect 
the .value_counts method of the object columns. If they are low cardinality, you 
can convert them to categorical columns to save even more memory:
>>> diamonds2.cut.value_counts()

Ideal        333

Premium      290

Very Good    226

Good          89

Fair          62

Name: cut, dtype: int64

>>> diamonds2.color.value_counts()

E    240

F    226
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G    139

D    129

H    125

I     95

J     46

Name: color, dtype: int64

>>> diamonds2.clarity.value_counts()

SI1     306

VS2     218

VS1     159

SI2     154

VVS2     62

VVS1     58

I1       29

IF       14

Name: clarity, dtype: int64

Because these are of low cardinality, we can convert them to categoricals and use 
around 37% of the original size:
>>> diamonds3 = pd.read_csv(

...     "data/diamonds.csv",

...     nrows=1000,

...     dtype={

...         "carat": np.float32,

...         "depth": np.float32,

...         "table": np.float32,

...         "x": np.float32,

...         "y": np.float32,

...         "z": np.float32,

...         "price": np.int16,

...         "cut": "category",

...         "color": "category",

...         "clarity": "category",

...     },

... )
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>>> diamonds3.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 10 columns):

carat      1000 non-null float32

cut        1000 non-null category

color      1000 non-null category

clarity    1000 non-null category

depth      1000 non-null float32

table      1000 non-null float32

price      1000 non-null int16

x          1000 non-null float32

y          1000 non-null float32

z          1000 non-null float32

dtypes: category(3), float32(6), int16(1)

memory usage: 29.4 KB

5. If there are columns that we know we can ignore, we can use the usecols 
parameter to specify the columns we want to load. Here, we will ignore columns x, y, 
and z:
>>> cols = [

...     "carat",

...     "cut",

...     "color",

...     "clarity",

...     "depth",

...     "table",

...     "price",

... ]

>>> diamonds4 = pd.read_csv(

...     "data/diamonds.csv",

...     nrows=1000,

...     dtype={

...         "carat": np.float32,

...         "depth": np.float32,

...         "table": np.float32,

...         "price": np.int16,
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...         "cut": "category",

...         "color": "category",

...         "clarity": "category",

...     },

...     usecols=cols,

... )

>>> diamonds4.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 7 columns):

carat      1000 non-null float32

cut        1000 non-null category

color      1000 non-null category

clarity    1000 non-null category

depth      1000 non-null float32

table      1000 non-null float32

price      1000 non-null int16

dtypes: category(3), float32(3), int16(1)

memory usage: 17.7 KB

We are now at 21% of the original size.

6. If the preceding steps are not sufficient to create a small enough DataFrame, you 
might still be in luck. If you can process chunks of the data at a time and do not 
need all of it in memory, you can use the chunksize parameter:

>>> cols = [

...     "carat",

...     "cut",

...     "color",

...     "clarity",

...     "depth",

...     "table",

...     "price",

... ]

>>> diamonds_iter = pd.read_csv(

...     "data/diamonds.csv",
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...     nrows=1000,

...     dtype={

...         "carat": np.float32,

...         "depth": np.float32,

...         "table": np.float32,

...         "price": np.int16,

...         "cut": "category",

...         "color": "category",

...         "clarity": "category",

...     },

...     usecols=cols,

...     chunksize=200,

... )

>>> def process(df):

...     return f"processed {df.size} items"

>>> for chunk in diamonds_iter:

...     process(chunk)

How it works...
Because CSV files contain no information about type, pandas tries to infer the types of the 
columns. If all of the values of a column are whole numbers and none of them are missing, 
then it uses the int64 type. If the column is numeric but not whole numbers, or if there are 
missing values, it uses float64. These data types may store more information that you need. 
For example, if your numbers are all below 200, you could use a smaller type, like np.int16 
(or np.int8 if they are all positive).

As of pandas 0.24, there is a new type 'Int64' (note the capitalization) that supports integer 
types with missing numbers. You will need to specify it with the dtype parameter if you want 
to use this type, as pandas will convert integers that have missing numbers to float64.

If the column turns out to be non-numeric, pandas will convert it to an object column, and 
treat the values as strings. String values in pandas take up a bunch of memory as each value 
is stored as a Python string. If we convert these to categoricals, pandas will use much less 
memory as it only stores the string once, rather than creating new strings (even if they repeat) 
for every row.
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The pandas library can also read CSV files found on the internet. You can point the read_csv 
function to the URL directly.

There's more...
If we use int8 for the price, we will lose information. You can use the NumPy iinfo function 
to list limits for NumPy integer types:

>>> np.iinfo(np.int8)

iinfo(min=-128, max=127, dtype=int8)

You can use the finfo function for information about floating-point numbers:

>>> np.finfo(np.float16)

finfo(resolution=0.001, min=-6.55040e+04,

      max=6.55040e+04, dtype=float16)

You can also ask a DataFrame or Series how many bytes it is using with the .memory_usage 
method. Note that this also includes the memory requirements of the index. Also, you need to 
pass deep=True to get the usage of Series with object types:

>>> diamonds.price.memory_usage()

8080

>>> diamonds.price.memory_usage(index=False)

8000

>>> diamonds.cut.memory_usage()

8080

>>> diamonds.cut.memory_usage(deep=True)

63413

Once you have your data in a format you like, you can save it in a binary format that tracks 
types, such as the Feather format (pandas leverages the pyarrow library to do this). This 
format is meant to enable in-memory transfer of structured data between languages and 
optimized so that data can be used as is without internal conversion. Reading from this 
format is much quicker and easy once you have the types defined:

>>> diamonds4.to_feather("d.arr")

>>> diamonds5 = pd.read_feather("d.arr")
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Another binary option is the Parquet format. Whereas Feather optimizes the binary data for 
the in-memory structure, Parquet optimizes for the on-disk format. Parquet is used by many 
big data products. The pandas library has support for Parquet as well.

>>> diamonds4.to_parquet("/tmp/d.pqt")

Right now there is some conversion required for pandas to load data from both Parquet and 
Feather. But both are quicker than CSV and persist types.

Using Excel files
While CSV files are common, it seems that the world is ruled by Excel. I've been surprised in 
my consulting work to see how many companies are using Excel as a critical if not the critical 
tool for making decisions.

In this recipe, we will show how to create and read Excel files. You may need to install xlwt 
or openpyxl to write XLS or XLSX files, respectively.

How to do it...
1. Create an Excel file using the .to_excel method. You can write either xls files or 

xlsx files:
>>> beatles.to_excel("beat.xls")

>>> beatles.to_excel("beat.xlsx")

Excel file
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2. Read the Excel file with the read_excel function:
>>> beat2 = pd.read_excel("/tmp/beat.xls")

>>> beat2

   Unnamed: 0    first       last  birth

0           0     Paul  McCartney   1942

1           1     John     Lennon   1940

2           2  Richard    Starkey   1940

3           3   George   Harrison   1943

3. Because this file had an index column included, you can specify that with the index_
col parameter:
>>> beat2 = pd.read_excel("/tmp/beat.xls", index_col=0)

>>> beat2

     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943

4. Inspect data types of the file to check that Excel preserved the types:

>>> beat2.dtypes

first    object

last     object

birth     int64

dtype: object

How it works...
The Python ecosystem has many packages, which include the ability to read and write to 
Excel. This functionality has been integrated into pandas, you just need to make sure that 
you have the appropriate libraries for reading and writing to Excel.

There's more...
We can use pandas to write to a sheet of a spreadsheet. You can pass a sheet_name 
parameter to the .to_excel method to tell it the name of the sheet to create:

>>> xl_writer = pd.ExcelWriter("beat2.xlsx")
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>>> beatles.to_excel(xl_writer, sheet_name="All")

>>> beatles[beatles.birth < 1941].to_excel(

...     xl_writer, sheet_name="1940"

... )

>>> xl_writer.save()

This file will have two sheets, one labeled All that has the whole DataFrame, and another 
labeled 1940 that is filtered to births before 1941.

Working with ZIP files
As was mentioned previously, CSV files are very common for sharing data. Because they are 
plain text files, they can get big. One solution for managing the size of CSV files is to compress 
them. In this recipe, we will look at loading files from ZIP files.

We will load a CSV file that is compressed as the only thing in the ZIP file. This is the behavior 
that you get if you were to right-click on a file in the Finder on Mac and click Compress 
beatles.csv. We will also look at reading a CSV file from a ZIP file with multiple files in it.

The first file is from the fueleconomy.gov website. It is a list of all car makes that have been 
available in the US market from 1984-2018.

The second file is a survey of users of the Kaggle website. It was intended to get information 
about the users, their background, and the tools that they prefer.

How to do it...
1. If the CSV file is the only file in the ZIP file, you can just call the read_csv function on 

it:
>>> autos = pd.read_csv("data/vehicles.csv.zip")

>>> autos

       barrels08  barrelsA08  ...  phevHwy  phevComb

0      15.695714         0.0  ...        0         0

1      29.964545         0.0  ...        0         0

2      12.207778         0.0  ...        0         0

3      29.964545         0.0  ...        0         0

4      17.347895         0.0  ...        0         0

...          ...         ...  ...      ...       ...

41139  14.982273         0.0  ...        0         0

41140  14.330870         0.0  ...        0         0
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41141  15.695714         0.0  ...        0         0

41142  15.695714         0.0  ...        0         0

41143  18.311667         0.0  ...        0         0

>>> autos.modifiedOn.dtype

dtype('O')

2. One thing to be aware of is that if you have date columns in the CSV file, they will be 
left as strings. You have two options to convert them. You can use the parse_dates 
parameter from read_csv and convert them when loading the file. Alternatively, you 
can use the more powerful to_datetime function after loading:
>>> autos.modifiedOn

0        Tue Jan 01 00:00:00 EST 2013

1        Tue Jan 01 00:00:00 EST 2013

2        Tue Jan 01 00:00:00 EST 2013

3        Tue Jan 01 00:00:00 EST 2013

4        Tue Jan 01 00:00:00 EST 2013

                     ...

39096    Tue Jan 01 00:00:00 EST 2013

39097    Tue Jan 01 00:00:00 EST 2013

39098    Tue Jan 01 00:00:00 EST 2013

39099    Tue Jan 01 00:00:00 EST 2013

39100    Tue Jan 01 00:00:00 EST 2013

Name: modifiedOn, Length: 39101, dtype: object

>>> pd.to_datetime(autos.modifiedOn)

0       2013-01-01

1       2013-01-01

2       2013-01-01

3       2013-01-01

4       2013-01-01

           ...

39096   2013-01-01

39097   2013-01-01

39098   2013-01-01

39099   2013-01-01

39100   2013-01-01
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Name: modifiedOn, Length: 39101, dtype: datetime64[ns]

Here's the code to convert during load time:
>>> autos = pd.read_csv(

...     "data/vehicles.csv.zip", parse_dates=["modifiedOn"]

... )

>>> autos.modifiedOn

0       2013-01-0...

1       2013-01-0...

2       2013-01-0...

3       2013-01-0...

4       2013-01-0...

            ...     

41139   2013-01-0...

41140   2013-01-0...

41141   2013-01-0...

41142   2013-01-0...

41143   2013-01-0...

Name: modifiedOn, Length: 41144, dtype: datetime64[ns, tzlocal()]

3. If the ZIP file has many files it in, reading a CSV file from it is a little more involved. 
The read_csv function does not have the ability to specify a file inside a ZIP file. 
Instead, we will use the zipfile module from the Python standard library.

I like to print out the names of the files in the zip file; that makes it easy to see what 
filename to choose. Note that this file has a long question in the second row (this 
first row is a question identifier, which I'm keeping for the column names). I'm pulling 
out the second row as kag_questions. The responses are stored in the survey 
variable:
>>> import zipfile

>>> with zipfile.ZipFile(

...     "data/kaggle-survey-2018.zip"

... ) as z:

...     print("\n".join(z.namelist()))

...     kag = pd.read_csv(

...         z.open("multipleChoiceResponses.csv")

...     )

...     kag_questions = kag.iloc[0]
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...     survey = kag.iloc[1:]

multipleChoiceResponses.csv

freeFormResponses.csv

SurveySchema.csv

>>> survey.head(2).T

1          2

Time from...          710        434

Q1                 Female       Male

Q1_OTHER_...           -1         -1

Q2                  45-49      30-34

Q3            United S...  Indonesia

...                   ...        ...

Q50_Part_5            NaN        NaN

Q50_Part_6            NaN        NaN

Q50_Part_7            NaN        NaN

Q50_Part_8            NaN        NaN

Q50_OTHER...           -1         -1

How it works...
ZIP files with only a single file can be read directly with the read_csv function. If the ZIP file 
contains multiple files, you will need to resort to another mechanism to read the data. The 
standard library includes the zipfile module that can pull a file out of a ZIP file.

Sadly, the zipfile module will not work with URLs (unlike the read_csv function). So, if 
your ZIP file is in a URL, you will need to download it first.

There's more...
The read_csv function will work with other compression types as well. If you have GZIP, BZ2, 
or XZ files, pandas can handle those as long as they are just compressing a CSV file and not 
a directory.
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Working with databases
We mentioned that pandas is useful for tabular or structured data. Many organizations use 
databases to store tabular data. In this recipe, we will work with databases to insert and 
read data.

Note that this example uses the SQLite database, which is included with Python. However, 
Python has the ability to connect with most SQL databases and pandas, in turn, can 
leverage that.

How to do it...
1. Create a SQLite database to store the Beatles information:

>>> import sqlite3

>>> con = sqlite3.connect("data/beat.db")

>>> with con:

...     cur = con.cursor()

...     cur.execute("""DROP TABLE Band""")

...     cur.execute(

...         """CREATE TABLE Band(id INTEGER PRIMARY KEY,

...         fname TEXT, lname TEXT, birthyear INT)"""

...     )

...     cur.execute(

...         """INSERT INTO Band VALUES(

...         0, 'Paul', 'McCartney', 1942)"""

...     )

...     cur.execute(

...         """INSERT INTO Band VALUES(

...         1, 'John', 'Lennon', 1940)"""

...     )

...     _ = con.commit()

2. Read the table from the database into a DataFrame. Note that if we are reading 
a table, we need to use a SQLAlchemy connection. SQLAlchemy is a library that 
abstracts databases for us:
>>> import sqlalchemy as sa

>>> engine = sa.create_engine(

...     "sqlite:///data/beat.db", echo=True
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... )

>>> sa_connection = engine.connect()

>>> beat = pd.read_sql(

...     "Band", sa_connection, index_col="id"

... )

>>> beat

   fname      lname  birthyear

id                            

0   Paul  McCartney       1942

1   John     Lennon       1940

3. Read from the table using a SQL query. This can use a SQLite connection or a 
SQLAlchemy connection:

>>> sql = """SELECT fname, birthyear from Band"""

>>> fnames = pd.read_sql(sql, con)

>>> fnames

  fname  birthyear

0  Paul       1942

1  John       1940

How it works...
The pandas library leverages the SQLAlchemy library, which can talk to most SQL databases. 
This lets you create DataFrames from tables, or you can run a SQL select query and create the 
DataFrame from the query.

Reading JSON
JavaScript Object Notation (JSON) is a common format used for transferring data over the 
internet. Contrary to the name, it does not require JavaScript to read or create. The Python 
standard library ships with the json library that will encode and decode from JSON:

>>> import json

>>> encoded = json.dumps(people)

>>> encoded

'{"first": ["Paul", "John", "Richard", "George"], "last": ["McCartney", 
"Lennon", "Starkey", "Harrison"], "birth": [1942, 1940, 1940, 1943]}'
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>>> json.loads(encoded)

{'first': ['Paul', 'John', 'Richard', 'George'], 'last': ['McCartney', 
'Lennon', 'Starkey', 'Harrison'], 'birth': [1942, 1940, 1940, 1943]}

How to do it...
1. Read the data using the read_json function. If your JSON is of the form where it is 

a dictionary mapping to lists of columns, you can ingest it without much fanfare. This 
orientation is called columns in pandas:
>>> beatles = pd.read_json(encoded)

>>> beatles

     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943

2. One thing to be aware of when reading JSON is that it needs to be in a specific 
format for pandas to load it. However, pandas supports data oriented in a few styles. 
They are:

 � columns – (default) A mapping of column names to a list of values in the 
columns.

 � records – A list of rows. Each row is a dictionary mapping a column to 
a value.

 � split – A mapping of columns to column names, index to index values, 
and data to a list of each row of data (each row is a list as well).

 � index – A mapping of index value to a row. A row is a dictionary mapping 
a column to a value.

 � values – A list of each row of data (each row is a list as well). This does not 
include column or index values.

 � table – A mapping of schema to the DataFrame schema, and data to a list 
of dictionaries.

Following are examples of these styles. The columns style was the example shown 
previously:
>>> records = beatles.to_json(orient="records")

>>> records

'[{"first":"Paul","last":"McCartney","birth":1942},{"first":"John"
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,"last":"Lennon","birth":1940},{"first":"Richard","last":"Starkey"
,"birth":1940},{"first":"George","last":"Harrison","birth":1943}]'

>>> pd.read_json(records, orient="records")

   birth    first       last

0   1942     Paul  McCartney

1   1940     John     Lennon

2   1940  Richard    Starkey

3   1943   George   Harrison

>>> split = beatles.to_json(orient="split")

>>> split

'{"columns":["first","last","birth"],"index":[0,1,2,3],"data":[["P
aul","McCartney",1942],["John","Lennon",1940],["Richard","Starkey"
,1940],["George","Harrison",1943]]}'

>>> pd.read_json(split, orient="split")

     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943

>>> index = beatles.to_json(orient="index")

>>> index

'{"0":{"first":"Paul","last":"McCartney","birth":1942},"1":{"first
":"John","last":"Lennon","birth":1940},"2":{"first":"Richard","las
t":"Starkey","birth":1940},"3":{"first":"George","last":"Harrison"
,"birth":1943}}'

>>> pd.read_json(index, orient="index")

   birth    first       last

0   1942     Paul  McCartney

1   1940     John     Lennon

2   1940  Richard    Starkey

3   1943   George   Harrison

>>> values = beatles.to_json(orient="values")
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>>> values

'[["Paul","McCartney",1942],["John","Lennon",1940],["Richard","Sta
rkey",1940],["George","Harrison",1943]]'

>>> pd.read_json(values, orient="values")

         0          1     2

0     Paul  McCartney  1942

1     John     Lennon  1940

2  Richard    Starkey  1940

3   George   Harrison  1943

>>> (

...     pd.read_json(values, orient="values").rename(

...         columns=dict(

...             enumerate(["first", "last", "birth"])

...         )

...     )

... )

     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943

>>> table = beatles.to_json(orient="table")

>>> table

'{"schema": {"fields":[{"name":"index","type":"integer"},{"name
":"first","type":"string"},{"name":"last","type":"string"},{"n
ame":"birth","type":"integer"}],"primaryKey":["index"],"pandas_
version":"0.20.0"}, "data": [{"index":0,"first":"Paul","last":"M
cCartney","birth":1942},{"index":1,"first":"John","last":"Lennon
","birth":1940},{"index":2,"first":"Richard","last":"Starkey","
birth":1940},{"index":3,"first":"George","last":"Harrison","bir
th":1943}]}'

>>> pd.read_json(table, orient="table")

     first       last  birth

0     Paul  McCartney   1942

1     John     Lennon   1940

2  Richard    Starkey   1940

3   George   Harrison   1943
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How it works...
JSON can be formatted in many ways. Preferably, the JSON you need to consume comes in a 
supported orientation. If it does not, I find it easier to use standard Python to create data in a 
dictionary that maps column names to values and pass this into the DataFrame constructor.

If you need to generate JSON (say you are creating a web service), I would suggest the 
columns or records orientation.

There's more...
If you are working on a web service and need to add additional data to the JSON, just use the 
.to_dict method to generate dictionaries. You can add your new data to the dictionary, and 
then convert that dictionary to JSON:

>>> output = beat.to_dict()

>>> output

{'fname': {0: 'Paul', 1: 'John'}, 'lname': {0: 'McCartney', 1: 'Lennon'}, 
'birthyear': {0: 1942, 1: 1940}}

>>> output["version"] = "0.4.1"

>>> json.dumps(output)

'{"fname": {"0": "Paul", "1": "John"}, "lname": {"0": "McCartney", "1": 
"Lennon"}, "birthyear": {"0": 1942, "1": 1940}, "version": "0.4.1"}'

Reading HTML tables
You can use pandas to read HTML tables from websites. This makes it easy to ingest tables 
such as those found on Wikipedia or other websites.

In this recipe, we will scrape tables from the Wikipedia entry for The Beatles Discography. 
In particular, we want to scrape the table in the image that was in Wikipedia during 2019:
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Wikipedia table for studio albums

How to do it...
1. Use the read_html function to load all of the tables from https://

en.wikipedia.org/wiki/The_Beatles_discography:
>>> url = https://en.wikipedia.org/wiki/The_Beatles_discography

>>> dfs = pd.read_html(url)

>>> len(dfs)

51

2. Inspect the first DataFrame:
>>> dfs[0]

  The Beatles discography The Beatles discography.1

0  The Beat...             The Beat...

1  Studio a...                      23

2  Live albums                       5

3  Compilat...                      53

4  Video al...                      15

5  Music vi...                      64

6          EPs                      21

7      Singles                      63

8     Mash-ups                       2

9     Box sets                      15

https://en.wikipedia.org/wiki/The_Beatles_discography
https://en.wikipedia.org/wiki/The_Beatles_discography
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3. The preceding table is a summary of the count of studio albums, live albums, 
compilation albums, and so on. This is not the table we wanted. We could loop 
through each of the tables that read_html created, or we could give it a hint to 
find a specific table.

The function has the match parameter, which can be a string or a regular expression. 
It also has an attrs parameter, that allows you to pass in an HTML tag attribute key 
and value (in a dictionary) and will use that to identify the table.

I used the Chrome browser to inspect the HTML to see if there is an attribute on the 
table element or a unique string in the table to use.

Here is a portion of the HTML:
<table class="wikitable plainrowheaders" style="text-
align:center;">
  <caption>List of studio albums,<sup id="cite_ref-1" 
class="reference"><a href="#cite_note-1">[A]</a></sup> with 
selected chart positions and certifications
  </caption>
  <tbody>
    <tr>
      <th scope="col" rowspan="2" style="width:20em;">Title
      </th>
      <th scope="col" rowspan="2" style="width:20em;">Release
       ...

There are no attributes on the table, but we can use the string, List of studio 
albums, to match the table. I'm also going to stick in a value for na_values that I 
copied from the Wikipedia page:
>>> url = https://en.wikipedia.org/wiki/The_Beatles_discography

>>> dfs = pd.read_html(

...     url, match="List of studio albums", na_values="—"

... )

>>> len(dfs)

1

>>> dfs[0].columns

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')

4. The columns are messed up. We can try and use the first two rows for the columns, 
but they are still messed up:
>>> url = https://en.wikipedia.org/wiki/The_Beatles_discography

>>> dfs = pd.read_html(

...     url,
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...     match="List of studio albums",

...     na_values="—",

...     header=[0, 1],

... )

>>> len(dfs)

1

>>> dfs[0]

          Title      Release  ... Peak chart positions 
Certifications

          Title      Release  ...             US[8][9] 
Certifications

0   Please P...  Released...  ...          NaN          BPI: 
Gol...

1   With the...  Released...  ...          NaN          BPI: 
Gol...

2   Introduc...  Released...  ...            2          RIAA: 
Pl...

3   Meet the...  Released...  ...            1          MC: 
Plat...

4   Twist an...  Released...  ...          NaN          MC: 3× 
P...

..          ...          ...  ...          ...                  

...

22  The Beat...  Released...  ...            1          BPI: 2× 
...

23  Yellow S...  Released...  ...            2          BPI: 
Gol...

24   Abbey Road  Released...  ...            1          BPI: 2× 
...

25    Let It Be  Released...  ...            1          BPI: 
Gol...

26  "—" deno...  "—" deno...  ...  "—" deno...          "—" 
deno...

>>> dfs[0].columns

MultiIndex(levels=[['Certifications', 'Peak chart positions', 
'Release', 'Title'], ['AUS[3]', 'CAN[4]', 'Certifications', 
'FRA[5]', 'GER[6]', 'NOR[7]', 'Release', 'Title', 'UK[1][2]', 
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'US[8][9]']],

  codes=[[3, 2, 1, 1, 1, 1, 1, 1, 1, 0], [7, 6, 8, 0, 1, 3, 4, 5, 
9, 2]])

This is not something that is easy to fix programmatically. In this case, the easiest 
solution is to update the columns manually:
>>> df = dfs[0]

>>> df.columns = [

...     "Title",

...     "Release",

...     "UK",

...     "AUS",

...     "CAN",

...     "FRA",

...     "GER",

...     "NOR",

...     "US",

...     "Certifications",

... ]

>>> df

          Title      Release  ...           US Certifications

0   Please P...  Released...  ...          NaN  BPI: Gol...

1   With the...  Released...  ...          NaN  BPI: Gol...

2   Introduc...  Released...  ...            2  RIAA: Pl...

3   Meet the...  Released...  ...            1  MC: Plat...

4   Twist an...  Released...  ...          NaN  MC: 3× P...

..          ...          ...  ...          ...          ...

22  The Beat...  Released...  ...            1  BPI: 2× ...

23  Yellow S...  Released...  ...            2  BPI: Gol...

24   Abbey Road  Released...  ...            1  BPI: 2× ...

25    Let It Be  Released...  ...            1  BPI: Gol...

26  "—" deno...  "—" deno...  ...  "—" deno...  "—" deno...

5. There is more cleanup that we should do to the data. Any row where the title starts 
with Released is another release of the previous row. pandas does not have the 
ability to parse rows that have a rowspan more than 1 (which the "release" rows 
have). In the Wikipedia page, these rows look like this:
<th scope="row" rowspan="2">
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  <i><a href="/wiki/A_Hard_Day%27s_Night_(album)" title="A Hard 
Day's Night (album)">A Hard Day's Night</a></i>
  <img alt="double-dagger" src="//upload.wikimedia.org/wikipedia/
commons/f/f9/Double-dagger-14-plain.png" decoding="async" 
width="9" height="14" data-file-width="9" data-file-height="14">
</th>

We will skip these rows. They confuse pandas, and the data pandas puts in these 
rows is not correct. We will split the release column into two columns, release_
date and label:
>>> res = (

...     df.pipe(

...         lambda df_: df_[

...             ~df_.Title.str.startswith("Released")

...         ]

...     )

...     .assign(

...         release_date=lambda df_: pd.to_datetime(

...             df_.Release.str.extract(

...                 r"Released: (.*) Label"

...             )[0].str.replace(r"\[E\]", "")

...         ),

...         label=lambda df_: df_.Release.str.extract(

...             r"Label: (.*)"

...         ),

...     )

...     .loc[

...         :,

...         [

...             "Title",

...             "UK",

...             "AUS",

...             "CAN",

...             "FRA",

...             "GER",

...             "NOR",

...             "US",

...             "release_date",
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...             "label",

...         ],

...     ]

... )

>>> res

          Title   UK  ... release_date        label

0   Please P...    1  ...   1963-03-22  Parlopho...

1   With the...    1  ...   1963-11-22  Parlopho...

2   Introduc...  NaN  ...   1964-01-10  Vee-Jay ...

3   Meet the...  NaN  ...   1964-01-20  Capitol ...

4   Twist an...  NaN  ...   1964-02-03  Capitol ...

..          ...  ...  ...          ...          ...

21  Magical ...   31  ...   1967-11-27  Parlopho...

22  The Beat...    1  ...   1968-11-22        Apple

23  Yellow S...    3  ...   1969-01-13  Apple (U...

24   Abbey Road    1  ...   1969-09-26        Apple

25    Let It Be    1  ...   1970-05-08        Apple

How it works...
The read_html function looks through the HTML for table tags and parses the contents 
into DataFrames. This can ease the scraping of websites. Unfortunately, as the example 
shows, sometimes data in HTML tables may be hard to parse. Rowspans and multiline 
headers may confuse pandas. You will want to make sure that you perform a sanity check 
on the result.

Sometimes, the table in HTML is simple such that pandas can ingest it with no problems. For 
the table we looked at, we needed to chain a few operations onto the output to clean it up.

There's more...
You can also use the attrs parameter to select a table from the page. Next, I select read 
data from GitHub's view of a CSV file. Note that I am not reading this from the raw CSV data 
but from GitHub's online file viewer. I have inspected the table and noticed that it has a class 
attribute with the value csv-data. We will use that to limit the table selected:

>>> url = https://github.com/mattharrison/datasets/blob/master/data/
anscombes.csv

>>> dfs = pd.read_html(url, attrs={"class": "csv-data"})
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>>> len(dfs)

1

>>> dfs[0]

    Unnamed: 0 quadrant     x     y

0          NaN        I  10.0  8.04

1          NaN        I  14.0  9.96

2          NaN        I   6.0  7.24

3          NaN        I   9.0  8.81

4          NaN        I   4.0  4.26

..         ...      ...   ...   ...

39         NaN       IV   8.0  6.58

40         NaN       IV   8.0  7.91

41         NaN       IV   8.0  8.47

42         NaN       IV   8.0  5.25

43         NaN       IV   8.0  6.89

Note that GitHub hijacks a td element to show the line number, hence the Unnamed: 0 
column. It appears to be using JavaScript to dynamically add line numbers to the web page, 
so while the web page shows line numbers, the source code has empty cells, hence the NaN 
values in that column. You would want to drop that column as it is useless.

One thing to be aware of is that websites can change. Do not count on your data being there 
(or being the same) next week. My recommendation is to save the data after retrieving it.

Sometimes you need to use a different tool. If the read_html function is not able to get your 
data from a website, you may need to resort to screen scraping. Luckily, Python has tools for 
that too. Simple scraping can be done with the requests library. The Beautiful Soup library 
is another tool that makes going through the HTML content easier.
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4 
Beginning 

Data Analysis

Introduction
It is important to consider the steps that you, as an analyst, take when you first encounter 
a dataset after importing it into your workspace as a DataFrame. Is there a set of tasks that 
you usually undertake to examine the data? Are you aware of all the possible data types? This 
chapter begins by covering the tasks you might want to undertake when first encountering 
a new dataset. The chapter proceeds by answering common questions about things that are 
not that simple to do in pandas.

Developing a data analysis routine
Although there is no standard approach when beginning a data analysis, it is typically a 
good idea to develop a routine for yourself when first examining a dataset. Similar to everyday 
routines that we have for waking up, showering, going to work, eating, and so on, a data 
analysis routine helps you to quickly get acquainted with a new dataset. This routine can 
manifest itself as a dynamic checklist of tasks that evolves as your familiarity with pandas 
and data analysis expands.

Exploratory Data Analysis (EDA) is a term used to describe the process of analyzing datasets. 
Typically it does not involve model creation, but summarizing the characteristics of the data 
and visualizing them. This is not new and was promoted by John Tukey in his book Exploratory 
Data Analysis in 1977. 
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Many of these same processes are still applicable and useful to understand a dataset. 
Indeed, they can also help with creating machine learning models later.

This recipe covers a small but fundamental part of EDA: the collection of metadata and 
descriptive statistics in a routine and systematic way. It outlines a standard set of tasks that 
can be undertaken when first importing any dataset as a pandas DataFrame. This recipe may 
help form the basis of the routine that you can implement when first examining a dataset.

Metadata describes the dataset or, more aptly, data about the data. Examples of metadata 
include the number of columns/rows, column names, data types of each column, the source 
of the dataset, the date of collection, the acceptable values for different columns, and so 
on. Univariate descriptive statistics are summary statistics about variables (columns) of 
the dataset, independent of all other variables.

How to do it…
First, some metadata on the college dataset will be collected, followed by basic summary 
statistics of each column:

1. Read in the dataset, and view a sample of rows with the .sample method:
>>> import pandas as pd

>>> import numpy as np

>>> college = pd.read_csv("data/college.csv")

>>> college.sample(random_state=42)

           INSTNM         CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

3649  Career P...  San Antonio  ...        20700           14977       

2. Get the dimensions of the DataFrame with the .shape attribute:
>>> college.shape

(7535, 27)

3. List the data type of each column, the number of non-missing values, and memory 
usage with the .info method:
>>> college.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 7535 entries, 0 to 7534

Data columns (total 27 columns):

 #   Column              Non-Null Count  Dtype

---  ------              --------------  -----

 0   INSTNM              7535 non-null   object



Chapter 4

117

 1   CITY                7535 non-null   object

 2   STABBR              7535 non-null   object

 3   HBCU                7164 non-null   float64

 4   MENONLY             7164 non-null   float64

 5   WOMENONLY           7164 non-null   float64

 6   RELAFFIL            7535 non-null   int64

 7   SATVRMID            1185 non-null   float64

 8   SATMTMID            1196 non-null   float64

 9   DISTANCEONLY        7164 non-null   float64

 10  UGDS                6874 non-null   float64

 11  UGDS_WHITE          6874 non-null   float64

 12  UGDS_BLACK          6874 non-null   float64

 13  UGDS_HISP           6874 non-null   float64

 14  UGDS_ASIAN          6874 non-null   float64

 15  UGDS_AIAN           6874 non-null   float64

 16  UGDS_NHPI           6874 non-null   float64

 17  UGDS_2MOR           6874 non-null   float64

 18  UGDS_NRA            6874 non-null   float64

 19  UGDS_UNKN           6874 non-null   float64

 20  PPTUG_EF            6853 non-null   float64

 21  CURROPER            7535 non-null   int64

 22  PCTPELL             6849 non-null   float64

 23  PCTFLOAN            6849 non-null   float64

 24  UG25ABV             6718 non-null   float64

 25  MD_EARN_WNE_P10     6413 non-null   object

 26  GRAD_DEBT_MDN_SUPP  7503 non-null   object

dtypes: float64(20), int64(2), object(5)

memory usage: 1.6+ MB

4. Get summary statistics for the numerical columns and transpose the DataFrame for 
more readable output:
>>> college.describe(include=[np.number]).T

            count        mean  ...         75%    max

HBCU       7164.0    0.014238  ...    0.000000    1.0

MENONLY    7164.0    0.009213  ...    0.000000    1.0

WOMENONLY  7164.0    0.005304  ...    0.000000    1.0

RELAFFIL   7535.0    0.190975  ...    0.000000    1.0
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SATVRMID   1185.0  522.819409  ...  555.000000  765.0

...           ...         ...  ...         ...    ...

PPTUG_EF   6853.0    0.226639  ...    0.376900    1.0

CURROPER   7535.0    0.923291  ...    1.000000    1.0

PCTPELL    6849.0    0.530643  ...    0.712900    1.0

PCTFLOAN   6849.0    0.522211  ...    0.745000    1.0

UG25ABV    6718.0    0.410021  ...    0.572275    1.0

5. Get summary statistics for the object (string) columns:

>>> college.describe(include=[np.object]).T

             count unique          top  freq

INSTNM        7535   7535  Academy ...     1

CITY          7535   2514     New York    87

STABBR        7535     59           CA   773

MD_EARN_W...  6413    598  PrivacyS...   822

GRAD_DEBT...  7503   2038  PrivacyS...  1510

How it works…
After importing your dataset, a common task is to print out a sample of rows of the 
DataFrame for manual inspection with the .sample method. The .shape attribute 
returns some metadata; a tuple containing the number of rows and columns.

A method to get more metadata at once is the .info method. It provides each column name, 
the number of non-missing values, the data type of each column, and the approximate 
memory usage of the DataFrame. Usually, a column in pandas has a single type (however, 
it is possible to have a column that has mixed types, and it will be reported as object). 
DataFrames, as a whole, might be composed of columns with different data types.

Step 4 and step 5 produce descriptive statistics on different types of columns. By default, 
.describe outputs a summary for all the numeric columns and silently drops any non-
numeric columns. You can pass in other options to the include parameter to include counts 
and frequencies for a column with non-numeric data types. Technically, the data types are 
part of a hierarchy where np.number resides above integers and floats.

We can classify data as being either continuous or categorical. Continuous data is always 
numeric and can usually take on an infinite number of possibilities, such as height, weight, 
and salary. Categorical data represent discrete values that take on a finite number of 
possibilities, such as ethnicity, employment status, and car color. Categorical data can 
be represented numerically or with characters.
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Categorical columns are usually going to be either of the type np.object or 
pd.Categorical. Step 5 ensures that both of these types are represented. In both step 
4 and step 5, the output DataFrame is transposed with the .T property. This may ease 
readability for DataFrames with many columns as it typically allows more data to fit on the 
screen without scrolling.

There's more…
It is possible to specify the exact quantiles returned from the .describe method when used 
with numeric columns:

>>> college.describe(

...     include=[np.number],

...     percentiles=[

...         0.01,

...         0.05,

...         0.10,

...         0.25,

...         0.5,

...         0.75,

...         0.9,

...         0.95,

...         0.99,

...     ],

... ).T

            count        mean  ...         99%    max

HBCU       7164.0    0.014238  ...    1.000000    1.0

MENONLY    7164.0    0.009213  ...    0.000000    1.0

WOMENONLY  7164.0    0.005304  ...    0.000000    1.0

RELAFFIL   7535.0    0.190975  ...    1.000000    1.0

SATVRMID   1185.0  522.819409  ...  730.000000  765.0

...           ...         ...  ...         ...    ...

PPTUG_EF   6853.0    0.226639  ...    0.946724    1.0

CURROPER   7535.0    0.923291  ...    1.000000    1.0

PCTPELL    6849.0    0.530643  ...    0.993908    1.0

PCTFLOAN   6849.0    0.522211  ...    0.986368    1.0

UG25ABV    6718.0    0.410021  ...    0.917383    1.0
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Data dictionaries
A crucial part of data analysis involves creating and maintaining a data dictionary. A data 
dictionary is a table of metadata and notes on each column of data. One of the primary 
purposes of a data dictionary is to explain the meaning of the column names. The college 
dataset uses a lot of abbreviations that are likely to be unfamiliar to an analyst who is 
inspecting it for the first time.

A data dictionary for the college dataset is provided in the following college_data_
dictionary.csv file:

>>> pd.read_csv("data/college_data_dictionary.csv")

    column_name  description

0        INSTNM  Institut...

1          CITY  City Loc...

2        STABBR  State Ab...

3          HBCU  Historic...

4       MENONLY  0/1 Men ...

..          ...          ...

22      PCTPELL  Percent ...

23     PCTFLOAN  Percent ...

24      UG25ABV  Percent ...

25  MD_EARN_...  Median E...

26  GRAD_DEB...  Median d...

As you can see, it is immensely helpful in deciphering the abbreviated column names. 
DataFrames are not the best place to store data dictionaries. A platform such as Excel 
or Google Sheets with easy ability to edit values and append columns is a better choice. 
Alternatively, they can be described in a Markdown cell in Jupyter. A data dictionary is one 
of the first things that you can share as an analyst with collaborators.

It will often be the case that the dataset you are working with originated from a database 
whose administrators you will have to contact to get more information. Databases have 
representations of their data, called schemas. If possible, attempt to investigate your dataset 
with a Subject Matter Expert (SME – people who have expert knowledge of the data).

Reducing memory by changing data types
pandas has precise technical definitions for many data types. However, when you load data 
from type-less formats such as CSV, pandas has to infer the type.
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This recipe changes the data type of one of the object columns from the college dataset to the 
special pandas categorical data type to drastically reduce its memory usage.

How to do it…
1. After reading in our college dataset, we select a few columns of different data types 

that will clearly show how much memory may be saved:
>>> college = pd.read_csv("data/college.csv")

>>> different_cols = [

...     "RELAFFIL",

...     "SATMTMID",

...     "CURROPER",

...     "INSTNM",

...     "STABBR",

... ]

>>> col2 = college.loc[:, different_cols]

>>> col2.head()

   RELAFFIL  SATMTMID  ...       INSTNM STABBR

0         0     420.0  ...  Alabama ...     AL

1         0     565.0  ...  Universi...     AL

2         1       NaN  ...  Amridge ...     AL

3         0     590.0  ...  Universi...     AL

4         0     430.0  ...  Alabama ...     AL

2. Inspect the data types of each column:
>>> col2.dtypes

RELAFFIL      int64

SATMTMID    float64

CURROPER      int64

INSTNM       object

STABBR       object

dtype: object

3. Find the memory usage of each column with the .memory_usage method:
>>> original_mem = col2.memory_usage(deep=True)

>>> original_mem

Index          128
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RELAFFIL     60280

SATMTMID     60280

CURROPER     60280

INSTNM      660240

STABBR      444565

dtype: int64

4. There is no need to use 64 bits for the RELAFFIL column as it contains only 0 or 1. 
Let's convert this column to an 8-bit (1 byte) integer with the .astype method:
>>> col2["RELAFFIL"] = col2["RELAFFIL"].astype(np.int8)

5. Use the .dtypes attribute to confirm the data type change:
>>> col2.dtypes

RELAFFIL       int8

SATMTMID    float64

CURROPER      int64

INSTNM       object

STABBR       object

dtype: object     

6. Find the memory usage of each column again and note the large reduction:
>>> col2.memory_usage(deep=True)

Index          128

RELAFFIL      7535

SATMTMID     60280

CURROPER     60280

INSTNM      660240

STABBR      444565

dtype: int64

7. To save even more memory, you will want to consider changing object data types to 
categorical if they have a reasonably low cardinality (number of unique values). Let's 
first check the number of unique values for both the object columns:
>>> col2.select_dtypes(include=["object"]).nunique()

INSTNM    7535

STABBR      59

dtype: int64
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8. The STABBR column is a good candidate to convert to categorical as less than one 
percent of its values are unique:
>>> col2["STABBR"] = col2["STABBR"].astype("category")

>>> col2.dtypes

RELAFFIL        int8

SATMTMID     float64

CURROPER       int64

INSTNM        object

STABBR      category

dtype: object

9. Compute the memory usage again:
>>> new_mem = col2.memory_usage(deep=True)

>>> new_mem

Index          128

RELAFFIL      7535

SATMTMID     60280

CURROPER     60280

INSTNM      660699

STABBR       13576

dtype: int64   

10. Finally, let's compare the original memory usage with our updated memory usage. 
The RELAFFIL column is, as expected, an eighth of its original size, while the 
STABBR column has shrunk to just three percent of its original size:

>>> new_mem / original_mem

Index       1.000000

RELAFFIL    0.125000

SATMTMID    1.000000

CURROPER    1.000000

INSTNM      1.000695

STABBR      0.030538

dtype: float64
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How it works…
pandas defaults integer and float data types to 64 bits regardless of the maximum 
necessary size for the particular DataFrame. Integers, floats, and even Booleans may be 
coerced to a different data type with the .astype method and passing it the exact type, 
either as a string or specific object, as done in step 4.

The RELAFFIL column is a good choice to cast to a smaller integer type as the data 
dictionary explains that its values must be 0 or 1. The memory for RELAFFIL is now an 
eighth of CURROPER, which remains as its former type.

Columns that have an object data type, such as INSTNM, are not like the other pandas data 
types. For all the other pandas data types, each value in that column is the same data type. 
For instance, when a column has the int64 type, every column value is also int64. This is 
not true for columns that have the object data type. Each column value can be of any type. 
They can have a mix of strings, numerics, datetimes, or even other Python objects such as 
lists or tuples. For this reason, the object data type is sometimes referred to as a catch-all 
for a column of data that doesn't match any of the other data types. The vast majority of the 
time, though, object data type columns will all be strings.

Therefore, the memory of each value in an object data type column is inconsistent. There 
is no predefined amount of memory for each value like the other data types. For pandas to 
extract the exact amount of memory of an object data type column, the deep parameter 
must be set to True in the .memory_usage method.

Object columns are targets for the largest memory savings. pandas has an additional 
categorical data type that is not available in NumPy. When converting to category, pandas 
internally creates a mapping from integers to each unique string value. Thus, each string only 
needs to be kept a single time in memory. As you can see, this change of data type reduced 
memory usage by 97%.

You might also have noticed that the index uses an extremely low amount of memory. If no 
index is specified during DataFrame creation, as is the case in this recipe, pandas defaults 
the index to a RangeIndex. The RangeIndex is very similar to the built-in range function. 
It produces values on demand and only stores the minimum amount of information needed 
to create an index.

There's more…
To get a better idea of how object data type columns differ from integers and floats, a 
single value from each one of these columns can be modified and the resulting memory 
usage displayed. The CURROPER and INSTNM columns are of int64 and object types, 
respectively:

>>> college.loc[0, "CURROPER"] = 10000000



Chapter 4

125

>>> college.loc[0, "INSTNM"] = (

...     college.loc[0, "INSTNM"] + "a"

... )

>>> college[["CURROPER", "INSTNM"]].memory_usage(deep=True)

Index           80

CURROPER     60280

INSTNM      660804

dtype: int64

    

Memory usage for CURROPER remained the same since a 64-bit integer is more than enough 
space for the larger number. On the other hand, the memory usage for INSTNM increased by 
105 bytes by just adding a single letter to one value.

Python 3 uses Unicode, a standardized character representation intended to encode all the 
world's writing systems. How much memory Unicode strings take on your machine depends 
on how Python was built. On this machine, it uses up to 4 bytes per character. pandas 
has some overhead (100 bytes) when making the first modification to a character value. 
Afterward, increments of 5 bytes per character are sustained.

Not all columns can be coerced to the desired type. Take a look at the MENONLY column, 
which, from the data dictionary, appears to contain only 0s or 1s. The actual data type of 
this column upon import unexpectedly turns out to be float64. The reason for this is that 
there happen to be missing values, denoted by np.nan. There is no integer representation for 
missing values for the int64 type (note that the Int64 type found in pandas 0.24+ does support 
missing values, but it is not used by default). Any numeric column with even a single missing 
value will be turned into a float column. Furthermore, any column of an integer data type will 
automatically be coerced to a float if one of the values becomes missing:

>>> college["MENONLY"].dtype

dtype('float64')

>>> college["MENONLY"].astype(np.int8)

Traceback (most recent call last):

  ...

ValueError: Cannot convert non-finite values (NA or inf) to integer

Additionally, it is possible to substitute string names in place of Python objects when 
referring to data types. For instance, when using the include parameter in the .describe 
DataFrame method, it is possible to pass a list of either the NumPy or pandas objects or their 
equivalent string representation. For instance, each of the following produces the same result:

college.describe(include=['int64', 'float64']).T
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college.describe(include=[np.int64, np.float64]).T

college.describe(include=['int', 'float']).T

college.describe(include=['number']).T

    

The type strings can also be used in combination with the .astype method:

>>> college.assign(

...     MENONLY=college["MENONLY"].astype("float16"),

...     RELAFFIL=college["RELAFFIL"].astype("int8"),

... )

           INSTNM         CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP

0     Alabama ...       Normal  ...        30300           33888       

1     Universi...   Birmingham  ...        39700         21941.5       

2     Amridge ...   Montgomery  ...        40100           23370       

3     Universi...   Huntsville  ...        45500           24097       

4     Alabama ...   Montgomery  ...        26600         33118.5       

...           ...          ...  ...          ...             ...       

7530  SAE Inst...   Emeryville  ...          NaN            9500       

7531  Rasmusse...  Overland...  ...          NaN           21163       

7532  National...  Highland...  ...          NaN            6333       

7533  Bay Area...     San Jose  ...          NaN     PrivacyS...       

7534  Excel Le...  San Antonio  ...          NaN           12125       

    

Lastly, it is possible to see the enormous memory difference between the minimal 
RangeIndex and Int64Index, which stores every row index in memory:

>>> college.index = pd.Int64Index(college.index)

>>> college.index.memory_usage()  # previously was just 80

60280

Selecting the smallest of the largest
This recipe can be used to create catchy news headlines such as Out of the Top 100  
Universities, These 5 have the Lowest Tuition, or From the Top 50 Cities to Live, these 10 are 
the Most Affordable. 



Chapter 4

127

During analysis, it is possible that you will first need to find a grouping of data that contains 
the top n values in a single column and, from this subset, find the bottom m values based on 
a different column.

In this recipe, we find the five lowest budget movies from the top 100 scoring movies by taking 
advantage of the convenience methods: .nlargest and .nsmallest.

How to do it…
1. Read in the movie dataset, and select the columns: movie_title, imdb_score, 

and budget:
>>> movie = pd.read_csv("data/movie.csv")

>>> movie2 = movie[["movie_title", "imdb_score", "budget"]]

>>> movie2.head()

   movie_title  imdb_score       budget

0       Avatar         7.9  237000000.0

1  Pirates ...         7.1  300000000.0

2      Spectre         6.8  245000000.0

3  The Dark...         8.5  250000000.0

4  Star War...         7.1          NaN

2. Use the .nlargest method to select the top 100 movies by imdb_score:
>>> movie2.nlargest(100, "imdb_score").head()

      movie_title  imdb_score      budget

                   movie_title  imdb_score      budget

2725          Towering Inferno         9.5         NaN

1920  The Shawshank Redemption         9.3  25000000.0

3402             The Godfather         9.2   6000000.0

2779                   Dekalog         9.1         NaN

4312      Kickboxer: Vengeance         9.1  17000000.0

3. Chain the .nsmallest method to return the five lowest budget films among those 
with a top 100 score:
>>> (

...     movie2.nlargest(100, "imdb_score").nsmallest(

...         5, "budget"

...     )

... )

               movie_title  imdb_score    budget
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4804        Butterfly Girl         8.7  180000.0

4801    Children of Heaven         8.5  180000.0

4706          12 Angry Men         8.9  350000.0

4550          A Separation         8.4  500000.0

4636  The Other Dream Team         8.4  500000.0

How it works…
The first parameter of the .nlargest method, n, must be an integer and selects the number 
of rows to be returned. The second parameter, columns, takes a column name as a string. 
Step 2 returns the 100 highest-scoring movies. We could have saved this intermediate result 
as its own variable but instead, we chain the .nsmallest method to it in step 3, which 
returns exactly five rows, sorted by budget.

There's more…
It is possible to pass a list of column names to the columns parameter of the .nlargest 
and .nsmallest methods. This would only be useful to break ties in the event that there 
were duplicate values sharing the nth ranked spot in the first column in the list.

Selecting the largest of each group by 
sorting

One of the most basic and common operations to perform during data analysis is to select 
rows containing the largest value of some column within a group. For instance, this would be 
like finding the highest-rated film of each year or the highest-grossing film by content rating. 
To accomplish this task, we need to sort the groups as well as the column used to rank each 
member of the group, and then extract the highest member of each group.

In this recipe, we will find the highest-rated film of each year.

How to do it…
1. Read in the movie dataset and slim it down to just the three columns we care about: 

movie_title, title_year, and imdb_score:
>>> movie = pd.read_csv("data/movie.csv")

>>> movie[["movie_title", "title_year", "imdb_score"]]

                                     movie_title  ...
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0                                         Avatar  ...

1       Pirates of the Caribbean: At World's End  ...

2                                        Spectre  ...

3                          The Dark Knight Rises  ...

4     Star Wars: Episode VII - The Force Awakens  ...

...                                          ...  ...

4911                     Signed Sealed Delivered  ...

4912                               The Following  ...

4913                        A Plague So Pleasant  ...

4914                            Shanghai Calling  ...

4915                           My Date with Drew  ...

2. Use the .sort_values method to sort the DataFrame by title_year. The default 
behavior sorts from the smallest to the largest. Use the ascending=True parameter 
to invert this behavior:
>>> (

...     movie[

...         ["movie_title", "title_year", "imdb_score"]

...     ].sort_values("title_year", ascending=True)

... )

                                           movie_title  ...

4695  Intolerance: Love's Struggle Throughout the Ages  ...

4833                    Over the Hill to the Poorhouse  ...

4767                                    The Big Parade  ...

2694                                        Metropolis  ...

4697                               The Broadway Melody  ...

...                                                ...  ...

4683                                            Heroes  ...

4688                                       Home Movies  ...

4704                                        Revolution  ...

4752                                      Happy Valley  ...

4912                                     The Following  ...

3. Notice how only the year was sorted. To sort multiple columns at once, use a list. 
Let's look at how to sort both year and score:
>>> (

...     movie[

...         ["movie_title", "title_year", "imdb_score"]
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...     ].sort_values(

...         ["title_year", "imdb_score"], ascending=False

...     )

... )

                      movie_title  title_year  imdb_score

4312         Kickboxer: Vengeance      2016.0         9.1

4277  A Beginner's Guide to Snuff      2016.0         8.7

3798                      Airlift      2016.0         8.5

27     Captain America: Civil War      2016.0         8.2

98            Godzilla Resurgence      2016.0         8.2

...                           ...         ...         ...

1391                    Rush Hour         NaN         5.8

4031                     Creature         NaN         5.0

2165              Meet the Browns         NaN         3.5

3246   The Bold and the Beautiful         NaN         3.5

2119                 The Bachelor         NaN         2.9

4. Now, we use the .drop_duplicates method to keep only the first row of every 
year:

>>> (

...     movie[["movie_title", "title_year", "imdb_score"]]

...     .sort_values(

...         ["title_year", "imdb_score"], ascending=False

...     )

...     .drop_duplicates(subset="title_year")

... )

      movie_title  title_year  imdb_score

4312  Kickboxe...      2016.0         9.1

3745  Running ...      2015.0         8.6

4369  Queen of...      2014.0         8.7

3935  Batman: ...      2013.0         8.4

3     The Dark...      2012.0         8.5

...           ...         ...         ...

2694   Metropolis      1927.0         8.3

4767  The Big ...      1925.0         8.3

4833  Over the...      1920.0         4.8
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4695  Intolera...      1916.0         8.0

2725  Towering...         NaN         9.5

How it works…
This example shows how I use chaining to build up and test a sequence of pandas operations. 
In step 1, we slim the dataset down to concentrate on only the columns of importance. 
This recipe would work the same with the entire DataFrame. Step 2 shows how to sort a 
DataFrame by a single column, which is not exactly what we wanted. Step 3 sorts multiple 
columns at the same time. It works by first sorting all of title_year and then, within each 
value of title_year, sorts by imdb_score.

The default behavior of the .drop_duplicates method is to keep the first occurrence of 
each unique row, which would not drop any rows as each row is unique. However, the subset 
parameter alters it to only consider the column (or list of columns) given to it. In this example, 
only one row for each year will be returned. As we sorted by year and score in the last step, the 
highest-scoring movie for each year is what we get.

There's more…
As in most things pandas, there is more than one way to do this. If you find yourself 
comfortable with grouping operations, you can use the .groupby method to do this as well:

>>> (

...     movie[["movie_title", "title_year", "imdb_score"]]

...     .groupby("title_year", as_index=False)

...     .apply(

...         lambda df: df.sort_values(

...             "imdb_score", ascending=False

...         ).head(1)

...     )

...     .droplevel(0)

...     .sort_values("title_year", ascending=False)

... )

         movie_title  title_year  imdb_score

90 4312  Kickboxe...      2016.0         9.1

89 3745  Running ...      2015.0         8.6

88 4369  Queen of...      2014.0         8.7

87 3935  Batman: ...      2013.0         8.4



Beginning Data Analysis

132

86 3     The Dark...      2012.0         8.5

...              ...         ...         ...

4  4555  Pandora'...      1929.0         8.0

3  2694   Metropolis      1927.0         8.3

2  4767  The Big ...      1925.0         8.3

1  4833  Over the...      1920.0         4.8

0  4695  Intolera...      1916.0         8.0

It is possible to sort one column in ascending order while simultaneously sorting another 
column in descending order. To accomplish this, pass in a list of Booleans to the ascending 
parameter that corresponds to how you would like each column sorted. The following sorts 
title_year and content_rating in descending order and budget in ascending order. 
It then finds the lowest budget film for each year and content rating group:

>>> (

...     movie[

...         [

...             "movie_title",

...             "title_year",

...             "content_rating",

...             "budget",

...         ]

...     ]

...     .sort_values(

...         ["title_year", "content_rating", "budget"],

...         ascending=[False, False, True],

...     )

...     .drop_duplicates(

...         subset=["title_year", "content_rating"]

...     )

... )

      movie_title  title_year content_rating      budget

4026    Compadres      2016.0            R     3000000.0

4658  Fight to...      2016.0        PG-13      150000.0

4661   Rodeo Girl      2016.0           PG      500000.0

3252  The Wailing      2016.0    Not Rated           NaN

4659  Alleluia...      2016.0          NaN      500000.0

...           ...         ...          ...           ...
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2558   Lilyhammer         NaN        TV-MA    34000000.0

807   Sabrina,...         NaN         TV-G     3000000.0

848   Stargate...         NaN        TV-14     1400000.0

2436       Carlos         NaN    Not Rated           NaN

2119  The Bach...         NaN          NaN     3000000.0

By default, .drop_duplicates keeps the very first appearance of a value, but this 
behavior may be modified by passing keep='last' to select the last row of each group or 
keep=False to drop all duplicates entirely.

Replicating nlargest with sort_values
The previous two recipes work similarly by sorting values in slightly different manners. Finding 
the top n values of a column of data is equivalent to sorting the entire column in descending 
order and taking the first n values. pandas has many operations that are capable of doing this 
in a variety of ways.

In this recipe, we will replicate the Selecting the smallest of the largest recipe with the 
.sort_values method and explore the differences between the two.

How to do it…
1. Let's recreate the result from the final step of the Selecting the smallest of the largest 

recipe:
>>> movie = pd.read_csv("data/movie.csv")

>>> (

...     movie[["movie_title", "imdb_score", "budget"]]

...     .nlargest(100, "imdb_score")

...     .nsmallest(5, "budget")

... )

               movie_title  imdb_score    budget

4804        Butterfly Girl         8.7  180000.0

4801    Children of Heaven         8.5  180000.0

4706          12 Angry Men         8.9  350000.0

4550          A Separation         8.4  500000.0

4636  The Other Dream Team         8.4  500000.0



Beginning Data Analysis

134

2. Use .sort_values to replicate the first part of the expression and grab the first 100 
rows with the .head method:
>>> (

...     movie[["movie_title", "imdb_score", "budget"]]

...     .sort_values("imdb_score", ascending=False)

...     .head(100)

... )

      movie_title  imdb_score      budget

2725  Towering...         9.5         NaN

1920  The Shaw...         9.3  25000000.0

3402  The Godf...         9.2   6000000.0

2779      Dekalog         9.1         NaN

4312  Kickboxe...         9.1  17000000.0

...           ...         ...         ...

3799  Anne of ...         8.4         NaN

3777  Requiem ...         8.4   4500000.0

3935  Batman: ...         8.4   3500000.0

4636  The Othe...         8.4    500000.0

2455       Aliens         8.4  18500000.0

3. Now that we have the top 100 scoring movies, we can use .sort_values with 
.head again to grab the lowest five by budget:

>>> (

...     movie[["movie_title", "imdb_score", "budget"]]

...     .sort_values("imdb_score", ascending=False)

...     .head(100)

...     .sort_values("budget")

...     .head(5)

... )

                    movie_title  imdb_score    budget

4815  A Charlie Brown Christmas         8.4  150000.0

4801         Children of Heaven         8.5  180000.0

4804             Butterfly Girl         8.7  180000.0

4706               12 Angry Men         8.9  350000.0

4636       The Other Dream Team         8.4  500000.0
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How it works…
The .sort_values method can nearly replicate .nlargest by chaining the .head method 
after the operation, as seen in step 2. Step 3 replicates .nsmallest by chaining another 
.sort_values method and completes the query by taking just the first five rows with the 
.head method.

Take a look at the output from the first DataFrame from step 1 and compare it with the output 
from step 3. Are they the same? No! What happened? To understand why the two results are 
not equivalent, let's look at the tail of the intermediate steps of each recipe:

>>> (

...     movie[["movie_title", "imdb_score", "budget"]]

...     .nlargest(100, "imdb_score")

...     .tail()

... )

                movie_title  imdb_score     budget

4023                 Oldboy         8.4  3000000.0

4163  To Kill a Mockingbird         8.4  2000000.0

4395         Reservoir Dogs         8.4  1200000.0

4550           A Separation         8.4   500000.0

4636   The Other Dream Team         8.4   500000.0

>>> (

...     movie[["movie_title", "imdb_score", "budget"]]

...     .sort_values("imdb_score", ascending=False)

...     .head(100)

...     .tail()

... )

      movie_title  imdb_score      budget

3799  Anne of ...         8.4         NaN

3777  Requiem ...         8.4   4500000.0

3935  Batman: ...         8.4   3500000.0

4636  The Othe...         8.4    500000.0

2455       Aliens         8.4  18500000.0

The issue arises because more than 100 movies exist with a rating of at least 8.4. Each of the 
methods, .nlargest and .sort_values, breaks ties differently, which results in a slightly 
different 100-row DataFrame. If you pass in kind='mergsort' to the .sort_values 
method, you will get the same result as .nlargest.
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Calculating a trailing stop order price
There are many strategies to trade stocks. One basic type of trade that many investors employ 
is the stop order. A stop order is an order placed by an investor to buy or sell a stock that 
executes whenever the market price reaches a certain point. Stop orders are useful to both 
prevent huge losses and protect gains.

For this recipe, we will only be examining stop orders used to sell currently owned stocks. 
In a typical stop order, the price does not change throughout the lifetime of the order. For 
instance, if you purchased a stock for $100 per share, you might want to set a stop order 
at $90 per share to limit your downside to 10%.

A more advanced strategy would be to continually modify the sale price of the stop order 
to track the value of the stock if it increases in value. This is called a trailing stop order. 
Concretely, if the same $100 stock increases to $120, then a trailing stop order 10% below 
the current market value would move the sale price to $108.

The trailing stop order never moves down and is always tied to the maximum value since 
the time of purchase. If the stock fell from $120 to $110, the stop order would still remain 
at $108. It would only increase if the price moved above $120.

This recipe requires the use of the third-party package pandas-datareader, which fetches 
stock market prices online. It does not come pre-installed with pandas. To install this package, 
use the command line and run conda install pandas-datareader or pip install 
pandas-datareader. You may need to install the requests_cache library as well.

This recipe determines the trailing stop order price given an initial purchase price for any 
stock.

How to do it…
1. To get started, we will work with Tesla Motors (TSLA) stock and presume a purchase 

on the first trading day of 2017:
>>> import datetime

>>> import pandas_datareader.data as web

>>> import requests_cache

>>> session = requests_cache.CachedSession(

...     cache_name="cache",

...     backend="sqlite",

...     expire_after=datetime.timedelta(days=90),

... )
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>>> tsla = web.DataReader(

...     "tsla",

...     data_source="yahoo",

...     start="2017-1-1",

...     session=session,

... )

>>> tsla.head(8)

                  High         Low  ...    Volume   Adj Close

Date                                ...

2017-01-03  220.330002  210.960007  ...   5923300  216.990005

2017-01-04  228.000000  214.309998  ...  11213500  226.990005

2017-01-05  227.479996  221.949997  ...   5911700  226.750000

2017-01-06  230.309998  225.449997  ...   5527900  229.009995

2017-01-09  231.919998  228.000000  ...   3979500  231.279999

2017-01-10  232.000000  226.889999  ...   3660000  229.869995

2017-01-11  229.979996  226.679993  ...   3650800  229.729996

2017-01-12  230.699997  225.580002  ...   3790200  229.589996

2. For simplicity, we will work with the closing price of each trading day:
>>> tsla_close = tsla["Close"]

3. Use the .cummax method to track the highest closing price until the current date:
>>> tsla_cummax = tsla_close.cummax()

>>> tsla_cummax.head()

Date

2017-01-03    216.990005

2017-01-04    226.990005

2017-01-05    226.990005

2017-01-06    229.009995

2017-01-09    231.279999

Name: Close, dtype: float64

4. To limit the downside to 10%, we multiply the result by 0.9. This creates the trailing 
stop order. We will chain all of the steps together:

>>> (tsla["Close"].cummax().mul(0.9).head())

Date

2017-01-03    195.291005

2017-01-04    204.291005
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2017-01-05    204.291005

2017-01-06    206.108995

2017-01-09    208.151999

Name: Close, dtype: float64

How it works…
The .cummax method works by retaining the maximum value encountered up to and including 
the current value. Multiplying this series by 0.9, or whatever cushion you would like to use, 
creates the trailing stop order. In this particular example, TSLA increased in value, and thus, 
its trailing stop has also increased.

There's more…
This recipe gives just a taste of how useful pandas may be used to trade securities and stops 
short of calculating a return for if and when the stop order triggers.

A very similar strategy may be used during a weight-loss program. You can set a warning any 
time you have strayed too far away from your minimum weight. pandas provides you with the 
cummin method to track the minimum value. If you keep track of your daily weight in a series, 
the following code provides a trailing weight loss of 5% above your lowest recorded weight to 
date:

weight.cummin() * 1.05
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5
Exploratory 

Data Analysis

Introduction
In this chapter, we will dive more into Exploratory Data Analysis (EDA). This is the process 
of sifting through the data and trying to make sense of the individual columns and the 
relationships between them.

This activity can be time-consuming, but can also have big payoffs. The better you understand 
the data, the more you can take advantage of it. If you intend to make machine learning 
models, having insight into the data can lead to more performant models and understanding 
why predications are made.

We are going to use a dataset from www.fueleconomy.gov that provides information about 
makes and models of cars from 1984 through 2018. Using EDA we will explore many of the 
columns and relationships found in this data.

Summary statistics
Summary statistics include the mean, quartiles, and standard deviation. The .describe 
method will calculate these measures on all of the numeric columns in a DataFrame.

http://www.fueleconomy.gov
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How to do it…
1. Load the dataset:

>>> import pandas as pd

>>> import numpy as np

>>> fueleco = pd.read_csv("data/vehicles.csv.zip")

>>> fueleco

       barrels08  barrelsA08  ...  phevHwy  phevComb

0      15.695714         0.0  ...        0         0

1      29.964545         0.0  ...        0         0

2      12.207778         0.0  ...        0         0

3      29.964545         0.0  ...        0         0

4      17.347895         0.0  ...        0         0

...          ...         ...  ...      ...       ...

39096  14.982273         0.0  ...        0         0

39097  14.330870         0.0  ...        0         0

39098  15.695714         0.0  ...        0         0

39099  15.695714         0.0  ...        0         0

39100  18.311667         0.0  ...        0         0

2. Call individual summary statistics methods such as .mean, .std, and .quantile:
>>> fueleco.mean()  

barrels08         17.442712

barrelsA08         0.219276

charge120          0.000000

charge240          0.029630

city08            18.077799

                   ...     

youSaveSpend   -3459.572645

charge240b         0.005869

phevCity           0.094703

phevHwy            0.094269

phevComb           0.094141

Length: 60, dtype: float64

>>> fueleco.std()  

barrels08          4.580230
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barrelsA08         1.143837

charge120          0.000000

charge240          0.487408

city08             6.970672

                   ...     

youSaveSpend    3010.284617

charge240b         0.165399

phevCity           2.279478

phevHwy            2.191115

phevComb           2.226500

Length: 60, dtype: float64

>>> fueleco.quantile(

...     [0, 0.25, 0.5, 0.75, 1]

... )  

      barrels08  barrelsA08  ...  phevHwy  phevComb

0.00   0.060000    0.000000  ...      0.0       0.0

0.25  14.330870    0.000000  ...      0.0       0.0

0.50  17.347895    0.000000  ...      0.0       0.0

0.75  20.115000    0.000000  ...      0.0       0.0

1.00  47.087143   18.311667  ...     81.0      88.0

3. Call the .describe method:
>>> fueleco.describe()  

         barrels08   barrelsA08  ...      phevHwy     phevComb

count  39101.00...  39101.00...  ...  39101.00...  39101.00...

mean     17.442712     0.219276  ...     0.094269     0.094141

std       4.580230     1.143837  ...     2.191115     2.226500

min       0.060000     0.000000  ...     0.000000     0.000000

25%      14.330870     0.000000  ...     0.000000     0.000000

50%      17.347895     0.000000  ...     0.000000     0.000000

75%      20.115000     0.000000  ...     0.000000     0.000000

max      47.087143    18.311667  ...    81.000000    88.000000

4. To get summary statistics on the object columns, use the .include parameter:

>>> fueleco.describe(include=object)  

              drive eng_dscr  ...   modifiedOn startStop
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count         37912    23431  ...        39101      7405

unique            7      545  ...           68         2

top     Front-Wh...    (FFS)  ...  Tue Jan ...         N

freq          13653     8827  ...        29438      5176

How it works…
I've done data analysis trainings where the client literally slapped their head after teaching 
them about the .describe method. When I asked what the problem was, they replied that 
they had spent the last couple of weeks implementing that behavior for their database.

By default, .describe will calculate summary statistics on the numeric columns. You can 
pass the include parameter to tell the method to include non-numeric data types. Note 
that this will show the count of unique values, the most frequent value (top), and its frequency 
counts for the object columns.

There's more…
One tip that often makes more data appear on the screen is transposing a DataFrame. I find 
that this is useful for the output of the .describe method:

>>> fueleco.describe().T

                count         mean  ...       75%          max

barrels08     39101.0    17.442712  ...    20.115    47.087143

barrelsA08    39101.0     0.219276  ...     0.000    18.311667

charge120     39101.0     0.000000  ...     0.000     0.000000

charge240     39101.0     0.029630  ...     0.000    12.000000

city08        39101.0    18.077799  ...    20.000   150.000000

...               ...          ...  ...       ...          ...

youSaveSpend  39101.0 -3459.572645  ... -1500.000  5250.000000

charge240b    39101.0     0.005869  ...     0.000     7.000000

phevCity      39101.0     0.094703  ...     0.000    97.000000

phevHwy       39101.0     0.094269  ...     0.000    81.000000

phevComb      39101.0     0.094141  ...     0.000    88.000000
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Column types
You can glean information about the data in pandas simply by looking at the types of the 
columns. In this recipe, we will explore the column types.

How to do it…
1. Inspect the .dtypes attribute:

>>> fueleco.dtypes

barrels08     float64

barrelsA08    float64

charge120     float64

charge240     float64

city08          int64

               ...    

modifiedOn     object

startStop      object

phevCity        int64

phevHwy         int64

phevComb        int64

Length: 83, dtype: object

2. Summarize the types of columns:

>>> fueleco.dtypes.value_counts()

float64    32

int64      27

object     23

bool        1

dtype: int64

How it works…
When you read a CSV file in pandas, it has to infer the types of the columns. The process looks 
something like this:

 f If all of the values in a column look like whole numeric values, convert them to 
integers and give the column the type int64
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 f If the values are float-like, give them the type float64

 f If the values are numeric, float-like, or integer-like, but missing values, assign them to 
the type float64 because the value typically used for missing values, np.nan, is a 
floating-point type

 f If the values have false or true in them, assign them to Booleans

 f Otherwise, leave the column as strings and give it the object type (these can be 
missing values with the float64 type)

Note that if you use the parse_dates, parameter, it is possible that some of the columns 
were converted to datetimes. Chapters 12 and 13 show examples of parsing dates.

By just looking at the output of .dtypes I can divine more about the data than just the 
data types. I can see if something is a string or missing values. Object types may be strings 
or categorical data, but they could also be numeric-like values that need to be nudged 
a little so that they are numeric. I typically leave integer columns alone. I tend to treat them 
as continuous values. If the values are float values, this indicates that the column could be:

 f All floating-point values with no missing values

 f Floating-point values with missing values

 f Integer values that were missing some values and hence converted to floats

There's more…
When pandas converts columns to floats or integers, it uses the 64-bit versions of those 
types. If you know that your integers fail into a certain range (or you are willing to sacrifice 
some precision on floats), you can save some memory by converting these columns to 
columns that use less memory.

>>> fueleco.select_dtypes("int64").describe().T

                count         mean  ...     75%     max

city08        39101.0    18.077799  ...    20.0   150.0

cityA08       39101.0     0.569883  ...     0.0   145.0

co2           39101.0    72.538989  ...    -1.0   847.0

co2A          39101.0     5.543950  ...    -1.0   713.0

comb08        39101.0    20.323828  ...    23.0   136.0

...               ...          ...  ...     ...     ...

year          39101.0  2000.635406  ...  2010.0  2018.0

youSaveSpend  39101.0 -3459.572645  ... -1500.0  5250.0

phevCity      39101.0     0.094703  ...     0.0    97.0

phevHwy       39101.0     0.094269  ...     0.0    81.0

phevComb      39101.0     0.094141  ...     0.0    88.0
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We can see that the city08 and comb08 columns don't go above 150. The iinfo function 
in NumPy will show us the limits for integer types. We can see that we would not want to use 
an int8 for this column, but we can use an int16. By converting to that type, the column 
will use 25% of the memory:

>>> np.iinfo(np.int8)

iinfo(min=-128, max=127, dtype=int8)

>>> np.iinfo(np.int16)

iinfo(min=-32768, max=32767, dtype=int16)

>>> fueleco[["city08", "comb08"]].info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 2 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----

 0   city08  39101 non-null  int64

 1   comb08  39101 non-null  int64

dtypes: int64(2)

memory usage: 611.1 KB

>>> (

...     fueleco[["city08", "comb08"]]

...     .assign(

...         city08=fueleco.city08.astype(np.int16),

...         comb08=fueleco.comb08.astype(np.int16),

...     )

...     .info(memory_usage="deep")

... )

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 2 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----

 0   city08  39101 non-null  int16

 1   comb08  39101 non-null  int16

dtypes: int16(2)

memory usage: 152.9 KB
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Note that there is an analogous finfo function in NumPy for retrieving float information.

An option for conserving memory for string columns is to convert them to categories. If each 
value for a string column is unique, this will slow down pandas and use more memory, but if 
you have low cardinality, you can save a lot of memory. The make column has low cardinality, 
but the model column has a higher cardinality, and there is less memory saving for that 
column.

Below, we will show pulling out just these two columns. But instead of getting a Series, we will 
index with a list with just that column name in it. This will gives us back a DataFrame with a 
single column. We will update the column type to categorical and look at the memory usage. 
Remember to pass in memory_usage='deep' to get the memory usage for object columns:

>>> fueleco.make.nunique()

134

>>> fueleco.model.nunique()

3816

>>> fueleco[["make"]].info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----

 0   make    39101 non-null  object

dtypes: object(1)

memory usage: 2.4 MB

>>> (

...     fueleco[["make"]]

...     .assign(make=fueleco.make.astype("category"))

...     .info(memory_usage="deep")

... )

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----

 0   make    39101 non-null  category

dtypes: category(1)
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memory usage: 90.4 KB

>>> fueleco[["model"]].info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----

 0   model   39101 non-null  object

dtypes: object(1)

memory usage: 2.5 MB

>>> (

...     fueleco[["model"]]

...     .assign(model=fueleco.model.astype("category"))

...     .info(memory_usage="deep")

... )

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----

 0   model   39101 non-null  category

dtypes: category(1)

memory usage: 496.7 KB

Categorical data
I broadly classify data into dates, continuous values, and categorical values. In this section, 
we will explore quantifying and visualizing categorical data.

How to do it…
1. Pick out the columns with data types that are object:

>>> fueleco.select_dtypes(object).columns

Index(['drive', 'eng_dscr', 'fuelType', 'fuelType1', 'make', 
'model',
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       'mpgData', 'trany', 'VClass', 'guzzler', 'trans_dscr', 
'tCharger',

       'sCharger', 'atvType', 'fuelType2', 'rangeA', 'evMotor', 
'mfrCode',

       'c240Dscr', 'c240bDscr', 'createdOn', 'modifiedOn', 
'startStop'],

      dtype='object')

2. Use .nunique to determine the cardinality:
>>> fueleco.drive.nunique()

7

3. Use .sample to see some of the values:
>>> fueleco.drive.sample(5, random_state=42)

4217     4-Wheel ...

1736     4-Wheel ...

36029    Rear-Whe...

37631    Front-Wh...

1668     Rear-Whe...

Name: drive, dtype: object

4. Determine the number and percent of missing values:
>>> fueleco.drive.isna().sum()

1189

>>> fueleco.drive.isna().mean() * 100

3.0408429451932175

5. Use the .value_counts method to summarize a column:
>>> fueleco.drive.value_counts()

Front-Wheel Drive             13653

Rear-Wheel Drive              13284

4-Wheel or All-Wheel Drive     6648

All-Wheel Drive                2401

4-Wheel Drive                  1221

2-Wheel Drive                   507

Part-time 4-Wheel Drive         198

Name: drive, dtype: int64
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6. If there are too many values in the summary, you might want to look at the top 6 and 
collapse the remaining values:
>>> top_n = fueleco.make.value_counts().index[:6]

>>> (

...     fueleco.assign(

...         make=fueleco.make.where(

...             fueleco.make.isin(top_n), "Other"

...         )

...     ).make.value_counts()

... )

Other        23211

Chevrolet     3900

Ford          3208

Dodge         2557

GMC           2442

Toyota        1976

BMW           1807

Name: make, dtype: int64

7. Use pandas to plot the counts and visualize them:
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> top_n = fueleco.make.value_counts().index[:6]

>>> (

...     fueleco.assign(  

...         make=fueleco.make.where(

...             fueleco.make.isin(top_n), "Other"

...         )

...     )

...     .make.value_counts()

...     .plot.bar(ax=ax)

... )

>>> fig.savefig("c5-catpan.png", dpi=300)  
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pandas categorical

8. Use seaborn to plot the counts and visualize them:

>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> top_n = fueleco.make.value_counts().index[:6]

>>> sns.countplot(

...     y="make",  

...     data=(

...         fueleco.assign(

...             make=fueleco.make.where(

...                 fueleco.make.isin(top_n), "Other"

...             )

...         )

...     ),

... )

>>> fig.savefig("c5-catsns.png", dpi=300)  
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Seaborn categorical

How it works…
When we are examining a categorical variable, we want to know how many unique values 
there are. If this is a large value, the column might not be categorical, but either free text or 
a numeric column that pandas didn't know how to store as numeric because it came across 
a non-valid number.

The .sample method lets us look at a few of the values. With most columns, it is important to 
determine how many are missing. It looks like there are over 1,000 rows, or about 3% of the 
values, that are missing. Typically, we need to talk to an SME to determine why these values 
are missing and whether we need to impute them or drop them.

Here is some code to look at the rows where the drive is missing:

>>> fueleco[fueleco.drive.isna()]

       barrels08  barrelsA08  ...  phevHwy  phevComb

7138    0.240000         0.0  ...        0         0

8144    0.312000         0.0  ...        0         0

8147    0.270000         0.0  ...        0         0
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18215  15.695714         0.0  ...        0         0

18216  14.982273         0.0  ...        0         0

...          ...         ...  ...      ...       ...

23023   0.240000         0.0  ...        0         0

23024   0.546000         0.0  ...        0         0

23026   0.426000         0.0  ...        0         0

23031   0.426000         0.0  ...        0         0

23034   0.204000         0.0  ...        0         0

My favorite method for inspecting categorical columns is the .value_counts method. This 
is my goto method and I usually start with it, as I can divine answers to many of the other 
questions with the output of this method. By default, it does not show missing values, but 
you can use the dropna parameter to fix that:

>>> fueleco.drive.value_counts(dropna=False)

Front-Wheel Drive             13653

Rear-Wheel Drive              13284

4-Wheel or All-Wheel Drive     6648

All-Wheel Drive                2401

4-Wheel Drive                  1221

NaN                            1189

2-Wheel Drive                   507

Part-time 4-Wheel Drive         198

Name: drive, dtype: int64

Finally, you can visualize this output using pandas or seaborn. A bar plot is an appropriate plot 
to do this. However, if this is a higher cardinality column, you might have too many bars for 
an effective plot. You can limit the number of columns as we do in step 6, or use the order 
parameter for countplot to limit them with seaborn.

I use pandas for quick and dirty plotting because it is typically a method call away. However, 
the seaborn library has various tricks up its sleeve that we will see in later recipes that are not 
easy to do in pandas.

There's more…
Some columns report object data types, but they are not really categorical. In this dataset, 
the rangeA column has an object data type. However, if we use my favorite categorical 
method, .value_counts, to examine it, we see that it is not really categorical, but a numeric 
column posing as a category. 
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This is because, as seen in the output of .value_counts, there are slashes (/) and dashes 
(-) in some of the entries and pandas did not know how to convert those values to numbers, 
so it left the whole column as a string column.

>>> fueleco.rangeA.value_counts()

290        74

270        56

280        53

310        41

277        38

           ..

328         1

250/370     1

362/537     1

310/370     1

340-350     1

Name: rangeA, Length: 216, dtype: int64

Another way to find offending characters is to use the .str.extract method with a regular 
expression:

>>> (

...     fueleco.rangeA.str.extract(r"([^0-9.])")

...     .dropna()

...     .apply(lambda row: "".join(row), axis=1)

...     .value_counts()

... )

/    280

-     71

Name: rangeA, dtype: int64

This is actually a column that has two types: float and string. The data type is reported as 
object because that type can hold heterogenous typed columns. The missing values are 
stored as NaN and the non-missing values are strings:

>>> set(fueleco.rangeA.apply(type))

{<class 'str'>, <class 'float'>}

Here is the count of missing values:

>>> fueleco.rangeA.isna().sum()

37616
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According to the fueleconomy.gov website, the rangeA value represents the range for the 
second fuel type of dual fuel vehicles (E85, electricity, CNG, and LPG). Using pandas, we can 
replace the missing values with zero, replace dashes with slashes, then split and take the 
mean value of each row (in the case of a dash/slash):

>>> (

...     fueleco.rangeA.fillna("0")

...     .str.replace("-", "/")

...     .str.split("/", expand=True)

...     .astype(float)

...     .mean(axis=1)

... )

0        0.0

1        0.0

2        0.0

3        0.0

4        0.0

        ... 

39096    0.0

39097    0.0

39098    0.0

39099    0.0

39100    0.0

Length: 39101, dtype: float64

We can also treat numeric columns as categories by binning them. There are two powerful 
functions in pandas to aid binning, cut and qcut. We can use cut to cut into equal-width 
bins, or bin widths that we specify. For the rangeA column, most of the values were empty 
and we replaced them with 0, so 10 equal-width bins look like this:

>>> (

...     fueleco.rangeA.fillna("0")

...     .str.replace("-", "/")

...     .str.split("/", expand=True)

...     .astype(float)

...     .mean(axis=1)

...     .pipe(lambda ser_: pd.cut(ser_, 10))

...     .value_counts()

... )
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(-0.45, 44.95]     37688

(269.7, 314.65]      559

(314.65, 359.6]      352

(359.6, 404.55]      205

(224.75, 269.7]      181

(404.55, 449.5]       82

(89.9, 134.85]        12

(179.8, 224.75]        9

(44.95, 89.9]          8

(134.85, 179.8]        5

dtype: int64

Alternatively, qcut (quantile cut) will cut the entries into bins with the same size. Because 
the rangeA column is heavily skewed, and most of the entries are 0, we can't quantize 0 into 
multiple bins, so it fails. But it does (somewhat) work with city08. I say somewhat because 
the values for city08 are whole numbers and so they don't evenly bin into 10 buckets, but 
the sizes are close:

>>> (

...     fueleco.rangeA.fillna("0")

...     .str.replace("-", "/")

...     .str.split("/", expand=True)

...     .astype(float)

...     .mean(axis=1)

...     .pipe(lambda ser_: pd.qcut(ser_, 10))

...     .value_counts()

... )

Traceback (most recent call last):

  ...

ValueError: Bin edges must be unique: array([  0. ,   0. ,   0. ,   0. ,   
0. ,   0. ,   0. ,   0. ,   0. ,

         0. , 449.5]).

>>> (

...     fueleco.city08.pipe(

...         lambda ser: pd.qcut(ser, q=10)

...     ).value_counts()

... )
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(5.999, 13.0]    5939

(19.0, 21.0]     4477

(14.0, 15.0]     4381

(17.0, 18.0]     3912

(16.0, 17.0]     3881

(15.0, 16.0]     3855

(21.0, 24.0]     3676

(24.0, 150.0]    3235

(13.0, 14.0]     2898

(18.0, 19.0]     2847

Name: city08, dtype: int64

Continuous data
My broad definition of continuous data is data that is stored as a number, either an integer or 
a float. There is some gray area between categorical and continuous data. For example, the 
grade level could be represented as a number (ignoring Kindergarten, or using 0 to represent 
it). A grade column, in this case, could be both categorical and continuous, so the techniques 
in this section and the previous section could both apply to it.

We will examine a continuous column from the fuel economy dataset in this section. The 
city08 column lists the miles per gallon that are expected when driving a car at the lower 
speeds found in a city.

How to do it…
1. Pick out the columns that are numeric (typically int64 or float64):

>>> fueleco.select_dtypes("number")

       barrels08  barrelsA08  ...  phevHwy  phevComb

0      15.695714         0.0  ...        0         0

1      29.964545         0.0  ...        0         0

2      12.207778         0.0  ...        0         0

3      29.964545         0.0  ...        0         0

4      17.347895         0.0  ...        0         0

...          ...         ...  ...      ...       ...

39096  14.982273         0.0  ...        0         0

39097  14.330870         0.0  ...        0         0
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39098  15.695714         0.0  ...        0         0

39099  15.695714         0.0  ...        0         0

39100  18.311667         0.0  ...        0         0

2. Use .sample to see some of the values:
>>> fueleco.city08.sample(5, random_state=42)

4217     11

1736     21

36029    16

37631    16

1668     17

Name: city08, dtype: int64

3. Determine the number and percent of missing values:
>>> fueleco.city08.isna().sum()

0

>>> fueleco.city08.isna().mean() * 100

0.0

4. Get the summary statistics:
>>> fueleco.city08.describe()

count    39101.000000

mean        18.077799

std          6.970672

min          6.000000

25%         15.000000

50%         17.000000

75%         20.000000

max        150.000000

Name: city08, dtype: float64

5. Use pandas to plot a histogram:
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fueleco.city08.hist(ax=ax)

>>> fig.savefig(

...     "c5-conthistpan.png", dpi=300

... )



Exploratory Data Analysis

158

pandas histogram

6. This plot looks very skewed, so we will increase the number of bins in the histogram 
to see if the skew is hiding behaviors (as skew makes bins wider):
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fueleco.city08.hist(ax=ax, bins=30)

>>> fig.savefig(

...     "c5-conthistpanbins.png", dpi=300

... )
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pandas histogram

7. Use seaborn to create a distribution plot, which includes a histogram, a kernel 
density estimation (KDE), and a rug plot:

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> sns.distplot(fueleco.city08, rug=True, ax=ax)

>>> fig.savefig(

...     "c5-conthistsns.png", dpi=300

... )



Exploratory Data Analysis

160

Seaborn histogram

How it works…
It is good to get a feel for how numbers behave. Looking at a sample of the data will let you 
know what some of the values are. We also want to know whether values are missing. Recall 
that pandas will ignore missing values when we perform operations on columns.

The summary statistics provided by .describe are very useful. This is probably my favorite 
method for inspecting continuous values. I like to make sure I check the minimum and 
maximum values to make sure that they make sense. It would be strange if there was 
a negative value as a minimum for the miles per gallon column. The quartiles also give 
us an indication of how skewed the data is. Because the quartiles are reliable indicators 
of the tendencies of the data, they are not affected by outliers.

Another thing to be aware of is infinite values, either positive or negative. This column does 
not have infinite values, but these can cause some math operations or plots to fail. If you have 
infinite values, you need to determine how to handle them. Clipping and removing them are 
common options that are easy with pandas.

I'm a huge fan of plotting, and both pandas and seaborn make it easy to visualize the 
distribution of continuous data. Take advantage of plots because, as the cliché goes, a 
picture tells a thousand words. I've found that platitude to be true in my adventures with data.
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There's more…
The seaborn library has many options for summarizing continuous data. In addition to the 
distplot function, there are functions for creating box plots, boxen plots, and violin plots.

A boxen plot is an enhanced box plot. The R folks created a plot called a letter value plot, and 
when the seaborn author replicated it, the name was changed to boxen. The median value is 
the black line. It steps half of the way from the median 50 to 0 and 100. So the tallest block 
shows the range from 25-75 quantiles. The next box on the low end goes from 25 to half of 
that value (or 12.5), so the 12.5-25 quantile. This pattern repeats, so the next box is the 6.25-
12.5 quantile, and so on.

A violin plot is basically a histogram that has a copy flipped over on the other side. If you have 
a bi-model histogram, it tends to look like a violin, hence the name:

>>> fig, axs = plt.subplots(nrows=3, figsize=(10, 8))

>>> sns.boxplot(fueleco.city08, ax=axs[0])

>>> sns.violinplot(fueleco.city08, ax=axs[1])

>>> sns.boxenplot(fueleco.city08, ax=axs[2])

>>> fig.savefig("c5-contothersns.png", dpi=300)

A boxplot, violin plot, and boxen plot created with seaborn
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If you are concerned with whether the data is normal, you can quantify this with numbers and 
visualizations using the SciPy library.

The Kolmogorov-Smirnov test can evaluate whether a distribution is normal. It provides 
us with a p-value. If this value is significant (< 0.05), then the data is not normal:

>>> from scipy import stats

>>> stats.kstest(fueleco.city08, cdf="norm")

KstestResult(statistic=0.9999999990134123, pvalue=0.0)

We can plot a probability plot to see whether the values are normal. If the samples track the 
line, then the data is normal:

>>> from scipy import stats

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> stats.probplot(fueleco.city08, plot=ax)

>>> fig.savefig("c5-conprob.png", dpi=300)

A probability plot shows us if the values track the normal line
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Comparing continuous values across 
categories

The previous sections discussed looking at a single column. This section will show how to 
compare continuous variables in different categories. We will look at mileage numbers in 
different brands: Ford, Honda, Tesla, and BMW.

How to do it…
1. Make a mask for the brands we want and then use a group by operation to look at 

the mean and standard deviation for the city08 column for each group of cars:
>>> mask = fueleco.make.isin(

...     ["Ford", "Honda", "Tesla", "BMW"]

... )

>>> fueleco[mask].groupby("make").city08.agg(

...     ["mean", "std"]

... )

            mean       std

make

BMW    17.817377  7.372907

Ford   16.853803  6.701029

Honda  24.372973  9.154064

Tesla  92.826087  5.538970

2. Visualize the city08 values for each make with seaborn:

>>> g = sns.catplot(

...     x="make", y="city08", data=fueleco[mask], kind="box"

... )

>>> g.ax.figure.savefig("c5-catbox.png", dpi=300)
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Box plots for each make

How it works…
If the summary statistics change for the different makes, that is a strong indicator that 
the makes have different characteristics. The central tendency (mean or median) and the 
variance (or standard deviation) are good measures to compare. We can see that Honda gets 
better city mileage than both BMW and Ford but has more variance, while Tesla is better than 
all of them and has the tightest variance.

Using a visualization library like seaborn lets us quickly see the differences in the categories. 
The difference between the four car makes is drastic, but you can see that there are outliers 
for the non-Tesla makes that appear to have better mileage than Tesla.
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There's more…
One drawback of a boxplot is that while it indicates the spread of the data, it does not reveal 
how many samples are in each make. You might naively think that each boxplot has the same 
number of samples. We can quantify that this is not the case with pandas:

>>> mask = fueleco.make.isin(

...     ["Ford", "Honda", "Tesla", "BMW"]

... )

>>> (fueleco[mask].groupby("make").city08.count())

make

BMW      1807

Ford     3208

Honda     925

Tesla      46

Name: city08, dtype: int64

Another option is to do a swarm plot on top of the box plots:

>>> g = sns.catplot(

...     x="make", y="city08", data=fueleco[mask], kind="box"

... )

>>> sns.swarmplot(

...     x="make",

...     y="city08", 

...     data=fueleco[mask],

...     color="k",

...     size=1,

...     ax=g.ax,

... )

>>> g.ax.figure.savefig(

...     "c5-catbox2.png", dpi=300

... )
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A seaborn boxplot with a swarm plot layered on top

Additionally, the catplot function has many more tricks up its sleeves. We are showing two 
dimensions right now, city mileage and make. We can add more dimensions to the plot.

You can facet the grid by another feature. You can break each of these new plots into its own 
graph by using the col parameter:

>>> g = sns.catplot(

...     x="make",

...     y="city08",

...     data=fueleco[mask],

...     kind="box",

...     col="year",

...     col_order=[2012, 2014, 2016, 2018],

...     col_wrap=2,

... )

>>> g.axes[0].figure.savefig(

...     "c5-catboxcol.png", dpi=300

... )
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A seaborn boxplot with hues for makes and faceted by year

Alternatively, you can embed the new dimension in the same plot by using the hue parameter:

>>> g = sns.catplot(

...     x="make",

...     y="city08", 

...     data=fueleco[mask],

...     kind="box",

...     hue="year",

...     hue_order=[2012, 2014, 2016, 2018],
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... )

>>> g.ax.figure.savefig(

...     "c5-catboxhue.png", dpi=300

... )

A seaborn boxplot for every make colored by year

If you are in Jupyter, you can style the output of the groupby call to highlight the values at the 
extremes. Use the .style.background_gradient method to do this:

>>> mask = fueleco.make.isin(

...     ["Ford", "Honda", "Tesla", "BMW"]

... )

>>> (

...     fueleco[mask]

...     .groupby("make")

...     .city08.agg(["mean", "std"])

...     .style.background_gradient(cmap="RdBu", axis=0)

... )
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Using the pandas style functionality to highlight minimum and maximum values from the mean and standard 
deviation

Comparing two continuous columns
Evaluating how two continuous columns relate to one another is the essence of regression. 
But it goes beyond that. If you have two columns with a high correlation to one another, often, 
you may drop one of them as a redundant column. In this section, we will look at EDA for pairs 
of continuous columns.

How to do it…
1. Look at the covariance of the two numbers if they are on the same scale:

>>> fueleco.city08.cov(fueleco.highway08)

46.33326023673625

>>> fueleco.city08.cov(fueleco.comb08)

47.41994667819079

>>> fueleco.city08.cov(fueleco.cylinders)

-5.931560263764761

2. Look at the Pearson correlation between the two numbers:
>>> fueleco.city08.corr(fueleco.highway08)

0.932494506228495

>>> fueleco.city08.corr(fueleco.cylinders)

-0.701654842382788
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3. Visualize the correlations in a heatmap:
>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> corr = fueleco[

...     ["city08", "highway08", "cylinders"]

... ].corr()

>>> mask = np.zeros_like(corr, dtype=np.bool)

>>> mask[np.triu_indices_from(mask)] = True

>>> sns.heatmap(

...     corr,

...     mask=mask,

...     fmt=".2f",

...     annot=True,

...     ax=ax,

...     cmap="RdBu",

...     vmin=-1,

...     vmax=1,

...     square=True,

... )

>>> fig.savefig(

...     "c5-heatmap.png", dpi=300, bbox_inches="tight"

... )
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A seaborn heatmap

4. Use pandas to scatter plot the relationships:
>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> fueleco.plot.scatter(

...     x="city08", y="highway08", alpha=0.1, ax=ax

... )

>>> fig.savefig(

...     "c5-scatpan.png", dpi=300, bbox_inches="tight"

... )
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A pandas scatter plot to view the relationships between city and highway mileage

>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> fueleco.plot.scatter(

...     x="city08", y="cylinders", alpha=0.1, ax=ax

... )

>>> fig.savefig(

...     "c5-scatpan-cyl.png", dpi=300, bbox_inches="tight"

... )
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Another pandas scatter to view the relationship between mileage and cylinders

5. Fill in some missing values. From the cylinder plot, we can see that some of the high-
end values for mileage are missing. This is because these cars tend to be electric 
and not have cylinders. We will fix that by filling those values in with 0:
>>> fueleco.cylinders.isna().sum()

145

>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> (

...     fueleco.assign(

...         cylinders=fueleco.cylinders.fillna(0)

...     ).plot.scatter(

...         x="city08", y="cylinders", alpha=0.1, ax=ax

...     )

... )

>>> fig.savefig(
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...     "c5-scatpan-cyl0.png", dpi=300, bbox_inches="tight"

... )

Another pandas scatter to view the relationship between mileage and cylinders,  
with missing numbers for cylinders filled in with 0

6. Use seaborn to add a regression line to the relationships:

>>> res = sns.lmplot(

...     x="city08", y="highway08", data=fueleco

... )

>>> res.fig.savefig(

...     "c5-lmplot.png", dpi=300, bbox_inches="tight"

... )
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A seaborn scatter plot with a regression line

How it works…
Pearson correlation tells us how one value impacts another. It is between -1 and 1. In this 
case, we can see that there is a strong correlation between city mileage and highway mileage. 
As you get better city mileage, you tend to get better highway mileage.

Covariance lets us know how these values vary together. Covariance is useful for comparing 
multiple continuous columns that have similar correlations. For example, correlation is scale-
invariant, but covariance is not. If we compare city08 to two times highway08, they have 
the same correlation, but the covariance changes.

>>> fueleco.city08.corr(fueleco.highway08 * 2)

0.932494506228495

>>> fueleco.city08.cov(fueleco.highway08 * 2)

92.6665204734725
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A heatmap is a great way to look at correlations in aggregate. We can look for the most blue 
and most red cells to find the strongest correlations. Make sure you set the vmin and vmax 
parameters to -1 and 1, respectively, so that the coloring is correct.

Scatter plots are another way to visualize the relationships between continuous variables. It 
lets us see the trends that pop out. One tip that I like to give students is to make sure you set 
the alpha parameter to a value less than or equal to .5. This makes the points transparent 
and tells a different story than scatter plots with markers that are completely opaque.

There's more…
If we have more variables that we want to compare, we can use seaborn to add more 
dimensions to a scatter plot. Using the relplot function, we can color the dots by year and 
size them by the number of barrels the vehicle consumes. We have gone from two dimensions 
to four!

>>> res = sns.relplot(

...     x="city08",

...     y="highway08",

...     data=fueleco.assign(

...         cylinders=fueleco.cylinders.fillna(0)

...     ),

...     hue="year",

...     size="barrels08",

...     alpha=0.5,

...     height=8,

... )

>>> res.fig.savefig(

...     "c5-relplot2.png", dpi=300, bbox_inches="tight"

... )
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A seaborn scatter plot showing the mileage relationships colored by year  
and sized by the number of barrels of gas a car uses

Note that we can also add in categorical dimensions as well for hue. We can also facet by 
column for categorical values:

>>> res = sns.relplot(

...     x="city08",

...     y="highway08",

...     data=fueleco.assign(

...         cylinders=fueleco.cylinders.fillna(0)

...     ),

...     hue="year",

...     size="barrels08",

...     alpha=0.5,

...     height=8,

...     col="make",



Exploratory Data Analysis

178

...     col_order=["Ford", "Tesla"],

... )

>>> res.fig.savefig(

...     "c5-relplot3.png", dpi=300, bbox_inches="tight"

... )

A seaborn scatter plot showing the mileage relationships colored by year,  
sized by the number of barrels of gas a car uses, and faceted by make

Pearson correlation is intended to show the strength of a linear relationship. If the two 
continuous columns do not have a linear relationship, another option is to use Spearman 
correlation. This number also varies from -1 to 1. It measures whether the relationship is 
monotonic (and doesn't presume that it is linear). It uses the rank of each number rather than 
the number. If you are not sure whether there is a linear relationship between your columns, 
this is a better metric to use.

>>> fueleco.city08.corr(

...     fueleco.barrels08, method="spearman"

... )

-0.9743658646193255

Comparing categorical values with 
categorical values

In this section, we will focus on dealing with multiple categorical values. One thing to keep in 
mind is that continuous columns can be converted into categorical columns by binning the 
values.
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In this section, we will look at makes and vehicle class.

How to do it…
1. Lower the cardinality. Limit the VClass column to six values, in a simple class 

column, SClass. Only use Ford, Tesla, BMW, and Toyota:
>>> def generalize(ser, match_name, default):

...     seen = None

...     for match, name in match_name:

...         mask = ser.str.contains(match)

...         if seen is None:

...             seen = mask

...         else:

...             seen |= mask

...         ser = ser.where(~mask, name)

...     ser = ser.where(seen, default)

...     return ser

>>> makes = ["Ford", "Tesla", "BMW", "Toyota"]

>>> data = fueleco[fueleco.make.isin(makes)].assign(

...     SClass=lambda df_: generalize(

...         df_.VClass,

...         [

...             ("Seaters", "Car"),

...             ("Car", "Car"),

...             ("Utility", "SUV"),

...             ("Truck", "Truck"),

...             ("Van", "Van"),

...             ("van", "Van"),

...             ("Wagon", "Wagon"),

...         ],

...         "other",

...     )

... )
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2. Summarize the counts of vehicle classes for each make:
>>> data.groupby(["make", "SClass"]).size().unstack()

SClass     Car    SUV  ...  Wagon  other

make                   ...              

BMW     1557.0  158.0  ...   92.0    NaN

Ford    1075.0  372.0  ...  155.0  234.0

Tesla     36.0   10.0  ...    NaN    NaN

Toyota   773.0  376.0  ...  132.0  123.0

3. Use the crosstab function instead of the chain of pandas commands:
>>> pd.crosstab(data.make, data.SClass)

SClass   Car  SUV  ...  Wagon  other

make               ...

BMW     1557  158  ...     92      0

Ford    1075  372  ...    155    234

Tesla     36   10  ...      0      0

Toyota   773  376  ...    132    123

4. Add more dimensions:
>>> pd.crosstab(

...     [data.year, data.make], [data.SClass, data.VClass]

... )

SClass               Car             ...                       
other

VClass      Compact Cars Large Cars  ... Special Purpose Vehicle 
4WD

year make                            ...

1984 BMW               6          0  ...            0

     Ford             33          3  ...           21

     Toyota           13          0  ...            3

1985 BMW               7          0  ...            0

     Ford             31          2  ...            9

...                  ...        ...  ...          ...

2017 Tesla             0          8  ...            0

     Toyota            3          0  ...            0

2018 BMW              37         12  ...            0

     Ford              0          0  ...            0

     Toyota            4          0  ...            0
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5. Use Cramér's V measure (https://stackoverflow.
com/questions/46498455/categorical-features-
correlation/46498792#46498792) to indicate the categorical correlation:
>>> import scipy.stats as ss

>>> import numpy as np

>>> def cramers_v(x, y):

...     confusion_matrix = pd.crosstab(x, y)

...     chi2 = ss.chi2_contingency(confusion_matrix)[0]

...     n = confusion_matrix.sum().sum()

...     phi2 = chi2 / n

...     r, k = confusion_matrix.shape

...     phi2corr = max(

...         0, phi2 - ((k - 1) * (r - 1)) / (n - 1)

...     )

...     rcorr = r - ((r - 1) ** 2) / (n - 1)

...     kcorr = k - ((k - 1) ** 2) / (n - 1)

...     return np.sqrt(

...         phi2corr / min((kcorr - 1), (rcorr - 1))

...     )

>>> cramers_v(data.make, data.SClass)

0.2859720982171866

The .corr method accepts a callable as well, so an alternative way to invoke this is 
the following:
>>> data.make.corr(data.SClass, cramers_v)

0.2859720982171866

6. Visualize the cross tabulation as a bar plot:
>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> (

...     data.pipe(

...         lambda df_: pd.crosstab(df_.make, df_.SClass)

...     ).plot.bar(ax=ax)

... )

>>> fig.savefig("c5-bar.png", dpi=300, bbox_inches="tight")

https://stackoverflow.com/questions/46498455/categorical-features-correlation/46498792#46498792
https://stackoverflow.com/questions/46498455/categorical-features-correlation/46498792#46498792
https://stackoverflow.com/questions/46498455/categorical-features-correlation/46498792#46498792
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A pandas bar plot

7. Visualize the cross tabulation as a bar chart using seaborn:
>>> res = sns.catplot(

...     kind="count", x="make", hue="SClass", data=data

... )

>>> res.fig.savefig(

...     "c5-barsns.png", dpi=300, bbox_inches="tight"

... )
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A seaborn bar plot

8. Visualize the relative sizes of the groups by normalizing the cross tabulation and 
making a stacked bar chart:

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> (

...     data.pipe(

...         lambda df_: pd.crosstab(df_.make, df_.SClass)

...     )

...     .pipe(lambda df_: df_.div(df_.sum(axis=1), axis=0))

...     .plot.bar(stacked=True, ax=ax)

... )

>>> fig.savefig(

...     "c5-barstacked.png", dpi=300, bbox_inches="tight"

... )
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pandas bar plot

How it works…
I reduced the cardinality of the VClass column by using the generalize function that I 
created. I did this because bar plots need spacing; they need to breathe. I typically will limit 
the number of bars to fewer than 30. The generalize function is useful for cleaning up 
data, and you might want to refer back to it in your own data analyses.

We can summarize the counts of categorical columns by creating a cross-tabulation. You can 
build this up using group by semantics and unstacking the result, or take advantage of the 
built-in function in pandas, crosstab. Note that crosstab fills in missing numbers with 0 
and converts the types to integers. This is because the .unstack method potentially creates 
sparsity (missing values), and integers (the int64 type) don't support missing values, so the 
types are converted to floats.
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You can add arbitrary depths to the index or columns to create hierarchies in the cross-
tabulation.

There exists a number, Cramér's V, for quantifying the relationship between two categorical 
columns. It ranges from 0 to 1. If it is 0, the values do not hold their value relative to the other 
column. If it is 1, the values change with respect to each other.

For example, if we compare the make column to the trany column, this value comes out 
larger:

>>> cramers_v(data.make, data.trany)

0.6335899102918267

What that tells us is that as the make changes from Ford to Toyota, the trany column should 
change as well. Compare this to the value for the make versus the model. Here, the value is 
very close to 1. Intuitively, that should make sense, as model could be derived from make.

>>> cramers_v(data.make, data.model)

0.9542350243671587

Finally, we can use various bar plots to view the counts or the relative sizes of the counts. 
Note that if you use seaborn, you can add multiple dimensions by setting hue or col.

Using the pandas profiling library
There is a third-party library, pandas Profiling (https://pandas-profiling.github.
io/pandas-profiling/docs/), that creates reports for each column. These reports 
are similar to the output of the .describe method, but include plots and other descriptive 
statistics.

In this section, we will use the pandas Profiling library on the fuel economy data. Use pip 
install pandas-profiling to install the library.

How to do it…
1. Run the profile_report function to create an HTML report:

>>> import pandas_profiling as pp

>>> pp.ProfileReport(fueleco)

https://pandas-profiling.github.io/pandas-profiling/docs/
https://pandas-profiling.github.io/pandas-profiling/docs/
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pandas profiling summary

pandas profiling details



Chapter 5

187

How it works…
The pandas Profiling library generates an HTML report. If you are using Jupyter, it will create it 
inline. If you want to save this report to a file (or if you are not using Jupyter), you can use the 
.to_file method:

>>> report = pp.ProfileReport(fueleco)

>>> report.to_file("fuel.html")

This is a great library for EDA. Just make sure that you go through the process of 
understanding the data. Because this can overwhelm you with the sheer amount of output, it 
can be tempting to skim over it, rather than to dig into it. Even though this library is excellent 
for starting EDA, it doesn't do intra-column comparisons (other than correlation), as some of 
the examples in this chapter have shown.
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6
Selecting 

Subsets of Data

Introduction
Every dimension of data in a Series or DataFrame is labeled in the Index object. It is this Index 
that separates pandas data structures from NumPy's n-dimensional array. Indexes provide 
meaningful labels for each row and column of data, and pandas users can select data through 
the use of these labels. Additionally, pandas allows its users to select data according to the 
position of the rows and columns. This dual selection capability, one using names and the 
other using the position, makes for powerful yet confusing syntax to select subsets of data.

Selecting data by label or position is not unique to pandas. Python dictionaries and lists are 
built-in data structures that select their data in exactly one of these ways. Both dictionaries and 
lists have precise instructions and limited use cases for what you can index with. A dictionary's 
key (its label) must be an immutable object, such as a string, integer, or tuple. Lists must either 
use integers (the position) or slice objects for selection. Dictionaries can only select one object 
at a time by passing the key to the indexing operator. In this way, pandas is combining the 
ability to select data using integers, as with lists, and labels, as with dictionaries.

Selecting Series data
Series and DataFrames are complex data containers that have multiple attributes that use 
an index operation to select data in different ways. In addition to the index operator itself, the 
.iloc and .loc attributes are available and use the index operator in their own unique ways.
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Series and DataFrames allow selection by position (like Python lists) and by label (like Python 
dictionaries). When we index off of the .iloc attribute, pandas selects only by position and 
works similarly to Python lists. The .loc attribute selects only by index label, which is similar 
to how Python dictionaries work.

The .loc and .iloc attributes are available on both Series and DataFrames. This recipe 
shows how to select Series data by position with .iloc and by label with .loc. These 
indexers accept scalar values, lists, and slices.

The terminology can get confusing. An index operation is when you put brackets, [], following 
a variable. For instance, given a Series s, you can select data in the following ways: s[item] 
and s.loc[item]. The first performs the index operation directly on the Series. The second 
performs the index operation on the .loc attribute.

How to do it…
1. Read in the college dataset with the institution name as the index, and select a single 

column as a Series using an index operation:
>>> import pandas as pd

>>> import numpy as np

>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> city = college["CITY"]

>>> city

INSTNM

Alabama A & M University                                       
Normal

University of Alabama at Birmingham                        
Birmingham

Amridge University                                         
Montgomery

University of Alabama in Huntsville                        
Huntsville

Alabama State University                                   
Montgomery

...

SAE Institute of Technology  San Francisco                 
Emeryville

Rasmussen College - Overland Park                         
Overland...
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National Personal Training Institute of Cleveland         
Highland...

Bay Area Medical Academy - San Jose Satellite Location        
San Jose

Excel Learning Center-San Antonio South                    
San Antonio

Name: CITY, Length: 7535, dtype: object

2. Pull out a scalar value from the Series directly:
>>> city["Alabama A & M University"]

'Normal'

3. Pull out a scalar value using the .loc attribute by name:
>>> city.loc["Alabama A & M University"]

'Normal'

4. Pull out a scalar value using the .iloc attribute by position:
>>> city.iloc[0]

'Normal'

5. Pull out several values by indexing. Note that if we pass in a list to the index 
operation, pandas will now return a Series instead of a scalar:
>>> city[

...     [

...         "Alabama A & M University",

...         "Alabama State University",

...     ]

... ]

INSTNM

Alabama A & M University        Normal

Alabama State University    Montgomery

Name: CITY, dtype: object

6. Repeat the above using .loc:
>>> city.loc[

...     [

...         "Alabama A & M University",

...         "Alabama State University",

...     ]

... ]
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INSTNM

Alabama A & M University        Normal

Alabama State University    Montgomery

Name: CITY, dtype: object

7. Repeat the above using .iloc:
>>> city.iloc[[0, 4]]

INSTNM

Alabama A & M University        Normal

Alabama State University    Montgomery

Name: CITY, dtype: object

8. Use a slice to pull out many values:
>>> city[

...     "Alabama A & M University":"Alabama State University"

... ]

INSTNM

Alabama A & M University                   Normal

University of Alabama at Birmingham    Birmingham

Amridge University                     Montgomery

University of Alabama in Huntsville    Huntsville

Alabama State University               Montgomery

Name: CITY, dtype: object

9. Use a slice to pull out many values by position:
>>> city[0:5]

INSTNM

Alabama A & M University                   Normal

University of Alabama at Birmingham    Birmingham

Amridge University                     Montgomery

University of Alabama in Huntsville    Huntsville

Alabama State University               Montgomery

Name: CITY, dtype: object

10. Use a slice to pull out many values with .loc:
>>> city.loc[

...     "Alabama A & M University":"Alabama State University"

... ]
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INSTNM

Alabama A & M University                   Normal

University of Alabama at Birmingham    Birmingham

Amridge University                     Montgomery

University of Alabama in Huntsville    Huntsville

Alabama State University               Montgomery

Name: CITY, dtype: object

11. Use a slice to pull out many values with .iloc:
>>> city.iloc[0:5]

INSTNM

Alabama A & M University                   Normal

University of Alabama at Birmingham    Birmingham

Amridge University                     Montgomery

University of Alabama in Huntsville    Huntsville

Alabama State University               Montgomery

Name: CITY, dtype: object

12. Use a Boolean array to pull out certain values:

>>> alabama_mask = city.isin(["Birmingham", "Montgomery"])

>>> city[alabama_mask]

INSTNM

University of Alabama at Birmingham    Birmingham

Amridge University                     Montgomery

Alabama State University               Montgomery

Auburn University at Montgomery        Montgomery

Birmingham Southern College            Birmingham

                                          ...     

Fortis Institute-Birmingham            Birmingham

Hair Academy                           Montgomery

Brown Mackie College-Birmingham        Birmingham

Nunation School of Cosmetology         Birmingham

Troy University-Montgomery Campus      Montgomery

Name: CITY, Length: 26, dtype: object
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How it works…
If you have a Series, you can pull out the data using index operations. Depending on what 
you index with, you might get different types as output. If you index with a scalar on a Series, 
you will get back a scalar value. If you index with a list or a slice, you will get back a Series.

Looking at the examples, it appears that indexing directly off of the Series provides the best 
of both worlds: you can index by position or label. I would caution against using it at all. 
Remember, the Zen of Python states, "Explicit is better than implicit." Both .iloc and .loc 
are explicit, but indexing directly off of the Series is not explicit; it requires us to think about 
what we are indexing with and what type of index we have.

Consider this toy Series that uses integer values for the index:

>>> s = pd.Series([10, 20, 35, 28], index=[5, 2, 3, 1])

>>> s

5    10

2    20

3    35

1    28

dtype: int64

>>> s[0:4]

5    10

2    20

3    35

1    28

dtype: int64

>>> s[5]

10

>>> s[1]

28

When you index with a slice directly on a Series, it uses position, but otherwise it goes 
by label. This is confusing to the future you and future readers of your code. Remember, 
optimizing for readability is better than optimizing for easy-to-write code. The takeaway is 
to use the .iloc and .loc indexers.
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Remember that when you slice by position, pandas uses the half-open interval. This interval 
is probably something you learned back in high school and promptly forgot. The half-open 
interval includes the first index, but not the end index. However, when you slice by label, 
pandas uses the closed interval and includes both the start and end index. This behavior 
is inconsistent with Python in general, but is practical for labels.

There's more…
All of the examples in this section could be performed directly on the original DataFrame by 
using .loc or .iloc. We can pass in a tuple (without parentheses) of row and column labels 
or positions, respectively:

>>> college.loc["Alabama A & M University", "CITY"]

'Normal'

>>> college.iloc[0, 0]

'Normal'

>>> college.loc[

...     [

...         "Alabama A & M University",

...         "Alabama State University",

...     ],

...     "CITY",

... ]

INSTNM

Alabama A & M University        Normal

Alabama State University    Montgomery

Name: CITY, dtype: object

>>> college.iloc[[0, 4], 0]

INSTNM

Alabama A & M University        Normal

Alabama State University    Montgomery

Name: CITY, dtype: object

>>> college.loc[
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...     "Alabama A & M University":"Alabama State University",

...     "CITY",

... ]

INSTNM

Alabama A & M University                   Normal

University of Alabama at Birmingham    Birmingham

Amridge University                     Montgomery

University of Alabama in Huntsville    Huntsville

Alabama State University               Montgomery

Name: CITY, dtype: object

>>> college.iloc[0:5, 0]

INSTNM

Alabama A & M University                   Normal

University of Alabama at Birmingham    Birmingham

Amridge University                     Montgomery

University of Alabama in Huntsville    Huntsville

Alabama State University               Montgomery

Name: CITY, dtype: object

Care needs to be taken when using slicing off of .loc. If the start index appears after the 
stop index, then an empty Series is returned without an exception:

>>> city.loc[

...     "Reid State Technical College":"Alabama State University"

... ]

Series([], Name: CITY, dtype: object)

Selecting DataFrame rows
The most explicit and preferred way to select DataFrame rows is with .iloc and .loc. 
They are both capable of selecting by rows or by rows and columns.

This recipe shows you how to select rows from a DataFrame using the .iloc and .loc 
indexers:

1. Read in the college dataset, and set the index as the institution name:
>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"
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... )

>>> college.sample(5, random_state=42)

                     CITY STABBR  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                            ...

Career Po...  San Antonio     TX  ...        20700            
14977

Ner Israe...    Baltimore     MD  ...  PrivacyS...      
PrivacyS...

Reflectio...      Decatur     IL  ...          NaN      
PrivacyS...

Capital A...  Baton Rouge     LA  ...        26400      
PrivacyS...

West Virg...   Montgomery     WV  ...        43400            
23969

<BLANKLINE>

[5 rows x 26 columns]

2. To select an entire row at that position, pass an integer to .iloc:
>>> college.iloc[60]

CITY                  Anchorage

STABBR                       AK

HBCU                          0

MENONLY                       0

WOMENONLY                     0

                        ...

PCTPELL                  0.2385

PCTFLOAN                 0.2647

UG25ABV                  0.4386

MD_EARN_WNE_P10           42500

GRAD_DEBT_MDN_SUPP      19449.5

Name: University of Alaska Anchorage, Length: 26, dtype: object

Because Python is zero-based, this is actually the 61st row. Note that pandas 
represents this row as a Series.

3. To get the same row as the preceding step, pass the index label to .loc:
>>> college.loc["University of Alaska Anchorage"]

CITY                  Anchorage

STABBR                       AK
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HBCU                          0

MENONLY                       0

WOMENONLY                     0

                        ...

PCTPELL                  0.2385

PCTFLOAN                 0.2647

UG25ABV                  0.4386

MD_EARN_WNE_P10           42500

GRAD_DEBT_MDN_SUPP      19449.5

Name: University of Alaska Anchorage, Length: 26, dtype: object

4. To select a disjointed set of rows as a DataFrame, pass a list of integers to .iloc:
>>> college.iloc[[60, 99, 3]]

                    CITY STABBR  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                           ...

Universit...   Anchorage     AK  ...        42500          19449.5

Internati...       Tempe     AZ  ...        22200            10556

Universit...  Huntsville     AL  ...        45500            24097

<BLANKLINE>

[3 rows x 26 columns]

Because we passed in a list of row positions, this returns a DataFrame.

5. The same DataFrame from step 4 may be reproduced with .loc by passing it a list of 
the institution names:
>>> labels = [

...     "University of Alaska Anchorage",

...     "International Academy of Hair Design",

...     "University of Alabama in Huntsville",

... ]

>>> college.loc[labels]

                    CITY STABBR  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                           ...

Universit...   Anchorage     AK  ...        42500          19449.5

Internati...       Tempe     AZ  ...        22200            10556

Universit...  Huntsville     AL  ...        45500            24097

<BLANKLINE>

[3 rows x 26 columns]
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6. Use slice notation with .iloc to select contiguous rows of the data:
>>> college.iloc[99:102]

                 CITY STABBR  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

INSTNM                        ...

Internati...    Tempe     AZ  ...        22200            10556

GateWay C...  Phoenix     AZ  ...        29800             7283

Mesa Comm...     Mesa     AZ  ...        35200             8000

<BLANKLINE>

[3 rows x 26 columns]

7. Slice notation also works with .loc and is a closed interval (it includes both the start 
label and the stop label):
>>> start = "International Academy of Hair Design"

>>> stop = "Mesa Community College"

>>> college.loc[start:stop]

                 CITY STABBR  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

INSTNM                        ...

Internati...    Tempe     AZ  ...        22200            10556

GateWay C...  Phoenix     AZ  ...        29800             7283

Mesa Comm...     Mesa     AZ  ...        35200             8000

<BLANKLINE>

[3 rows x 26 columns]

How it works…
When we pass a scalar value, a list of scalars, or a slice to .iloc or .loc, this causes 
pandas to scan the index for the appropriate rows and return them. If a single scalar value 
is passed, a Series is returned. If a list or slice is passed, then a DataFrame is returned.

There's more…
In step 5, the list of index labels can be selected directly from the DataFrame returned in step 
4 without the need for copying and pasting:

>>> college.iloc[[60, 99, 3]].index.tolist()

['University of Alaska Anchorage', 'International Academy of Hair 
Design', 'University of Alabama in Huntsville']
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Selecting DataFrame rows and columns 
simultaneously

There are many ways to select rows and columns. The easiest method to select one or more 
columns from a DataFrame is to index off of the DataFrame. However, this approach has 
a limitation. Indexing directly on a DataFrame does not allow you to select both rows and 
columns simultaneously. To select rows and columns, you will need to pass both valid row 
and column selections separated by a comma to either .iloc or .loc.

The generic form to select rows and columns will look like the following code:

df.iloc[row_idxs, column_idxs]

df.loc[row_names, column_names]

Where row_idxs and column_idxs can be scalar integers, lists of integers, or integer 
slices. While row_names and column_names can be the scalar names, lists of names, 
or names slices, row_names can also be a Boolean array.

In this recipe, each step shows a simultaneous row and column selection using both .iloc 
and .loc.

How to do it…
1. Read in the college dataset, and set the index as the institution name. Select the first 

three rows and the first four columns with slice notation:
>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college.iloc[:3, :4]

                    CITY STABBR  HBCU  MENONLY

INSTNM                                        

Alabama A...      Normal     AL   1.0      0.0

Universit...  Birmingham     AL   0.0      0.0

Amridge U...  Montgomery     AL   0.0      0.0

>>> college.loc[:"Amridge University", :"MENONLY"]

                    CITY STABBR  HBCU  MENONLY

INSTNM                                        

Alabama A...      Normal     AL   1.0      0.0

Universit...  Birmingham     AL   0.0      0.0

Amridge U...  Montgomery     AL   0.0      0.0
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2. Select all the rows of two different columns:
>>> college.iloc[:, [4, 6]].head()

                                     WOMENONLY  SATVRMID

INSTNM

Alabama A & M University                   0.0     424.0

University of Alabama at Birmingham        0.0     570.0

Amridge University                         0.0       NaN

University of Alabama in Huntsville        0.0     595.0

Alabama State University                   0.0     425.0

>>> college.loc[:, ["WOMENONLY", "SATVRMID"]].head()

                                     WOMENONLY  SATVRMID

INSTNM

Alabama A & M University                   0.0     424.0

University of Alabama at Birmingham        0.0     570.0

Amridge University                         0.0       NaN

University of Alabama in Huntsville        0.0     595.0

Alabama State University                   0.0     425.0

3. Select disjointed rows and columns:
>>> college.iloc[[100, 200], [7, 15]]

                                       SATMTMID  UGDS_NHPI

INSTNM

GateWay Community College                   NaN     0.0029

American Baptist Seminary of the West       NaN        NaN

>>> rows = [

...     "GateWay Community College",

...     "American Baptist Seminary of the West",

... ]

>>> columns = ["SATMTMID", "UGDS_NHPI"]

>>> college.loc[rows, columns]

                                       SATMTMID  UGDS_NHPI

INSTNM

GateWay Community College                   NaN     0.0029

American Baptist Seminary of the West       NaN        NaN
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4. Select a single scalar value:
>>> college.iloc[5, -4]

0.401

>>> college.loc["The University of Alabama", "PCTFLOAN"]

0.401

5. Slice the rows and select a single column:

>>> college.iloc[90:80:-2, 5]

INSTNM                              

Empire Beauty School-Flagstaff     0

Charles of Italy Beauty College    0

Central Arizona College            0

University of Arizona              0

Arizona State University-Tempe     0

Name: RELAFFIL, dtype: int64

>>> start = "Empire Beauty School-Flagstaff"

>>> stop = "Arizona State University-Tempe"

>>> college.loc[start:stop:-2, "RELAFFIL"]

INSTNM                              

Empire Beauty School-Flagstaff     0

Charles of Italy Beauty College    0

Central Arizona College            0

University of Arizona              0

Arizona State University-Tempe     0

Name: RELAFFIL, dtype: int64

How it works…
One of the keys to selecting rows and columns at the same time is to understand the use of 
the comma in the brackets. The selection to the left of the comma always selects rows based 
on the row index. The selection to the right of the comma always selects columns based on 
the column index.

It is not necessary to make a selection for both rows and columns simultaneously. Step 2 
shows how to select all the rows and a subset of columns. The colon (:) represents a slice 
object that returns all the values for that dimension.
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There's more…
To select only rows (along with all the columns), it is not necessary to use a colon following 
a comma. The default behavior is to select all the columns if there is no comma present. 
The previous recipe selected rows in exactly this manner. You can, however, use a colon 
to represent a slice of all the columns. The following lines of code are equivalent:

college.iloc[:10]

college.iloc[:10, :]

Selecting data with both integers and labels
Sometimes, you want the functionality of both .iloc and .loc, to select data by both 
position and label. In earlier versions of pandas, .ix was available to select data by both 
position and label. While this conveniently worked for those specific situations, it was 
ambiguous by nature and was a source of confusion for many pandas users. The .ix indexer 
has subsequently been deprecated and thus should be avoided.

Before the .ix deprecation, it was possible to select the first five rows and the columns of the 
college dataset from UGDS_WHITE through UGDS_UNKN using college.ix[:5, 'UGDS_
WHITE':'UGDS_UNKN']. This is now impossible to do directly using .loc or .iloc. The 
following recipe shows how to find the integer location of the columns and then use .iloc 
to complete the selection.

How to do it…
1. Read in the college dataset and assign the institution name (INSTNM) as the index:

>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

2. Use the Index method .get_loc to find the integer position of the desired columns:
>>> col_start = college.columns.get_loc("UGDS_WHITE")

>>> col_end = college.columns.get_loc("UGDS_UNKN") + 1

>>> col_start, col_end

(10, 19)

3. Use col_start and col_end to select columns by position using .iloc:

>>> college.iloc[:5, col_start:col_end]

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN
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INSTNM                                ...                     

Alabama A...      0.0333      0.9353  ...    0.0059     0.0138

Universit...      0.5922      0.2600  ...    0.0179     0.0100

Amridge U...      0.2990      0.4192  ...    0.0000     0.2715

Universit...      0.6988      0.1255  ...    0.0332     0.0350

Alabama S...      0.0158      0.9208  ...    0.0243     0.0137

<BLANKLINE>

[5 rows x 9 columns]

How it works…
Step 2 first retrieves the column index through the .columns attribute. Indexes have a .get_
loc method, which accepts an index label and returns its integer location. We find both the 
start and end integer locations for the columns that we wish to slice. We add one because 
slicing with .iloc uses the half-open interval and is exclusive of the last item. Step 3 uses 
slice notation with the row and column positions.

There's more…
We can do a very similar operation to use positions to get the labels for .loc to work. The 
following shows how to select the 10th through 15th (inclusive) rows, along with columns 
UGDS_WHITE through UGDS_UNKN:

>>> row_start = college.index[10]

>>> row_end = college.index[15]

>>> college.loc[row_start:row_end, "UGDS_WHITE":"UGDS_UNKN"]

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Birmingha...      0.7983      0.1102  ...    0.0000     0.0051

Chattahoo...      0.4661      0.4372  ...    0.0000     0.0139

Concordia...      0.0280      0.8758  ...    0.0466     0.0000

South Uni...      0.3046      0.6054  ...    0.0019     0.0326

Enterpris...      0.6408      0.2435  ...    0.0012     0.0069

James H F...      0.6979      0.2259  ...    0.0007     0.0009

<BLANKLINE>

[6 rows x 9 columns]
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Doing this same operation with .ix (which is removed from pandas 1.0, so don't do this) 
would look like this (in versions prior to 1.0):

>>> college.ix[10:16, "UGDS_WHITE":"UGDS_UNKN"]

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Birmingha...      0.7983      0.1102  ...    0.0000     0.0051

Chattahoo...      0.4661      0.4372  ...    0.0000     0.0139

Concordia...      0.0280      0.8758  ...    0.0466     0.0000

South Uni...      0.3046      0.6054  ...    0.0019     0.0326

Enterpris...      0.6408      0.2435  ...    0.0012     0.0069

James H F...      0.6979      0.2259  ...    0.0007     0.0009

<BLANKLINE>

[6 rows x 9 columns]

It is possible to achieve the same results by chaining .loc and .iloc together, but chaining 
indexers is typically a bad idea. It can be slower, and it is also undetermined whether it returns 
a view or a copy (which is not problematic when viewing the data, but can be when updating 
data. You might see the infamous SettingWithCopyWarning warning):

>>> college.iloc[10:16].loc[:, "UGDS_WHITE":"UGDS_UNKN"]

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...                     

Birmingha...      0.7983      0.1102  ...    0.0000     0.0051

Chattahoo...      0.4661      0.4372  ...    0.0000     0.0139

Concordia...      0.0280      0.8758  ...    0.0466     0.0000

South Uni...      0.3046      0.6054  ...    0.0019     0.0326

Enterpris...      0.6408      0.2435  ...    0.0012     0.0069

James H F...      0.6979      0.2259  ...    0.0007     0.0009

<BLANKLINE>

[6 rows x 9 columns]

Slicing lexicographically
The .loc attribute typically selects data based on the exact string label of the index. However, 
it also allows you to select data based on the lexicographic order of the values in the index. 
Specifically, .loc allows you to select all rows with an index lexicographically using slice 
notation. This only works if the index is sorted.
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In this recipe, you will first sort the index and then use slice notation inside the .loc indexer to 
select all rows between two strings.

How to do it…
1. Read in the college dataset, and set the institution name as the index:

>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

2. Attempt to select all colleges with names lexicographically between Sp and Su:
>>> college.loc["Sp":"Su"]

Traceback (most recent call last):

  ...

ValueError: index must be monotonic increasing or decreasing

During handling of the above exception, another exception 
occurred:

Traceback (most recent call last):

  ...

KeyError: 'Sp'

3. As the index is not sorted, the preceding command fails. Let's go ahead and sort the 
index:
>>> college = college.sort_index()

4. Now, let's rerun the same command from step 2:

>>> college.loc["Sp":"Su"]

                    CITY STABBR  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                           ...

Spa Tech ...     Ipswich     MA  ...        21500             6333

Spa Tech ...    Plymouth     MA  ...        21500             6333

Spa Tech ...    Westboro     MA  ...        21500             6333

Spa Tech ...   Westbrook     ME  ...        21500             6333

Spalding ...  Louisville     KY  ...        41700            25000

...                  ...    ...  ...          ...              ...
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Studio Ac...    Chandler     AZ  ...          NaN             6333

Studio Je...    New York     NY  ...  PrivacyS...      PrivacyS...

Stylemast...    Longview     WA  ...        17000            13320

Styles an...      Selmer     TN  ...  PrivacyS...      PrivacyS...

Styletren...   Rock Hill     SC  ...  PrivacyS...           9495.5

<BLANKLINE>

[201 rows x 26 columns]

How it works…
The normal behavior of .loc is to make selections of data based on the exact labels passed 
to it. It raises a KeyError when these labels are not found in the index. However, one special 
exception to this behavior exists whenever the index is lexicographically sorted, and a slice is 
passed to it. Selection is now possible between the start and stop labels of the slice, even if 
those values are not found in the index.

There's more…
With this recipe, it is easy to select colleges between two letters of the alphabet. For instance, 
to select all colleges that begin with the letters D through S, you would use college.
loc['D':'T']. Slicing like this is still closed and includes the last index, so this would 
technically return a college with the exact name T.

This type of slicing also works when the index is sorted in the opposite direction. You can 
determine in which direction the index is sorted with the index attribute .is_monotonic_
increasing or .is_monotonic_decreasing. Either of these must be True in order for 
lexicographic slicing to work. For instance, the following code lexicographically sorts the index 
from Z to A:

>>> college = college.sort_index(ascending=False)

>>> college.index.is_monotonic_decreasing

True

>>> college.loc["E":"B"]

                                                  CITY  ...

INSTNM                                                  ...

Dyersburg State Community College            Dyersburg  ...

Dutchess Community College                Poughkeepsie  ...

Dutchess BOCES-Practical Nursing Program  Poughkeepsie  ...

Durham Technical Community College              Durham  ...
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Durham Beauty Academy                           Durham  ...

...                                                ...  ...

Bacone College                                Muskogee  ...

Babson College                               Wellesley  ...

BJ's Beauty & Barber College                    Auburn  ...

BIR Training Center                            Chicago  ...

B M Spurr School of Practical Nursing        Glen Dale  ...
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7
Filtering Rows

Introduction
Filtering data from a dataset is one of the most common and basic operations. There are 
numerous ways to filter (or subset) data in pandas with Boolean indexing. Boolean indexing 
(also known as Boolean selection) can be a confusing term, but in pandas-land, it refers to 
selecting rows by providing a Boolean array, a pandas Series with the same index, but a True 
or False for each row. The name comes from NumPy, where similar filtering logic works, so 
while it is really a Series with Boolean values in it, it is also referred to as a Boolean array.

We will begin by creating Boolean Series and calculating statistics on them and then move on 
to creating more complex conditionals before using Boolean indexing in a wide variety of ways 
to filter data.

Calculating Boolean statistics
It can be informative to calculate basic summary statistics on Boolean arrays. Each value 
of a Boolean array, the True or False, evaluates to 1 or 0 respectively, so all the Series 
methods that work with numerical values also work with Booleans.

In this recipe, we create a Boolean array by applying a condition to a column of data and then 
calculate summary statistics from it.
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How to do it…
1. Read in the movie dataset, set the index to the movie title, and inspect the first few 

rows of the duration column:
>>> import pandas as pd

>>> import numpy as np

>>> movie = pd.read_csv(

...     "data/movie.csv", index_col="movie_title"

... )

>>> movie[["duration"]].head()

                                            Duration

movie_title

Avatar                                         178.0

Pirates of the Caribbean: At World's End       169.0

Spectre                                        148.0

The Dark Knight Rises                          164.0

Star Wars: Episode VII - The Force Awakens       NaN

2. Determine whether the duration of each movie is longer than two hours by using the 
greater than comparison operator with the duration column:
>>> movie_2_hours = movie["duration"] > 120

>>> movie_2_hours.head(10)

movie_title

Avatar                                         True

Pirates of the Caribbean: At World's End       True

Spectre                                        True

The Dark Knight Rises                          True

Star Wars: Episode VII - The Force Awakens    False

John Carter                                    True

Spider-Man 3                                   True

Tangled                                       False

Avengers: Age of Ultron                        True

Harry Potter and the Half-Blood Prince         True

Name: duration, dtype: bool

3. We can now use this Series to determine the number of movies that are longer than 
two hours:
>>> movie_2_hours.sum()

1039
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4. To find the percentage of movies in the dataset longer than two hours, use the .mean 
method:
>>> movie_2_hours.mean() * 100

21.13506916192026

5. Unfortunately, the output from step 4 is misleading. The duration column has a few 
missing values. If you look back at the DataFrame output from step 1, you will see 
that the last row is missing a value for duration. The Boolean condition in step 2 
returns False for this. We need to drop the missing values first, then evaluate the 
condition and take the mean:
>>> movie["duration"].dropna().gt(120).mean() * 100

21.199755152009794

6. Use the .describe method to output summary statistics on the Boolean array:

>>> movie_2_hours.describe()

count      4916

unique        2

top       False

freq       3877

Name: duration, dtype: object

How it works…
Most DataFrames will not have columns of Booleans like our movie dataset. The most 
straightforward method to produce a Boolean array is to apply a conditional operator to one 
of the columns. In step 2, we use the greater than comparison operator to test whether the 
duration of each movie was more than 120 minutes. Steps 3 and 4 calculate two important 
quantities from a Boolean Series, its sum and mean. These methods are possible as Python 
evaluates False and True as 0 and 1, respectively.

You can prove to yourself that the mean of a Boolean array represents the percentage of True 
values. To do this, use the .value_counts method to count with the normalize parameter 
set to True to get its distribution:

>>> movie_2_hours.value_counts(normalize=True)

False    0.788649

True     0.211351

Name: duration, dtype: float64
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Step 5 alerts us to the incorrect result from step 4. Even though the duration column 
had missing values, the Boolean condition evaluated all these comparisons against missing 
values as False. Dropping these missing values allows us to calculate the correct statistic. 
This is done in one step through method chaining.

Important takeaway: You want to make sure you have dealt with missing values before making 
calculations!

Step 6 shows that pandas applies the .describe method to Boolean arrays the same 
way it applies it to a column of objects or strings, by displaying frequency information. This 
is a natural way to think about Boolean arrays, rather than displaying quantiles.

If you wanted quantile information, you could cast the Series into integers:

>>> movie_2_hours.astype(int).describe()

count    4916.000000

mean        0.211351

std         0.408308

min         0.000000

25%         0.000000

50%         0.000000

75%         0.000000

max         1.000000

Name: duration, dtype: float64

There's more…
It is possible to compare two columns from the same DataFrame to produce a Boolean Series. 
For instance, we could determine the percentage of movies that have actor 1 with more 
Facebook likes than actor 2. To do this, we would select both of these columns and then drop 
any of the rows that had missing values for either movie. Then we would make the comparison 
and calculate the mean:

>>> actors = movie[

...     ["actor_1_facebook_likes", "actor_2_facebook_likes"]

... ].dropna()

>>> (

...     actors["actor_1_facebook_likes"]

...     > actors["actor_2_facebook_likes"]

... ).mean()

0.9777687130328371
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Constructing multiple Boolean conditions
In Python, Boolean expressions use the built-in logical operators and, or, and not. These 
keywords do not work with Boolean indexing in pandas and are respectively replaced with 
&, |, and ~. Additionally, when combining expressions, each expression must be wrapped in 
parentheses, or an error will be raised (due to operator precedence).

Constructing a filter for your dataset might require combining multiple Boolean expressions 
together to pull out the rows you need. In this recipe, we construct multiple Boolean 
expressions before combining them to find all the movies that have an imdb_score greater 
than 8, a content_rating of PG-13, and a title_year either before 2000 or after 2009.

How to do it…
1. Load in the movie dataset and set the title as the index:

>>> movie = pd.read_csv(

...     "data/movie.csv", index_col="movie_title"

... )

2. Create a variable to hold each filter as a Boolean array:
>>> criteria1 = movie.imdb_score > 8

>>> criteria2 = movie.content_rating == "PG-13"

>>> criteria3 = (movie.title_year < 2000) | (

...     movie.title_year > 2009

... )

3. Combine all the filters into a single Boolean array:

>>> criteria_final = criteria1 & criteria2 & criteria3

>>> criteria_final.head()

movie_title

Avatar                                        False

Pirates of the Caribbean: At World's End      False

Spectre                                       False

The Dark Knight Rises                          True

Star Wars: Episode VII - The Force Awakens    False

dtype: bool
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How it works…
All values in a Series can be compared against a scalar value using the standard comparison 
operators (<, >, ==, !=, <=, and >=). The expression movie.imdb_score > 8 yields 
a Boolean array where all imdb_score values exceeding 8 are True and those less than 
or equal to 8 are False. The index of this Boolean array has the same index as the movie 
DataFrame.

The criteria3 variable is created by combining two Boolean arrays. Each expression 
must be enclosed in parentheses to function properly. The pipe character, |, is used to create 
a logical or condition between each of the values in both Series.

All three criteria need to be True to match the requirements of the recipe. They are each 
combined using the ampersand character, &, which creates a logical and condition between 
each Series value.

There's more…
A consequence of pandas using different syntax for the logical operators is that operator 
precedence is no longer the same. The comparison operators have a higher precedence than 
and, or, and not. However, the operators that pandas uses (the bitwise operators &, |, and ~) 
have a higher precedence than the comparison operators, hence the need for parentheses. 
An example can help clear this up. Take the following expression:

>>> 5 < 10 and 3 > 4

False

In the preceding expression, 5 < 10 evaluates first, followed by 3 > 4, and finally, the and 
evaluates. Python progresses through the expression as follows:

>>> 5 < 10 and 3 > 4

False    

>>> True and 3 > 4

False    

>>> True and False

False    

>>> False

False    

Let's take a look at what would happen if the expression in criteria3 was written as 
follows:

>>> movie.title_year < 2000 | movie.title_year > 2009
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Traceback (most recent call last):

   ...

TypeError: ufunc 'bitwise_or' not supported for the input types, and the 
inputs could not be safely coerced to any supported types according to 
the casting rule ''safe''

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

   ...

TypeError: cannot compare a dtyped [float64] array with a scalar of type 
[bool]

As the bitwise operators have higher precedence than the comparison operators, 2000 | 
movie.title_year is evaluated first, which is nonsensical and raises an error. Therefore, 
we need parentheses to enforce operator precedence.

Why can't pandas use and, or, and not? When these keywords are evaluated, Python attempts 
to find the truthiness of the objects as a whole. As it does not make sense for a Series as a 
whole to be either True or False – only each element – pandas raises an error.

All objects in Python have a Boolean representation, which is often referred to as truthiness. 
For instance, all integers except 0 are considered True. All strings except the empty string 
are True. All non-empty sets, tuples, dictionaries, and lists are True. In general, to evaluate 
the truthiness of a Python object, pass it to the bool function. An empty DataFrame or Series 
does not evaluate as True or False, and instead, an error is raised.

Filtering with Boolean arrays
Both Series and DataFrame can be filtered with Boolean arrays. You can index this directly off 
of the object or off of the .loc attribute.

This recipe constructs two complex filters for different rows of movies. The first filters movies 
with an imdb_score greater than 8, a content_rating of PG-13, and a title_year 
either before 2000 or after 2009. The second filter consists of those with an imdb_score 
less than 5, a content_rating of R, and a title_year between 2000 and 2010. Finally, 
we will combine these filters.
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How to do it…
1. Read in the movie dataset, set the index to movie_title, and create the first set of 

criteria:
>>> movie = pd.read_csv(

...     "data/movie.csv", index_col="movie_title"

... )

>>> crit_a1 = movie.imdb_score > 8

>>> crit_a2 = movie.content_rating == "PG-13"

>>> crit_a3 = (movie.title_year < 2000) | (

...     movie.title_year > 2009

... )

>>> final_crit_a = crit_a1 & crit_a2 & crit_a3

2. Create criteria for the second set of movies:
>>> crit_b1 = movie.imdb_score < 5

>>> crit_b2 = movie.content_rating == "R"

>>> crit_b3 = (movie.title_year >= 2000) & (

...     movie.title_year <= 2010

... )

>>> final_crit_b = crit_b1 & crit_b2 & crit_b3

3. Combine the two sets of criteria using the pandas or operator. This yields a Boolean 
array of all movies that are members of either set:
>>> final_crit_all = final_crit_a | final_crit_b

>>> final_crit_all.head()

movie_title

Avatar                                        False

Pirates of the Caribbean: At World's End      False

Spectre                                       False

The Dark Knight Rises                          True

Star Wars: Episode VII - The Force Awakens    False

dtype: bool

4. Once you have your Boolean array, you pass it to the index operator to filter the data:
>>> movie[final_crit_all].head()

                            color  ... movie/likes
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movie_title                        ...

The Dark Knight Rises       Color  ...      164000

The Avengers                Color  ...      123000

Captain America: Civil War  Color  ...       72000

Guardians of the Galaxy     Color  ...       96000

Interstellar                Color  ...      349000

5. We can also filter off of the .loc attribute:
>>> movie.loc[final_crit_all].head()

                            color  ... movie/likes

movie_title                        ...

The Dark Knight Rises       Color  ...      164000

The Avengers                Color  ...      123000

Captain America: Civil War  Color  ...       72000

Guardians of the Galaxy     Color  ...       96000

Interstellar                Color  ...      349000

6. In addition, we can specify columns to select with the .loc attribute:

>>> cols = ["imdb_score", "content_rating", "title_year"]

>>> movie_filtered = movie.loc[final_crit_all, cols]

>>> movie_filtered.head(10)

              imdb_score content_rating  title_year

movie_title

The Dark ...         8.5        PG-13        2012.0

The Avengers         8.1        PG-13        2012.0

Captain A...         8.2        PG-13        2016.0

Guardians...         8.1        PG-13        2014.0

Interstellar         8.6        PG-13        2014.0

Inception            8.8        PG-13        2010.0

The Martian          8.1        PG-13        2015.0

Town & Co...         4.4            R        2001.0

Sex and t...         4.3            R        2010.0

Rollerball           3.0            R        2002.0
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How it works…
In step 1 and step 2, each set of criteria is built from simpler Boolean arrays. It is not 
necessary to create a different variable for each Boolean expression as done here, but it 
does make it far easier to read and debug any logic mistakes. As we desire both sets of 
movies, step 3 uses the pandas logical or operator to combine them.

In step 4, we pass the Series of Booleans created from step 3 directly to the index operator. 
Only the movies with True values from final_crit_all are selected.

Filtering also works with the .loc attribute, as seen in step 6, by simultaneously selecting 
rows (using the Boolean array) and columns. This slimmed DataFrame is far easier to check 
manually as to whether the logic was implemented correctly.

The .iloc attribute does not support Boolean arrays! If you pass in a Boolean Series to it, 
an exception will get raised. However, it does work with NumPy arrays, so if you call the .to_
numpy() method, you can filter with it:

>>> movie.iloc[final_crit_all]

Traceback (most recent call last):

  ...

ValueError: iLocation based boolean indexing cannot use an indexable  
as a mask    

>>> movie.iloc[final_crit_all.to_numpy()]

                            color  ... movie/likes

movie_title                        ...

The Dark Knight Rises       Color  ...      164000

The Avengers                Color  ...      123000

Captain America: Civil War  Color  ...       72000

Guardians of the Galaxy     Color  ...       96000

Interstellar                Color  ...      349000

...                           ...  ...         ...

The Young Unknowns          Color  ...           4

Bled                        Color  ...         128

Hoop Dreams                 Color  ...           0

Death Calls                 Color  ...          16

The Legend of God's Gun     Color  ...          13
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There's more…
As was stated earlier, it is possible to use one long Boolean expression in place of several 
other shorter ones. To replicate the final_crit_a variable from step 1 with one long line 
of code, we can do the following:

>>> final_crit_a2 = (

...     (movie.imdb_score > 8)

...     & (movie.content_rating == "PG-13")

...     & (

...         (movie.title_year < 2000)

...         | (movie.title_year > 2009)

...     )

... )

>>> final_crit_a2.equals(final_crit_a)

True

Comparing row filtering and index filtering
It is possible to replicate specific cases of Boolean selection by taking advantage of the index.

In this recipe, we use the college dataset to select all institutions from a particular state with 
both Boolean indexing and index selection and then compare each of their performances 
against one another.

Personally, I prefer to filter by columns (using Boolean arrays) rather than on the index. 
Column filtering is more powerful as you can use other logical operators and filter on multiple 
columns.

How to do it…
1. Read in the college dataset and use Boolean indexing to select all institutions from 

the state of Texas (TX):
>>> college = pd.read_csv("data/college.csv")

>>> college[college["STABBR"] == "TX"].head()

                            INSTNM  ...        GRAD_/_SUPP

3610  Abilene Christian University  ...              25985

3611       Alvin Community College  ...               6750

3612              Amarillo College  ...              10950
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3613              Angelina College  ...  PrivacySuppressed

3614       Angelo State University  ...            21319.5

2. To repeat this using index selection, move the STABBR column into the index. We can 
then use label-based selection with the .loc indexer:
>>> college2 = college.set_index("STABBR")

>>> college2.loc["TX"].head()

                            INSTNM  ...        GRAD_/_SUPP

3610  Abilene Christian University  ...              25985

3611       Alvin Community College  ...               6750

3612              Amarillo College  ...              10950

3613              Angelina College  ...  PrivacySuppressed

3614       Angelo State University  ...            21319.5

3. Let's compare the speed of both methods:
>>> %timeit college[college['STABBR'] == 'TX']

1.75 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 1000 loops 
each)

>>> %timeit college2.loc['TX']

882 µs ± 69.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops 
each)

4. Boolean indexing takes two times as long as index selection. As setting the index 
does not come for free, let's time that operation as well:

>>> %timeit college2 = college.set_index('STABBR')

2.01 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 100 loops 
each)

How it works…
Step 1 creates a Boolean Series by determining which rows of data have STABBR equal to 
TX. This Series is passed to the indexing operator, which selects the data. This process may 
be replicated by moving that same column to the index and using basic label-based index 
selection with .loc. Selection via the index is much faster than Boolean selection.

However, if you need to filter on multiple columns, you will have the overhead (and confusing 
code) from repeatedly switching the index. Again, my recommendation is not to switch the 
index, just to filter by it.
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There's more…
This recipe only selects a single state. It is possible to select multiple states with both Boolean 
and index selection. Let's select Texas (TX), California (CA), and New York (NY). With Boolean 
selection, you can use the .isin method, but with indexing, just pass a list to .loc:

>>> states = ["TX", "CA", "NY"]

>>> college[college["STABBR"].isin(states)]

           INSTNM         CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP

192   Academy ...  San Fran...  ...        36000           35093

193   ITT Tech...  Rancho C...  ...        38800         25827.5

194   Academy ...      Oakland  ...          NaN     PrivacyS...

195   The Acad...  Huntingt...  ...        28400            9500

196   Avalon S...      Alameda  ...        21600            9860

...           ...          ...  ...          ...             ...

7528  WestMed ...       Merced  ...          NaN         15623.5

7529  Vantage ...      El Paso  ...          NaN            9500

7530  SAE Inst...   Emeryville  ...          NaN            9500

7533  Bay Area...     San Jose  ...          NaN     PrivacyS...

7534  Excel Le...  San Antonio  ...          NaN           12125

>>> college2.loc[states]

             INSTNM        CITY  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP

STABBR                           ...

TX      Abilene ...     Abilene  ...        40200            25985

TX      Alvin Co...       Alvin  ...        34500             6750

TX      Amarillo...    Amarillo  ...        31700            10950

TX      Angelina...      Lufkin  ...        26900      PrivacyS...

TX      Angelo S...  San Angelo  ...        37700          21319.5

...             ...         ...  ...          ...              ...

NY      Briarcli...   Patchogue  ...        38200          28720.5

NY      Jamestow...   Salamanca  ...          NaN            12050

NY      Pratt Ma...    New York  ...        40900            26691

NY      Saint Jo...   Patchogue  ...        52000          22143.5

NY      Franklin...    Brooklyn  ...        20000      PrivacyS...
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There is quite a bit more to the story than what this recipe explains. pandas implements the 
index differently based on whether the index is unique or sorted. See the following recipe for 
more details.

Selecting with unique and sorted indexes
Index selection performance drastically improves when the index is unique or sorted. The 
prior recipe used an unsorted index that contained duplicates, which makes for relatively 
slow selections.

In this recipe, we use the college dataset to form unique or sorted indexes to increase the 
performance of index selection. We will continue to compare the performance to Boolean 
indexing as well.

If you are only selecting from a single column and that is a bottleneck for you, this recipe can 
save you ten times the effort

How to do it…
1. Read in the college dataset, create a separate DataFrame with STABBR as the index, 

and check whether the index is sorted:
>>> college = pd.read_csv("data/college.csv")

>>> college2 = college.set_index("STABBR")

>>> college2.index.is_monotonic

False

2. Sort the index from college2 and store it as another object:
>>> college3 = college2.sort_index()

>>> college3.index.is_monotonic

True

3. Time the selection of the state of Texas (TX) from all three DataFrames:
>>> %timeit college[college['STABBR'] == 'TX']

1.75 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 1000 loops 
each)

>>> %timeit college2.loc['TX']

1.09 ms ± 232 µs per loop (mean ± std. dev. of 7 runs, 1000 loops 
each)
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>>> %timeit college3.loc['TX']

304 µs ± 17.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops 
each)

4. The sorted index performs nearly an order of magnitude faster than Boolean 
selection. Let's now turn toward unique indexes. For this, we use the institution name 
as the index:
>>> college_unique = college.set_index("INSTNM")

>>> college_unique.index.is_unique

True

5. Let's select Stanford University with Boolean indexing. Note that this returns a 
DataFrame:
>>> college[college["INSTNM"] == "Stanford University"]

           INSTNM      CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

4217  Stanford...  Stanford  ...        86000           12782

6. Let's select Stanford University with index selection. Note that this returns a Series:
>>> college_unique.loc["Stanford University"]

CITY                  Stanford

STABBR                      CA

HBCU                         0

MENONLY                      0

WOMENONLY                    0

                        ...

PCTPELL                 0.1556

PCTFLOAN                0.1256

UG25ABV                 0.0401

MD_EARN_WNE_P10          86000

GRAD_DEBT_MDN_SUPP       12782

Name: Stanford University, Length: 26, dtype: object

7. If we want a DataFrame rather than a Series, we need to pass in a list of index values 
into .loc:
>>> college_unique.loc[["Stanford University"]]

           INSTNM      CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

4217  Stanford...  Stanford  ...        86000           12782
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8. They both produce the same data, just with different objects. Let's time each 
approach:

>>> %timeit college[college['INSTNM'] == 'Stanford University']

1.92 ms ± 396 µs per loop (mean ± std. dev. of 7 runs, 1000 loops 
each)

>>> %timeit college_unique.loc[['Stanford University']]

988 µs ± 122 µs per loop (mean ± std. dev. of 7 runs, 1000 loops 
each)

How it works…
When the index is not sorted and contains duplicates, as with college2, pandas will need to 
check every single value in the index to make the correct selection. When the index is sorted, 
as with college3, pandas takes advantage of an algorithm called binary search to improve 
search performance.

In the second half of the recipe, we use a unique column as the index. pandas implements 
unique indexes with a hash table, which makes for even faster selection. Each index location 
can be looked up in nearly the same time regardless of its length.

There's more…
Boolean selection gives much more flexibility than index selection as it is possible to condition 
on any number of columns. In this recipe, we used a single column as the index. It is possible 
to concatenate multiple columns together to form an index. For instance, in the following 
code, we set the index equal to the concatenation of the city and state columns:

>>> college.index = (

...     college["CITY"] + ", " + college["STABBR"]

... )

>>> college = college.sort_index()

>>> college.head()

                   INSTNM      CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

ARTESIA, CA   Angeles ...   ARTESIA  ...          NaN           16850

Aberdeen, SD  Presenta...  Aberdeen  ...        35900           25000

Aberdeen, SD  Northern...  Aberdeen  ...        33600           24847

Aberdeen, WA  Grays Ha...  Aberdeen  ...        27000           11490

Abilene, TX   Hardin-S...   Abilene  ...        38700           25864
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From here, we can select all colleges from a particular city and state combination without 
Boolean indexing. Let's select all colleges from Miami, FL:

>>> college.loc["Miami, FL"].head()

                INSTNM   CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_SUPP

Miami, FL  New Prof...  Miami  ...        18700            8682

Miami, FL  Manageme...  Miami  ...  PrivacyS...           12182

Miami, FL  Strayer ...  Miami  ...        49200         36173.5

Miami, FL  Keiser U...  Miami  ...        29700           26063

Miami, FL  George T...  Miami  ...        38600     PrivacyS...

We can compare the speed of this compound index selection with Boolean indexing. There is 
almost an order of magnitude difference:

>>> %%timeit

>>> crit1 = college["CITY"] == "Miami"

>>> crit2 = college["STABBR"] == "FL"

>>> college[crit1 & crit2]

3.05 ms ± 66.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit college.loc['Miami, FL']

369 µs ± 130 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Translating SQL WHERE clauses
Many pandas users will have experience of interacting with a database using Structured 
Query Language (SQL). SQL is a standard to define, manipulate, and control data stored in a 
database

SQL is an important language for data scientists to know. Much of the world's data is stored 
in databases that require SQL to retrieve and manipulate it SQL syntax is fairly simple and 
easy to learn. There are many different SQL implementations from companies such as Oracle, 
Microsoft, IBM, and more.

Within a SQL SELECT statement, the WHERE clause is very common and filters data. This 
recipe will write pandas code that is equivalent to a SQL query that selects a certain subset 
of the employee dataset.

Suppose we are given a task to find all the female employees who work in the police or fire 
departments who have a base salary of between 80 and 120 thousand dollars. 
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The following SQL statement would answer this query for us:

SELECT

    UNIQUE_ID,

    DEPARTMENT,

    GENDER,

    BASE_SALARY

FROM

    EMPLOYEE

WHERE

    DEPARTMENT IN ('Houston Police Department-HPD',

                   'Houston Fire Department (HFD)') AND

    GENDER = 'Female' AND

    BASE_SALARY BETWEEN 80000 AND 120000;

This recipe assumes that you have a dump of the EMPLOYEE database in a CSV file and that 
you want to replicate the above query using pandas.

How to do it…
1. Read in the employee dataset as a DataFrame:

>>> employee = pd.read_csv("data/employee.csv")

2. Before filtering out the data, it is helpful to do some manual inspection of each of the 
filtered columns to know the exact values that will be used in the filter:
>>> employee.dtypes

UNIQUE_ID              int64

POSITION_TITLE        object

DEPARTMENT            object

BASE_SALARY          float64

RACE                  object

EMPLOYMENT_TYPE       object

GENDER                object

EMPLOYMENT_STATUS     object

HIRE_DATE             object

JOB_DATE              object

dtype: object
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>>> employee.DEPARTMENT.value_counts().head()

Houston Police Department-HPD     638

Houston Fire Department (HFD)     384

Public Works & Engineering-PWE    343

Health & Human Services           110

Houston Airport System (HAS)      106

Name: DEPARTMENT, dtype: int64    

>>> employee.GENDER.value_counts()

Male      1397

Female     603

Name: GENDER, dtype: int64    

>>> employee.BASE_SALARY.describe()

count      1886.000000

mean      55767.931601

std       21693.706679

min       24960.000000

25%       40170.000000

50%       54461.000000

75%       66614.000000

max      275000.000000

Name: BASE_SALARY, dtype: float64

3. Write a single statement for each of the criteria. Use the isin method to test equality 
to one of many values:
>>> depts = [

...     "Houston Police Department-HPD",

...     "Houston Fire Department (HFD)",

... ]

>>> criteria_dept = employee.DEPARTMENT.isin(depts)

>>> criteria_gender = employee.GENDER == "Female"

>>> criteria_sal = (employee.BASE_SALARY >= 80000) & (

...     employee.BASE_SALARY <= 120000

... )
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4. Combine all the Boolean arrays:
>>> criteria_final = (

...     criteria_dept & criteria_gender & criteria_sal

... )

5. Use Boolean indexing to select only the rows that meet the final criteria:

>>> select_columns = [

...     "UNIQUE_ID",

...     "DEPARTMENT",

...     "GENDER",

...     "BASE_SALARY",

... ]

>>> employee.loc[criteria_final, select_columns].head()

     UNIQUE_ID   DEPARTMENT  GENDER  BASE_SALARY

61          61  Houston ...  Female      96668.0

136        136  Houston ...  Female      81239.0

367        367  Houston ...  Female      86534.0

474        474  Houston ...  Female      91181.0

513        513  Houston ...  Female      81239.0

How it works…
Before any filtering is done, you will need to know the exact string names that you want to filter 
by. The .value_counts method is one way to get both the exact string name and number of 
occurrences of string values.

The .isin method is equivalent to the SQL IN operator and accepts a list of all possible 
values that you would like to keep. It is possible to use a series of OR conditions to replicate 
this expression, but it would not be as efficient or idiomatic.

The criteria for salary, criteria_sal, is formed by combining two simple inequality 
expressions. All the criteria are combined with the pandas and operator, &, to yield a single 
Boolean array as the filter.

There's more…
For many operations, pandas has multiple ways to do the same thing. In the preceding recipe, 
the criteria for salary uses two separate Boolean expressions. Similar to SQL, Series have a 
.between method, with the salary criteria equivalently written as follows. We will stick in an 
underscore in the hardcoded numbers to help with legibility:
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''' {.sourceCode .pycon}    

>>> criteria_sal = employee.BASE_SALARY.between(

...     80_000, 120_000

... )

'''

Another useful application of .isin is to provide a sequence of values automatically 
generated by some other pandas statements. This would avoid any manual investigating to 
find the exact string names to store in a list. Conversely, let's try to exclude the rows from the 
top five most frequently occurring departments:

>>> top_5_depts = employee.DEPARTMENT.value_counts().index[

...     :5

... ]

>>> criteria = ~employee.DEPARTMENT.isin(top_5_depts)

>>> employee[criteria]

      UNIQUE_ID POSITION_TITLE  ...   HIRE_DATE    JOB_DATE

0             0  ASSISTAN...    ...  2006-06-12  2012-10-13

1             1  LIBRARY ...    ...  2000-07-19  2010-09-18

4             4  ELECTRICIAN    ...  1989-06-19  1994-10-22

18           18  MAINTENA...    ...  2008-12-29  2008-12-29

32           32  SENIOR A...    ...  1991-02-11  2016-02-13

...         ...          ...    ...         ...         ...

1976       1976  SENIOR S...    ...  2015-07-20  2016-01-30

1983       1983  ADMINIST...    ...  2006-10-16  2006-10-16

1985       1985  TRUCK DR...    ...  2013-06-10  2015-08-01

1988       1988  SENIOR A...    ...  2013-01-23  2013-03-02

1990       1990  BUILDING...    ...  1995-10-14  2010-03-20

The SQL equivalent of this would be as follows:

SELECT *

   FROM

       EMPLOYEE

   WHERE

       DEPARTMENT not in

       (

         SELECT

             DEPARTMENT
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FROM ( SELECT

DEPARTMENT,

                  COUNT(1) as CT

              FROM

                  EMPLOYEE

              GROUP BY

                  DEPARTMENT

              ORDER BY

                  CT DESC

              LIMIT 5

) );

Notice the use of the pandas not operator, ~, which negates all Boolean values of a Series.

Improving the readability of Boolean 
indexing with the query method

Boolean indexing is not necessarily the most pleasant syntax to read or write, especially when 
using a single line to write a complex filter. pandas has an alternative string-based syntax 
through the DataFrame query method that can provide more clarity.

This recipe replicates the earlier recipe in this chapter, Translating SQL WHERE clauses, but 
instead takes advantage of the .query method of the DataFrame. The goal here is to filter 
the employee data for female employees from the police or fire departments who earn a 
salary of between 80 and 120 thousand dollars.

How to do it…
1. Read in the employee data, assign the chosen departments, and import columns to 

variables:
>>> employee = pd.read_csv("data/employee.csv")

>>> depts = [

...     "Houston Police Department-HPD",
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...     "Houston Fire Department (HFD)",

... ]

>>> select_columns = [

...     "UNIQUE_ID",

...     "DEPARTMENT",

...     "GENDER",

...     "BASE_SALARY",

... ]

2. Build the query string and execute the method. Note that the .query method does 
not like triple quoted strings spanning multiple lines, hence the ugly concatenation:

>>> qs = (

...     "DEPARTMENT in @depts "

...     " and GENDER == 'Female' "

...     " and 80000 <= BASE_SALARY <= 120000"

... )

>>> emp_filtered = employee.query(qs)

>>> emp_filtered[select_columns].head()

     UNIQUE_ID   DEPARTMENT  GENDER  BASE_SALARY

61          61  Houston ...  Female      96668.0

136        136  Houston ...  Female      81239.0

367        367  Houston ...  Female      86534.0

474        474  Houston ...  Female      91181.0

513        513  Houston ...  Female      81239.0

How it works…
Strings passed to the .query method are going to look more like plain English than normal 
pandas code. It is possible to reference Python variables using the at symbol (@), as with 
depts. All DataFrame column names are available in the query namespace by referencing 
their names without extra quotes. If a string is needed, such as Female, inner quotes will 
need to wrap it.

Another nice feature of the query syntax is the ability to combine Boolean operators using 
and, or, and not.
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There's more…
Instead of manually typing in a list of department names, we could have programmatically 
created it. For instance, if we wanted to find all the female employees who were not a member 
of the top 10 departments by frequency, we can run the following code:

>>> top10_depts = (

...     employee.DEPARTMENT.value_counts()

...     .index[:10]

...     .tolist()

... )

>>> qs = "DEPARTMENT not in @top10_depts and GENDER == 'Female'"

>>> employee_filtered2 = employee.query(qs)

>>> employee_filtered2.head()

     UNIQUE_ID POSITION_TITLE  ...   HIRE_DATE    JOB_DATE

0            0  ASSISTAN...    ...  2006-06-12  2012-10-13

73          73  ADMINIST...    ...  2011-12-19  2013-11-23

96          96  ASSISTAN...    ...  2013-06-10  2013-06-10

117        117  SENIOR A...    ...  1998-03-20  2012-07-21

146        146  SENIOR S...    ...  2014-03-17  2014-03-17

Preserving Series size with the .where 
method

When you filter with Boolean arrays, the resulting Series or DataFrame is typically smaller. 
The .where method preserves the size of your Series or DataFrame and either sets the 
values that don't meet the criteria to missing or replaces them with something else. Instead 
of dropping all these values, it is possible to keep them.

When you combine this functionality with the other parameter, you can create functionality 
similar to coalesce found in databases.

In this recipe, we pass the .where method Boolean conditions to put a floor and ceiling on 
the minimum and maximum number of Facebook likes for actor 1 in the movie dataset.
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How to do it…
1. Read the movie dataset, set the movie title as the index, and select all the values in 

the actor_1_facebook_likes column that are not missing:
>>> movie = pd.read_csv(

...     "data/movie.csv", index_col="movie_title"

... )

>>> fb_likes = movie["actor_1_facebook_likes"].dropna()

>>> fb_likes.head()

movie_title

Avatar                                         1000.0

Pirates of the Caribbean: At World's End      40000.0

Spectre                                       11000.0

The Dark Knight Rises                         27000.0

Star Wars: Episode VII - The Force Awakens      131.0

Name: actor_1_facebook_likes, dtype: float64

2. Let's use the describe method to get a sense of the distribution:
>>> fb_likes.describe()

count      4909.000000

mean       6494.488491

std       15106.986884

min           0.000000

25%         607.000000

50%         982.000000

75%       11000.000000

max      640000.000000

Name: actor_1_facebook_likes, dtype: float64

3. Additionally, we may plot a histogram of this Series to visually inspect the distribution. 
The code below calls plt.subplots to specify the figure size, but is not needed in 
general:
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fb_likes.hist(ax=ax)
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>>> fig.savefig(

...     "c7-hist.png", dpi=300

... )  

Default pandas histogram

4. This visualization makes it difficult to get a sense of the distribution. On the other 
hand, the summary statistics from step 2 appear to be telling us that the data is 
highly skewed to the right with a few very large observations (more than an order of 
magnitude greater than the median). Let's create criteria to test whether the number 
of likes is fewer than 20,000:
>>> criteria_high = fb_likes < 20_000

>>> criteria_high.mean().round(2)

0.91

5. About 91% of the movies have an actor 1 with fewer than 20,000 likes. We will now 
use the .where method, which accepts a Boolean array. The default behavior is to 
return a Series the same size as the original, but which has all the False locations 
replaced with a missing value:
>>> fb_likes.where(criteria_high).head()

movie_title

Avatar                                         1000.0

Pirates of the Caribbean: At World's End          NaN

Spectre                                       11000.0



Chapter 7

235

The Dark Knight Rises                             NaN

Star Wars: Episode VII - The Force Awakens      131.0

Name: actor_1_facebook_likes, dtype: float64

6. The second parameter to the .where method, other, allows you to control 
the replacement value. Let's change all the missing values to 20,000:
>>> fb_likes.where(criteria_high, other=20000).head()

movie_title

Avatar                                         1000.0

Pirates of the Caribbean: At World's End      20000.0

Spectre                                       11000.0

The Dark Knight Rises                         20000.0

Star Wars: Episode VII - The Force Awakens      131.0

Name: actor_1_facebook_likes, dtype: float64

7. Similarly, we can create criteria to put a floor on the minimum number of likes. 
Here, we chain another .where method and replace the values not satisfying 
the condition to 300:
>>> criteria_low = fb_likes > 300

>>> fb_likes_cap = fb_likes.where(

...     criteria_high, other=20_000

... ).where(criteria_low, 300)

>>> fb_likes_cap.head()

movie_title

Avatar                                         1000.0

Pirates of the Caribbean: At World's End      20000.0

Spectre                                       11000.0

The Dark Knight Rises                         20000.0

Star Wars: Episode VII - The Force Awakens      300.0

Name: actor_1_facebook_likes, dtype: float64

8. The lengths of the original Series and the modified Series are the same:
>>> len(fb_likes), len(fb_likes_cap)

(4909, 4909)

9. Let's make a histogram with the modified Series. With the data in a much tighter 
range, it should produce a better plot:

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fb_likes_cap.hist(ax=ax)
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>>> fig.savefig(

...     "c7-hist2.png", dpi=300

... )

A pandas histogram with a tighter range

How it works…
The .where method again preserves the size and shape of the calling object and does not 
modify the values where the passed Boolean is True. It was important to drop the missing 
values in step 1 as the .where method would have eventually replaced them with a valid 
number in future steps.

The summary statistics in step 2 give us some idea of where it would make sense to cap our 
data. The histogram from step 3, on the other hand, appears to clump all the data into one 
bin. The data has too many outliers for a plain histogram to make a good plot. The .where 
method allows us to place a ceiling and floor on our data, which results in a histogram with 
less variance.
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There's more…
pandas actually has built-in methods, .clip, .clip_lower, and .clip_upper, that 
replicate this operation. The .clip method can set a floor and ceiling at the same time:

>>> fb_likes_cap2 = fb_likes.clip(lower=300, upper=20000)

>>> fb_likes_cap2.equals(fb_likes_cap)

True

Masking DataFrame rows
The .mask method performs the complement of the .where method. By default, it creates 
missing values wherever the Boolean condition is True. In essence, it is literally masking, or 
covering up, values in your dataset.

In this recipe, we will mask all rows of the movie dataset that were made after 2010 and then 
filter all the rows with missing values.

How to do it…
1. Read the movie dataset, set the movie title as the index, and create the criteria:

>>> movie = pd.read_csv(

...     "data/movie.csv", index_col="movie_title"

... )

>>> c1 = movie["title_year"] >= 2010

>>> c2 = movie["title_year"].isna()

>>> criteria = c1 | c2

2. Use the .mask method on a DataFrame to remove the values for all the values 
in rows with movies that were made from 2010. Any movie that originally had 
a missing value for title_year is also masked:
>>> movie.mask(criteria).head()

                                            color  ...

movie_title                                        ...

Avatar                                      Color  ...

Pirates of the Caribbean: At World's End    Color  ...

Spectre                                       NaN  ...

The Dark Knight Rises                         NaN  ...

Star Wars: Episode VII - The Force Awakens    NaN  ...
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3. Notice how all the values in the third, fourth, and fifth rows from the preceding 
DataFrame are missing. Chain the .dropna method to remove rows that have 
all values missing:
>>> movie_mask = movie.mask(criteria).dropna(how="all")

>>> movie_mask.head()

                                          color  ...

movie_title                                      ...

Avatar                                    Color  ...

Pirates of the Caribbean: At World's End  Color  ...

Spider-Man 3                              Color  ...

Harry Potter and the Half-Blood Prince    Color  ...

Superman Returns                          Color  ...

4. The operation in step 3 is just a complex way of doing basic Boolean indexing. We can 
check whether the two methods produce the same DataFrame:
>>> movie_boolean = movie[movie["title_year"] < 2010]

>>> movie_mask.equals(movie_boolean)

False

5. The .equals method informs us that they are not equal. Something is wrong. 
Let's do some sanity checking and see whether they are the same shape:
>>> movie_mask.shape == movie_boolean.shape

True

6. When we used the preceding .mask method, it created many missing values. Missing 
values are float data types, so any column that was an integer type that got 
missing values was converted to a float type. The .equals method returns False 
if the data types of the columns are different, even if the values are the same. Let's 
check the equality of the data types to see whether this scenario happened:
>>> movie_mask.dtypes == movie_boolean.dtypes

color                       True

director_name               True

num_critic_for_reviews      True

duration                    True

director_facebook_likes     True

                           ...

title_year                  True

actor_2_facebook_likes      True

imdb_score                  True
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aspect_ratio                True

movie_facebook_likes       False

Length: 27, dtype: bool

7. It turns out that a couple of columns don't have the same data type. pandas has an 
alternative for these situations. In its testing module, which is primarily used by 
developers, there is a function, assert_frame_equal, that allows you to check 
the equality of Series and DataFrames without also checking the equality of the data 
types:

>>> from pandas.testing import assert_frame_equal

>>> assert_frame_equal(

...     movie_boolean, movie_mask, check_dtype=False

... )

How it works…
By default, the .mask method fills in rows where the Boolean array is True with NaN. The 
first parameter to the .mask method is a Boolean array. Because the .mask method is 
called from a DataFrame, all of the values in each row where the condition is True change 
to missing. Step 3 uses this masked DataFrame to drop the rows that contain all missing 
values. Step 4 shows how to do this same procedure with index operations.

During data analysis, it is important to continually validate results. Checking the equality of 
a Series and a DataFrame is one approach to validation. Our first attempt, in step 4, yielded 
an unexpected result. Some basic sanity checking, such as ensuring that the number of rows 
and columns are the same, or that the row and column names are the same, are good checks 
before going deeper.

Step 6 compares the data types of the two Series. It is here where we uncover the reason 
why the DataFrames were not equivalent. The .equals method checks that both the values 
and data types are the same. The assert_frame_equal function from step 7 has many 
available parameters to test equality in a variety of ways. Notice that there is no output after 
calling assert_frame_equal. This method returns None when two DataFrames are equal 
and raises an error when they are not.

There's more…
Let's compare the speed difference between masking and dropping missing rows and filtering 
with Boolean arrays. Filtering is about an order of magnitude faster in this case:

>>> %timeit movie.mask(criteria).dropna(how='all')

11.2 ms ± 144 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
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>>> %timeit movie[movie['title_year'] < 2010]

1.07 ms ± 34.9 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Selecting with Booleans, integer location, 
and labels

Previously, we covered a wide range of recipes on selecting different subsets of data through 
the .iloc and .loc attributes. Both of these select rows and columns simultaneously by 
either integer location or label.

In this recipe, we will filter both rows and columns with the .iloc and .loc attributes.

How to do it…
1. Read in the movie dataset, set the index as the title, and then create a Boolean array 

matching all movies with a content rating of G and an IMDB score less than 4:
>>> movie = pd.read_csv(

...     "data/movie.csv", index_col="movie_title"

... )

>>> c1 = movie["content_rating"] == "G"

>>> c2 = movie["imdb_score"] < 4

>>> criteria = c1 & c2

2. Let's first pass these criteria to .loc to filter the rows:
>>> movie_loc = movie.loc[criteria]

>>> movie_loc.head()

                                color  ... movie/likes

movie_title                            ...

The True Story of Puss'N Boots  Color  ...          90

Doogal                          Color  ...         346

Thomas and the Magic Railroad   Color  ...         663

Barney's Great Adventure        Color  ...         436

Justin Bieber: Never Say Never  Color  ...       62000

3. Let's check whether this DataFrame is exactly equal to the one generated directly 
from the indexing operator:
>>> movie_loc.equals(movie[criteria])

True
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4. Now, let's attempt the same Boolean indexing with the .iloc indexer:
>>> movie_iloc = movie.iloc[criteria]

Traceback (most recent call last):

   ...

ValueError: iLocation based boolean indexing cannot use an 
indexable as a mask

5. It turns out that we cannot directly use a Series of Booleans because of the index. 
We can, however, use an ndarray of Booleans. To get the array, use the .to_
numpy() method:
>>> movie_iloc = movie.iloc[criteria.to_numpy()]

>>> movie_iloc.equals(movie_loc)

True

6. Although not very common, it is possible to do Boolean indexing to select particular 
columns. Here, we select all the columns that have a data type of 64-bit integers:
>>> criteria_col = movie.dtypes == np.int64

>>> criteria_col.head()

color                      False

director_name              False

num_critic_for_reviews     False

duration                   False

director_facebook_likes    False

dtype: bool

>>> movie.loc[:, criteria_col].head()

              num_voted_users  cast_total_facebook_likes  movie_
facebook_likes

movie_title

Avatar             886204             4834                      
33000

Pirates o...       471220            48350                          
0

Spectre            275868            11700                      
85000

The Dark ...      1144337           106759                     
164000

Star Wars...            8              143                          
0
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7. As criteria_col is a Series, which always has an index, you must use the 
underlying ndarray to make it work with .iloc. The following produces the same 
result as step 6:
>>> movie.iloc[:, criteria_col.to_numpy()].head()

              num_voted_users  cast_total_facebook_likes  movie_
facebook_likes

movie_title

Avatar             886204             4834                      
33000

Pirates o...       471220            48350                          
0

Spectre            275868            11700                      
85000

The Dark ...      1144337           106759                     
164000

Star Wars...            8              143                          
0

8. When using .loc, you can use a Boolean array to select rows, and specify 
the columns you want with a list of labels. Remember, you need to put a comma 
between the row and column selections. Let's keep the same row criteria and select 
the content_rating, imdb_score, title_year, and gross columns:
>>> cols = [

...     "content_rating",

...     "imdb_score",

...     "title_year",

...     "gross",

... ]

>>> movie.loc[criteria, cols].sort_values("imdb_score")

             content_rating  imdb_score  title_year       gross

movie_title

Justin Bi...            G           1.6      2011.0  73000942.0

Sunday Sc...            G           2.5      2008.0         NaN

Doogal                  G           2.8      2006.0   7382993.0

Barney's ...            G           2.8      1998.0  11144518.0

The True ...            G           2.9      2009.0         NaN

Thomas an...            G           3.6      2000.0  15911333.0
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9. You can create this same operation with .iloc, but you need to specify the position 
of the columns:

>>> col_index = [movie.columns.get_loc(col) for col in cols]

>>> col_index

[20, 24, 22, 8]

>>> movie.iloc[criteria.to_numpy(), col_index].sort_values(

...     "imdb_score"

... )

             content_rating  imdb_score  title_year       gross

movie_title

Justin Bi...            G           1.6      2011.0  73000942.0

Sunday Sc...            G           2.5      2008.0         NaN

Doogal                  G           2.8      2006.0   7382993.0

Barney's ...            G           2.8      1998.0  11144518.0

The True ...            G           2.9      2009.0         NaN

Thomas an...            G           3.6      2000.0  15911333.0

How it works…
Both the .iloc and .loc attributes have some support filtering with Boolean arrays (with the 
caveat that .iloc cannot be passed a Series but the underlying ndarray.) Let's take a look at 
the one-dimensional ndarray underlying criteria:

>>> a = criteria.to_numpy()

>>> a[:5]

array([False, False, False, False, False])

>>> len(a), len(criteria)

(4916, 4916)

The array is the same length as the Series, which is the same length as the movie DataFrame. 
The integer location for the Boolean array aligns with the integer location of the DataFrame, 
and the filter happens as expected. These arrays also work with the .loc attribute as well, 
but they are a necessity with .iloc.

Steps 6 and 7 show how to filter by columns instead of by rows. The colon, :, is needed to 
indicate the selection of all the rows. The comma following the colon separates the row and 
column selections. However, there is actually a much easier way to select columns with 
integer data types and that is through the .select_dtypes method:

>>> movie.select_dtypes(int)
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              num_voted_users  cast_total_facebook_likes  

movie_title

Avatar             886204             4834                

Pirates o...       471220            48350                

Spectre            275868            11700                

The Dark ...      1144337           106759                

Star Wars...            8              143                

...                   ...              ...                

Signed Se...          629             2283                

The Follo...        73839             1753                

A Plague ...           38                0                

Shanghai ...         1255             2386                

My Date w...         4285              163                

Steps 8 and 9 show how to do row and column selections simultaneously. The rows were 
specified by a Boolean array and the columns were specified with a list of columns. You place 
a comma between the row and column selections. Step 9 uses a list comprehension to loop 
through all the desired column names to find their integer location with the index method 
.get_loc.
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8
Index Alignment

Introduction
When Series or DataFrames are combined, each dimension of the data automatically aligns 
on each axis first before any computation happens. This silent and automatic alignment of 
axes can confuse the uninitiated, but it gives flexibility to the power user. This chapter explores 
the Index object in-depth before showcasing a variety of recipes that take advantage of its 
automatic alignment.

Examining the Index object
As was discussed previously, each axis of a Series and a DataFrame has an Index object that 
labels the values. There are many different types of Index objects, but they all share common 
behavior. All Index objects, except for the MultiIndex, are single-dimensional data structures 
that combine the functionality of Python sets and NumPy ndarrays.

In this recipe, we will examine the column index of the college dataset and explore much 
of its functionality.

How to do it…
1. Read in the college dataset, and create a variable columns that holds the column 

index:
>>> import pandas as pd

>>> import numpy as np
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>>> college = pd.read_csv("data/college.csv")

>>> columns = college.columns

>>> columns

Index(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY', 
'RELAFFIL',

       'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS', 'UGDS_
WHITE',

       'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 'UGDS_AIAN', 
'UGDS_NHPI',

       'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_EF', 
'CURROPER', 'PCTPELL',

       'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_
SUPP'],

      dtype='object')

2. Use the .values attribute to access the underlying NumPy array:
>>> columns.values

array(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY',

       'RELAFFIL', 'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS',

       'UGDS_WHITE', 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 
'UGDS_AIAN',

       'UGDS_NHPI', 'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_
EF',

       'CURROPER', 'PCTPELL', 'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_
P10',

       'GRAD_DEBT_MDN_SUPP'], dtype=object)

3. Select items from the index by position with a scalar, list, or slice:
>>> columns[5]

'WOMENONLY'

>>> columns[[1, 8, 10]]

Index(['CITY', 'SATMTMID', 'UGDS'], dtype='object')

>>> columns[-7:-4]

Index(['PPTUG_EF', 'CURROPER', 'PCTPELL'], dtype='object')

4. Indexes share many of the same methods as Series and DataFrames:
>>> columns.min(), columns.max(), columns.isnull().sum()

('CITY', 'WOMENONLY', 0)

5. You can use basic arithmetic and comparison operators on Index objects:
>>> columns + "_A"
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Index(['INSTNM_A', 'CITY_A', 'STABBR_A', 'HBCU_A', 'MENONLY_A',

'WOMENONLY_A',

       'RELAFFIL_A', 'SATVRMID_A', 'SATMTMID_A', 'DISTANCEONLY_A', 
'UGDS_A',

       'UGDS_WHITE_A', 'UGDS_BLACK_A', 'UGDS_HISP_A', 'UGDS_
ASIAN_A',

       'UGDS_AIAN_A', 'UGDS_NHPI_A', 'UGDS_2MOR_A', 'UGDS_NRA_A',

       'UGDS_UNKN_A', 'PPTUG_EF_A', 'CURROPER_A', 'PCTPELL_A', 
'PCTFLOAN_A',

       'UG25ABV_A', 'MD_EARN_WNE_P10_A', 'GRAD_DEBT_MDN_SUPP_A'],

      dtype='object')

>>> columns > "G"

array([ True, False,  True,  True,  True,  True,  True,  True,  
True,

       False,  True,  True,  True,  True,  True,  True,  True,  
True,

        True,  True,  True, False,  True,  True,  True,  True,  
True])

6. Trying to change an Index value after its creation fails. Indexes are immutable 
objects:

>>> columns[1] = "city"

Traceback (most recent call last):

  ...

TypeError: Index does not support mutable operations

How it works…
As you can see from many of the Index object operations, it appears to have quite a bit in 
common with both Series and ndarrays. One of the most significant differences comes in 
step 6. Indexes are immutable and their values cannot be changed once created.

There's more…
Indexes support the set operations—union, intersection, difference, and symmetric difference:

>>> c1 = columns[:4]

>>> c1
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Index(['INSTNM', 'CITY', 'STABBR', 'HBCU'], dtype='object')

>>> c2 = columns[2:6]

>>> c2

Index(['STABBR', 'HBCU', 'MENONLY', 'WOMENONLY'], dtype='object')

>>> c1.union(c2)  # or 'c1 | c2'

Index(['CITY', 'HBCU', 'INSTNM', 'MENONLY', 'STABBR', 'WOMENONLY'],

dtype='object')

>>> c1.symmetric_difference(c2)  # or 'c1 ^ c2'

Index(['CITY', 'INSTNM', 'MENONLY', 'WOMENONLY'], dtype='object')

Indexes have many of the same operations as Python sets, and are similar to Python sets in 
another vital way. They are (usually) implemented using hash tables, which make for extremely 
fast access when selecting rows or columns from a DataFrame. Because the values need to 
be hashable, the values for the Index object need to be immutable types, such as a string, 
integer, or tuple, just like the keys in a Python dictionary.

Indexes support duplicate values, and if there happens to be a duplicate in any Index, then 
a hash table can no longer be used for its implementation, and object access becomes 
much slower.

Producing Cartesian products
Whenever a Series or DataFrame operates with another Series or DataFrame, the indexes 
(both the row index and column index) of each object align first before any operation begins. 
This index alignment happens behind the scenes and can be very surprising for those new to 
pandas. This alignment always creates a Cartesian product between the indexes unless the 
indexes are identical.

A Cartesian product is a mathematical term that usually appears in set theory. A Cartesian 
product between two sets is all the combinations of pairs of both sets. For example, the 52 
cards in a standard playing card deck represent a Cartesian product between the 13 ranks 
(A, 2, 3,…, Q, K) and the four suits.

Producing a Cartesian product isn't always the intended outcome, but it's essential to be 
aware of how and when it occurs so as to avoid unintended consequences. In this recipe, two 
Series with overlapping but non-identical indexes are added together, yielding a surprising 
result. We will also show what happens if they have the same index.
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How to do it…
Follow these steps to create a Cartesian product:

1. Construct two Series that have indexes that are different but contain some of the 
same values:
>>> s1 = pd.Series(index=list("aaab"), data=np.arange(4))

>>> s1

a    0

a    1

a    2

b    3

dtype: int64

>>> s2 = pd.Series(index=list("cababb"), data=np.arange(6))

>>> s2

c    0

a    1

b    2

a    3

b    4

b    5

dtype: int64

2. Add the two Series together to produce a Cartesian product. For each a index value 
in s1, we add every a in s2:

>>> s1 + s2

a    1.0

a    3.0

a    2.0

a    4.0

a    3.0

a    5.0

b    5.0

b    7.0

b    8.0

c    NaN

dtype: float64
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How it works…
Each a label in s1 pairs up with each a label in s2. This pairing produces six a labels, three 
b labels, and one c label in the resulting Series. A Cartesian product happens between all 
identical index labels.

As the element with label c is unique to the Series s2, pandas defaults its value to missing, 
as there is no label for it to align to in s1. pandas defaults to a missing value whenever an 
index label is unique to one object. This has the unfortunate consequence of changing the 
data type of the Series to a float, whereas each Series had only integers as values. The type 
change occurred because NumPy's missing value object, np.nan, only exists for floats but 
not for integers. Series and DataFrame columns must have homogeneous numeric data 
types. Therefore, each value in the column was converted to a float. Changing types makes 
little difference for this small dataset, but for larger datasets, this can have a significant 
memory impact.

There's more…
The Cartesian product is not created when the indexes are unique or contain both the same 
exact elements and elements in the same order. When the index values are unique or they 
are the same and have the same order, a Cartesian product is not created, and the indexes 
instead align by their position. Notice here that each element aligned exactly by position and 
that the data type remained an integer:

>>> s1 = pd.Series(index=list("aaabb"), data=np.arange(5))

>>> s2 = pd.Series(index=list("aaabb"), data=np.arange(5))

>>> s1 + s2

a    0

a    2

a    4

b    6

b    8

dtype: int64

If the elements of the index are identical, but the order is different between the Series, the 
Cartesian product occurs. Let's change the order of the index in s2 and rerun the same 
operation:

>>> s1 = pd.Series(index=list("aaabb"), data=np.arange(5))

>>> s2 = pd.Series(index=list("bbaaa"), data=np.arange(5))

>>> s1 + s2

a    2

a    3
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a    4

a    3

a    4

    ..

a    6

b    3

b    4

b    4

b    5

Length: 13, dtype: int64

Be aware of this as pandas has two drastically different outcomes for this same operation. 
Another instance where this can happen is during a groupby operation. If you do a groupby 
with multiple columns and one is of the type categorical, you will get a Cartesian product 
where each outer index will have every inner index value.

Finally, we will add two Series that have index values in a different order but do not have 
duplicate values. When we add these, we do not get a Cartesian product:

>>> s3 = pd.Series(index=list("ab"), data=np.arange(2))

>>> s4 = pd.Series(index=list("ba"), data=np.arange(2))

>>> s3 + s4

a    1

b    1

dtype: int64

In this recipe, each Series had a different number of elements. Typically, array-like data 
structures in Python and other languages do not allow operations to take place when the 
operating dimensions do not contain the same number of elements. pandas allows this to 
happen by aligning the indexes first before completing the operation.

In the previous chapter, I showed that you can set a column to the index and then filter on 
them. My preference is to leave the index alone and filter on the columns. This section gives 
another example of when you need to be very careful with the index.

Exploding indexes
The previous recipe walked through a trivial example of two small Series being added together 
with unequal indexes. This recipe is more of an "anti-recipe" of what not to do. The Cartesian 
product of index alignment can produce comically incorrect results when dealing with larger 
amounts of data.
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In this recipe, we add two larger Series that have indexes with only a few unique values but in 
different orders. The result will explode the number of values in the indexes.

How to do it…
1. Read in the employee data and set the index to the RACE column:

>>> employee = pd.read_csv(

...     "data/employee.csv", index_col="RACE"

... )

>>> employee.head()

              UNIQUE_ID POSITION_TITLE  ...   HIRE_DATE    JOB_
DATE

RACE                                    ...                        

Hispanic/...          0  ASSISTAN...    ...  2006-06-12  2012-10-
13

Hispanic/...          1  LIBRARY ...    ...  2000-07-19  2010-09-
18

White                 2  POLICE O...    ...  2015-02-03  2015-02-
03

White                 3  ENGINEER...    ...  1982-02-08  1991-05-
25

White                 4  ELECTRICIAN    ...  1989-06-19  1994-10-
22

2. Select the BASE_SALARY column as two different Series. Check to see whether this 
operation created two new objects:
>>> salary1 = employee["BASE_SALARY"]

>>> salary2 = employee["BASE_SALARY"]

>>> salary1 is salary2

True

3. The salary1 and salary2 variables are referring to the same object. This means 
that any change to one will change the other. To ensure that you receive a brand new 
copy of the data, use the .copy method:
>>> salary2 = employee["BASE_SALARY"].copy()

>>> salary1 is salary2

False

4. Let's change the order of the index for one of the Series by sorting it:
>>> salary1 = salary1.sort_index()

>>> salary1.head()
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RACE

American Indian or Alaskan Native    78355.0

American Indian or Alaskan Native    26125.0

American Indian or Alaskan Native    98536.0

American Indian or Alaskan Native        NaN

American Indian or Alaskan Native    55461.0

Name: BASE_SALARY, dtype: float64

>>> salary2.head()

RACE

Hispanic/Latino    121862.0

Hispanic/Latino     26125.0

White               45279.0

White               63166.0

White               56347.0

Name: BASE_SALARY, dtype: float64

5. Let's add these salary Series together:
>>> salary_add = salary1 + salary2

>>> salary_add.head()

RACE

American Indian or Alaskan Native    138702.0

American Indian or Alaskan Native    156710.0

American Indian or Alaskan Native    176891.0

American Indian or Alaskan Native    159594.0

American Indian or Alaskan Native    127734.0

Name: BASE_SALARY, dtype: float64

6. The operation completed successfully. Let's create one more Series of salary1 
added to itself and then output the lengths of each Series. We just exploded the 
index from 2,000 values to more than one million:

>>> salary_add1 = salary1 + salary1

>>> len(salary1), len(salary2), len(salary_add), len(

...     salary_add1

... )

(2000, 2000, 1175424, 2000)
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How it works…
Step 2 appears at first to create two unique objects, but in fact, it creates a single object that 
is referred to by two different variable names. The expression employee['BASE_SALARY'], 
technically creates a view, and not a brand new copy. This is verified with the is operator.

In pandas, a view is not a new object but just a reference to another object, usually some 
subset of a DataFrame. This shared object can be a cause for many issues.

To ensure that the variables reference completely different objects, we use the .copy 
method and then verify that they are different objects with the is operator. Step 4 uses the 
.sort_index method to sort the Series by race. Note that this Series has the same index 
entries, but they are now in a different order than salary1. Step 5 adds these different 
Series together to produce the sum. By inspecting the head, it is still not clear what has been 
produced.

Step 6 adds salary1 to itself to show a comparison between the two different Series 
additions. The lengths of all the Series in this recipe are printed and we clearly see that 
salary_add has now exploded to over one million values. A Cartesian product took place 
because the indexes were not unique and in the same order. This recipe shows a more 
dramatic example of what happens when the indexes differ.

There's more…
We can verify the number of values of salary_add by doing a little mathematics. As a 
Cartesian product takes place between all of the same index values, we can sum the square 
of their counts. Even missing values in the index produce Cartesian products with themselves:

>>> index_vc = salary1.index.value_counts(dropna=False)

>>> index_vc

Black or African American            700

White                                665

Hispanic/Latino                      480

Asian/Pacific Islander               107

NaN                                   35

American Indian or Alaskan Native     11

Others                                 2

Name: RACE, dtype: int64

>>> index_vc.pow(2).sum()

1175424
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Filling values with unequal indexes
When two Series are added together using the plus operator and one of the index labels does 
not appear in the other, the resulting value is always missing. pandas has the .add method, 
which provides an option to fill the missing value. Note that these Series do not include 
duplicate entries, hence there is no need to worry about a Cartesian product exploding the 
number of entries.

In this recipe, we add together multiple Series from the baseball dataset with unequal (but 
unique) indexes using the .add method with the fill_value parameter to ensure that 
there are no missing values in the result.

How to do it…
1. Read in the three baseball datasets and set playerID as the index:

>>> baseball_14 = pd.read_csv(

...     "data/baseball14.csv", index_col="playerID"

... )

>>> baseball_15 = pd.read_csv(

...     "data/baseball15.csv", index_col="playerID"

... )

>>> baseball_16 = pd.read_csv(

...     "data/baseball16.csv", index_col="playerID"

... )

>>> baseball_14.head()

           yearID  stint teamID lgID  ...  HBP   SH   SF  GIDP

playerID                              ...

altuvjo01    2014      1    HOU   AL  ...  5.0  1.0  5.0  20.0

cartech02    2014      1    HOU   AL  ...  5.0  0.0  4.0  12.0

castrja01    2014      1    HOU   AL  ...  9.0  1.0  3.0  11.0

corpoca01    2014      1    HOU   AL  ...  3.0  1.0  2.0   3.0

dominma01    2014      1    HOU   AL  ...  5.0  2.0  7.0  23.0

2. Use the .difference method on the index to discover which index labels are in 
baseball_14 and not in baseball_15, and vice versa:
>>> baseball_14.index.difference(baseball_15.index)

Index(['corpoca01', 'dominma01', 'fowlede01', 'grossro01', 
'guzmaje01',

       'hoeslj01', 'krausma01', 'preslal01', 'singljo02'],
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      dtype='object', name='playerID')

>>> baseball_15.index.difference(baseball_14.index)

Index(['congeha01', 'correca01', 'gattiev01', 'gomezca01', 
'lowrije01',

       'rasmuco01', 'tuckepr01', 'valbulu01'],

      dtype='object', name='playerID')

3. There are quite a few players unique to each index. Let's find out how many hits each 
player has in total over the three-year period. The H column contains the number of 
hits:
>>> hits_14 = baseball_14["H"]

>>> hits_15 = baseball_15["H"]

>>> hits_16 = baseball_16["H"]

>>> hits_14.head()

playerID

altuvjo01    225

cartech02    115

castrja01    103

corpoca01     40

dominma01    121

Name: H, dtype: int64

4. Let's first add together two Series using the plus operator:
>>> (hits_14 + hits_15).head()

playerID

altuvjo01    425.0

cartech02    193.0

castrja01    174.0

congeha01      NaN

corpoca01      NaN

Name: H, dtype: float64

5. Even though players congeha01 and corpoca01 have values for 2015, their result 
is missing. Let's use the .add method with the fill_value parameter to avoid 
missing values:
>>> hits_14.add(hits_15, fill_value=0).head()

playerID

altuvjo01    425.0



Chapter 8

257

cartech02    193.0

castrja01    174.0

congeha01     46.0

corpoca01     40.0

Name: H, dtype: float64

6. We add hits from 2016 by chaining the add method once more:
>>> hits_total = hits_14.add(hits_15, fill_value=0).add(

...     hits_16, fill_value=0

... )

>>> hits_total.head()

playerID

altuvjo01    641.0

bregmal01     53.0

cartech02    193.0

castrja01    243.0

congeha01     46.0

Name: H, dtype: float64

7. Check for missing values in the result:

>>> hits_total.hasnans

False

How it works…
The .add method works in a similar way to the plus operator, but allows for more flexibility 
by providing the fill_value parameter to take the place of a non-matching index. In this 
problem, it makes sense to default the non-matching index value to 0, but you could have 
used any other number.

There will be occasions when each Series contains index labels that correspond to missing 
values. In this specific instance, when the two Series are added, the index label will still 
correspond to a missing value regardless of whether the fill_value parameter is used. 
To clarify this, take a look at the following example where the index label a corresponds to a 
missing value in each Series:

>>> s = pd.Series(

...     index=["a", "b", "c", "d"],

...     data=[np.nan, 3, np.nan, 1],

... )
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>>> s

a    NaN

b    3.0

c    NaN

d    1.0

dtype: float64

>>> s1 = pd.Series(

...     index=["a", "b", "c"], data=[np.nan, 6, 10]

... )

>>> s1

a     NaN

b     6.0

c    10.0

dtype: float64

>>> s.add(s1, fill_value=5)

a     NaN

b     9.0

c    15.0

d     6.0

dtype: float64

There's more…
This recipe shows how to add Series with only a single index together. It is also possible to 
add DataFrames together. Adding two DataFrames together will align both the index and 
columns before computation and insert missing values for non-matching indexes. Let's start 
by selecting a few of the columns from the 2014 baseball dataset:

>>> df_14 = baseball_14[["G", "AB", "R", "H"]]

>>> df_14.head()

             G   AB   R    H

playerID                    

altuvjo01  158  660  85  225

cartech02  145  507  68  115

castrja01  126  465  43  103
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corpoca01   55  170  22   40

dominma01  157  564  51  121

Let's also select a few of the same and a few different columns from the 2015 baseball 
dataset:

>>> df_15 = baseball_15[["AB", "R", "H", "HR"]]

>>> df_15.head()

            AB   R    H  HR

playerID                   

altuvjo01  638  86  200  15

cartech02  391  50   78  24

castrja01  337  38   71  11

congeha01  201  25   46  11

correca01  387  52  108  22

Adding the two DataFrames together creates missing values wherever rows or column labels 
cannot align. You can use the .style attribute and call the .highlight_null method to 
see where the missing values are:

Highlight null values when using the plus operator
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Only the rows where playerID appears in both DataFrames will be available. Similarly, the 
columns AB, H, and R are the only ones that appear in both DataFrames. Even if we use the 
.add method with the fill_value parameter specified, we still might have missing values. 
This is because some combinations of rows and columns never existed in our input data; for 
example, the intersection of playerID congeha01 and column G. That player only appeared in 
the 2015 dataset that did not have the G column. Therefore, that value was missing:

Highlight null values when using the .add method

Adding columns from different DataFrames
All DataFrames can add new columns to themselves. However, as usual, whenever 
a DataFrame is adding a new column from another DataFrame or Series, the indexes align 
first, and then the new column is created.

This recipe uses the employee dataset to append a new column containing the maximum 
salary of that employee's department.
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How to do it…
1. Import the employee data and select the DEPARTMENT and BASE_SALARY columns 

in a new DataFrame:
>>> employee = pd.read_csv("data/employee.csv")

>>> dept_sal = employee[["DEPARTMENT", "BASE_SALARY"]]

2. Sort this smaller DataFrame by salary within each department:
>>> dept_sal = dept_sal.sort_values(

...     ["DEPARTMENT", "BASE_SALARY"],

...     ascending=[True, False],

... )

3. Use the .drop_duplicates method to keep the first row of each DEPARTMENT:
>>> max_dept_sal = dept_sal.drop_duplicates(

...     subset="DEPARTMENT"

... )

>>> max_dept_sal.head()

       DEPARTMENT  BASE_SALARY

                        DEPARTMENT  BASE_SALARY

1494    Admn. & Regulatory Affairs     140416.0

149       City Controller's Office      64251.0

236                   City Council     100000.0

647   Convention and Entertainment      38397.0

1500   Dept of Neighborhoods (DON)      89221.0

4. Put the DEPARTMENT column into the index for each DataFrame:
>>> max_dept_sal = max_dept_sal.set_index("DEPARTMENT")

>>> employee = employee.set_index("DEPARTMENT")

5. Now that the indexes contain matching values, we can add a new column to the 
employee DataFrame:
>>> employee = employee.assign(

...     MAX_DEPT_SALARY=max_dept_sal["BASE_SALARY"]

... )

>>> employee

                               UNIQUE_ID  ... MAX_D/ALARY

DEPARTMENT                                ...

Municipal Courts Department            0  ...    121862.0
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Library                                1  ...    107763.0

Houston Police Department-HPD          2  ...    199596.0

Houston Fire Department (HFD)          3  ...    210588.0

General Services Department            4  ...     89194.0

...                                  ...  ...         ...

Houston Police Department-HPD       1995  ...    199596.0

Houston Fire Department (HFD)       1996  ...    210588.0

Houston Police Department-HPD       1997  ...    199596.0

Houston Police Department-HPD       1998  ...    199596.0

Houston Fire Department (HFD)       1999  ...    210588.0

6. We can validate our results with the query method to check whether there exist any 
rows where BASE_SALARY is greater than MAX_DEPT_SALARY:
>>> employee.query("BASE_SALARY > MAX_DEPT_SALARY")

Empty DataFrame

Columns: [UNIQUE_ID, POSITION_TITLE, BASE_SALARY, RACE, 
EMPLOYMENT_TYPE, GENDER, EMPLOYMENT_STATUS, HIRE_DATE, JOB_DATE, 
MAX_DEPT_SALARY]

Index: []

7. Refactor our code into a chain:

>>> employee = pd.read_csv("data/employee.csv")

>>> max_dept_sal = (

...     employee

...     [["DEPARTMENT", "BASE_SALARY"]]

...     .sort_values(

...         ["DEPARTMENT", "BASE_SALARY"],

...         ascending=[True, False],

...     )

...     .drop_duplicates(subset="DEPARTMENT")

...     .set_index("DEPARTMENT")

... )

>>> (

...     employee

...     .set_index("DEPARTMENT")

...     .assign(

...         MAX_DEPT_SALARY=max_dept_sal["BASE_SALARY"]
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...     )

... )

              UNIQUE_ID POSITION_TITLE  ...    JOB_DATE MAX_DEPT_
SALARY

DEPARTMENT                              ...

Municipal...          0  ASSISTAN...    ...  2012-10-13     
121862.0

Library               1  LIBRARY ...    ...  2010-09-18     
107763.0

Houston P...          2  POLICE O...    ...  2015-02-03     
199596.0

Houston F...          3  ENGINEER...    ...  1991-05-25     
210588.0

General S...          4  ELECTRICIAN    ...  1994-10-22      
89194.0

...                 ...          ...    ...         ...          

...

Houston P...       1995  POLICE O...    ...  2015-06-09     
199596.0

Houston F...       1996  COMMUNIC...    ...  2013-10-06     
210588.0

Houston P...       1997  POLICE O...    ...  2015-10-13     
199596.0

Houston P...       1998  POLICE O...    ...  2011-07-02     
199596.0

Houston F...       1999  FIRE FIG...    ...  2010-07-12     
210588.0

How it works…
Steps 2 and 3 find the maximum salary for each department. For automatic index alignment 
to work properly, we set each DataFrame index as the department. Step 5 works because 
each row index from the left DataFrame, employee, aligns with one, and only one, index from 
the right DataFrame, max_dept_sal. If max_dept_sal has duplicates of any departments 
in its index, then we will get a Cartesian product.

For instance, let's see what happens when we use a DataFrame on the right-hand side of the 
equality that has repeated index values. We use the .sample DataFrame method to randomly 
choose 10 rows without replacement:

>>> random_salary = dept_sal.sample(

...     n=10, random_state=42
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... ).set_index("DEPARTMENT")

>>> random_salary

                                BASE_SALARY

DEPARTMENT

Public Works & Engineering-PWE      34861.0

Houston Airport System (HAS)        29286.0

Houston Police Department-HPD       31907.0

Houston Police Department-HPD       66614.0

Houston Police Department-HPD       42000.0

Houston Police Department-HPD       43443.0

Houston Police Department-HPD       66614.0

Public Works & Engineering-PWE      52582.0

Finance                             93168.0

Houston Police Department-HPD       35318.0

Notice how there are several repeated departments in the index. When we attempt to create 
a new column, an error is raised alerting us that there are duplicates. At least one index label 
in the employee DataFrame is joining with two or more index labels from random_salary:

>>> employee["RANDOM_SALARY"] = random_salary["BASE_SALARY"]

Traceback (most recent call last):

...

ValueError: cannot reindex from a duplicate axis

There's more…
During alignment, if there is nothing for the DataFrame index to align to, the resulting value 
will be missing. Let's create an example where this happens. We will use only the first three 
rows of the max_dept_sal Series to create a new column:

>>> (

...     employee

...     .set_index("DEPARTMENT")

...     .assign(

...         MAX_SALARY2=max_dept_sal["BASE_SALARY"].head(3)

...     )

...     .MAX_SALARY2

...     .value_counts(dropna=False)

... )
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NaN         1955

140416.0      29

100000.0      11

64251.0        5

Name: MAX_SALARY2, dtype: int64

The operation completed successfully but filled in salaries for only three of the departments. 
All the other departments that did not appear in the first three rows of the max_dept_sal 
Series resulted in a missing value.

My preference is to use the following code rather than the code in step 7. This code uses the 
.groupby method combined with the .transform method, which is discussed in a later 
chapter. This code reads much cleaner to me. It is shorter and does not mess with reassigning 
the index:

>>> max_sal = (

...     employee

...     .groupby("DEPARTMENT")

...     .BASE_SALARY

...     .transform("max")

... )

>>> (employee.assign(MAX_DEPT_SALARY=max_sal))

UNIQUE_ID POSITION_TITLE  ...    JOB_DATE  MAX_DEPT_SALARY

0             0  ASSISTAN...    ...  2012-10-13     121862.0

1             1  LIBRARY ...    ...  2010-09-18     107763.0

2             2  POLICE O...    ...  2015-02-03     199596.0

3             3  ENGINEER...    ...  1991-05-25     210588.0

4             4  ELECTRICIAN    ...  1994-10-22      89194.0

...         ...          ...    ...         ...          ...

1995       1995  POLICE O...    ...  2015-06-09     199596.0

1996       1996  COMMUNIC...    ...  2013-10-06     210588.0

1997       1997  POLICE O...    ...  2015-10-13     199596.0

1998       1998  POLICE O...    ...  2011-07-02     199596.0

1999       1999  FIRE FIG...    ...  2010-07-12     210588.0

This works because .transform preserves the original index. If you did a .groupby that 
creates a new index, you can use the .merge method to combine the data. We just need to 
tell it to merge on DEPARTMENT for the left side and the index for the right side:

>>> max_sal = (

...     employee
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...     .groupby("DEPARTMENT")

...     .BASE_SALARY

...     .max()

... )

>>> (

...     employee.merge(

...         max_sal.rename("MAX_DEPT_SALARY"),

...         how="left",

...         left_on="DEPARTMENT",

...         right_index=True,

...     )

... )

UNIQUE_ID POSITION_TITLE  ...    JOB_DATE  MAX_DEPT_SALARY

0             0  ASSISTAN...    ...  2012-10-13     121862.0

1             1  LIBRARY ...    ...  2010-09-18     107763.0

2             2  POLICE O...    ...  2015-02-03     199596.0

3             3  ENGINEER...    ...  1991-05-25     210588.0

4             4  ELECTRICIAN    ...  1994-10-22      89194.0

...         ...          ...    ...         ...          ...

1995       1995  POLICE O...    ...  2015-06-09     199596.0

1996       1996  COMMUNIC...    ...  2013-10-06     210588.0

1997       1997  POLICE O...    ...  2015-10-13     199596.0

1998       1998  POLICE O...    ...  2011-07-02     199596.0

1999       1999  FIRE FIG...    ...  2010-07-12     210588.0

Highlighting the maximum value from each 
column

The college dataset has many numeric columns describing different metrics about each 
school. Many people are interested in schools that perform the best for specific metrics.

This recipe discovers the school that has the maximum value for each numeric column and 
styles the DataFrame to highlight the information.
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How to do it…
1. Read the college dataset with the institution name as the index:

>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college.dtypes

CITY                   object

STABBR                 object

HBCU                  float64

MENONLY               float64

WOMENONLY             float64

                       ...

PCTPELL               float64

PCTFLOAN              float64

UG25ABV               float64

MD_EARN_WNE_P10        object

GRAD_DEBT_MDN_SUPP     object

Length: 26, dtype: object

2. All the other columns besides CITY and STABBR appear to be numeric. Examining 
the data types from the preceding step reveals unexpectedly that the MD_EARN_WNE_
P10 and GRAD_DEBT_MDN_SUPP columns are of the object type and not numeric. 
To help get a better idea of what kinds of values are in these columns, let's examine 
a sample from them:
>>> college.MD_EARN_WNE_P10.sample(10, random_state=42)

INSTNM

Career Point College                                      20700

Ner Israel Rabbinical College                       PrivacyS...

Reflections Academy of Beauty                               NaN

Capital Area Technical College                            26400

West Virginia University Institute of Technology          43400

Mid-State Technical College                               32000

Strayer University-Huntsville Campus                      49200

National Aviation Academy of Tampa Bay                    45000

University of California-Santa Cruz                       43000

Lexington Theological Seminary                              NaN

Name: MD_EARN_WNE_P10, dtype: object
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>>> college.GRAD_DEBT_MDN_SUPP.sample(10, random_state=42)

INSTNM

Career Point College                                      14977

Ner Israel Rabbinical College                       PrivacyS...

Reflections Academy of Beauty                       PrivacyS...

Capital Area Technical College                      PrivacyS...

West Virginia University Institute of Technology          23969

Mid-State Technical College                                8025

Strayer University-Huntsville Campus                    36173.5

National Aviation Academy of Tampa Bay                    22778

University of California-Santa Cruz                       19884

Lexington Theological Seminary                      PrivacyS...

Name: GRAD_DEBT_MDN_SUPP, dtype: object     

3. These values are strings, but we would like them to be numeric. I like to use the 
.value_counts method in this case to see whether it reveals any characters that 
forced the column to be non-numeric:
>>> college.MD_EARN_WNE_P10.value_counts()

PrivacySuppressed    822

38800                151

21500                 97

49200                 78

27400                 46

                    ...

66700                  1

163900                 1

64400                  1

58700                  1

64100                  1

Name: MD_EARN_WNE_P10, Length: 598, dtype: int64

>>> set(college.MD_EARN_WNE_P10.apply(type))

{<class 'float'>, <class 'str'>}

>>> college.GRAD_DEBT_MDN_SUPP.value_counts()

PrivacySuppressed    1510

9500                  514



Chapter 8

269

27000                 306

25827.5               136

25000                 124

                     ...

16078.5                 1

27763.5                 1

6382                    1

27625                   1

11300                   1

Name: GRAD_DEBT_MDN_SUPP, Length: 2038, dtype: int64

4. The culprit appears to be that some schools have privacy concerns about these two 
columns of data. To force these columns to be numeric, use the pandas function to_
numeric. If we use the errors='coerce' parameter, it will convert those values 
to NaN:
>>> cols = ["MD_EARN_WNE_P10", "GRAD_DEBT_MDN_SUPP"]

>>> for col in cols:

...     college[col] = pd.to_numeric(

...         college[col], errors="coerce"

...     )

>>> college.dtypes.loc[cols]

MD_EARN_WNE_P10       float64

GRAD_DEBT_MDN_SUPP    float64

dtype: object

5. Use the .select_dtypes method to filter for only numeric columns. This will 
exclude STABBR and CITY columns, where a maximum value doesn't make sense 
with this problem:
>>> college_n = college.select_dtypes("number")

>>> college_n.head()

              HBCU  MENONLY  ...  MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

INSTNM                       ...

Alabama A...   1.0      0.0  ...      30300.0          33888.0

Universit...   0.0      0.0  ...      39700.0          21941.5

Amridge U...   0.0      0.0  ...      40100.0          23370.0

Universit...   0.0      0.0  ...      45500.0          24097.0

Alabama S...   1.0      0.0  ...      26600.0          33118.5
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6. Several columns have binary only (0 or 1) values that will not provide useful 
information for maximum values. To find these columns, we can create a Boolean 
Series and find all the columns that have two unique values with the .nunique 
method:
>>> binary_only = college_n.nunique() == 2

>>> binary_only.head()

HBCU          True

MENONLY       True

WOMENONLY     True

RELAFFIL      True

SATVRMID     False

dtype: bool

7. Use the Boolean array to create a list of binary columns:
>>> binary_cols = binary_only[binary_only].index

>>> binary_cols

Index(['HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL', 'DISTANCEONLY', 
'CURROPER'], dtype='object')

8. Since we are looking for the maximum values, we can drop the binary columns using 
the .drop method:
>>> college_n2 = college_n.drop(columns=binary_cols)

>>> college_n2.head()

              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                            ...

Alabama A...     424.0     420.0  ...      30300.0          
33888.0

Universit...     570.0     565.0  ...      39700.0          
21941.5

Amridge U...       NaN       NaN  ...      40100.0          
23370.0

Universit...     595.0     590.0  ...      45500.0          
24097.0

Alabama S...     425.0     430.0  ...      26600.0          
33118.5
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9. Now we can use the .idxmax method to find the index label of the maximum value 
for each column:
>>> max_cols = college_n2.idxmax()

>>> max_cols

SATVRMID                      California Institute of Technology

SATMTMID                      California Institute of Technology

UGDS                               University of Phoenix-Arizona

UGDS_WHITE                Mr Leon's School of Hair Design-Moscow

UGDS_BLACK                    Velvatex College of Beauty Culture

                                         ...

PCTPELL                                 MTI Business College Inc

PCTFLOAN                                  ABC Beauty College Inc

UG25ABV                           Dongguk University-Los Angeles

MD_EARN_WNE_P10                     Medical College of Wisconsin

GRAD_DEBT_MDN_SUPP    Southwest University of Visual Arts-Tucson

Length: 18, dtype: object

10. Call the .unique method on the max_cols Series. This returns an ndarray of the 
index values in college_n2 that has the maximum values:
>>> unique_max_cols = max_cols.unique()

>>> unique_max_cols[:5]

array(['California Institute of Technology',

       'University of Phoenix-Arizona',

       "Mr Leon's School of Hair Design-Moscow",

       'Velvatex College of Beauty Culture',

       'Thunderbird School of Global Management'], dtype=object)
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11. Use the values of max_cols to select only those rows that have schools with a 
maximum value and then use the .style attribute to highlight these values:
college_n2.loc[unique_max_cols].style.highlight_max()

Display maximum column values

12. Refactor the code to make it easier to read:

>>> def remove_binary_cols(df):

...     binary_only = df.nunique() == 2

...     cols = binary_only[binary_only].index.tolist()

...     return df.drop(columns=cols)

>>> def select_rows_with_max_cols(df):

...     max_cols = df.idxmax()

...     unique = max_cols.unique()

...     return df.loc[unique]

>>> (

...     college

...     .assign(

...         MD_EARN_WNE_P10=pd.to_numeric(

...             college.MD_EARN_WNE_P10, errors="coerce"
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...         ),

...         GRAD_DEBT_MDN_SUPP=pd.to_numeric(

...             college.GRAD_DEBT_MDN_SUPP, errors="coerce"

...         ),

...     )

...     .select_dtypes("number")

...     .pipe(remove_binary_cols)

...     .pipe(select_rows_with_max_cols)

... )

              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                            ...

Californi...     765.0     785.0  ...      77800.0          
11812.5

Universit...       NaN       NaN  ...          NaN          
33000.0

Mr Leon's...       NaN       NaN  ...          NaN          
15710.0

Velvatex ...       NaN       NaN  ...          NaN              
NaN

Thunderbi...       NaN       NaN  ...     118900.0              
NaN

...                ...       ...  ...          ...              

...

MTI Busin...       NaN       NaN  ...      23000.0           
9500.0

ABC Beaut...       NaN       NaN  ...          NaN          
16500.0

Dongguk U...       NaN       NaN  ...          NaN              
NaN

Medical C...       NaN       NaN  ...     233100.0              
NaN

Southwest...       NaN       NaN  ...      27200.0          
49750.0

How it works…
The .idxmax method is a useful method, especially when the index is meaningfully labeled. 
It was unexpected that both MD_EARN_WNE_P10 and GRAD_DEBT_MDN_SUPP were of the 
object data type. When loading CSV files, pandas lists the column as an object type 
(even though it might contain both number and string types) if the column contains at 
least one string.
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By examining a specific column value in step 2, we were able to discover that we had strings 
in these columns. In step 3, we use the .value_counts method to reveal offending 
characters. We uncover the PrivacySuppressed values that are causing havoc.

pandas can force all strings that contain only numeric characters to numeric data types with 
the to_numeric function. We do this in step 4. To override the default behavior of raising 
an error when to_numeric encounters a string that cannot be converted, you must pass 
coerce to the errors parameter. This forces all non-numeric character strings to become 
missing values (np.nan).

Several columns do not have useful or meaningful maximum values. They were removed in 
step 5 through step 8. The .select_dtypes method can be beneficial for wide DataFrames 
with many columns.

In step 9, .idxmax iterates through all the columns to find the index of the maximum value 
for each column. It outputs the results as a Series. The school with both the highest SAT math 
and verbal scores is California Institute of Technology, while Dongguk University Los Angeles 
has the highest number of students older than 25.

Although the information provided by .idxmax is convenient, it does not yield the 
corresponding maximum value. To do this, we gather all the unique school names from the 
values of the max_cols Series in step 10.

Next, in step 11, we index off a .loc to select rows based on the index label, which was set 
to school names when loading the CSV in the first step. This filters for only schools that have 
a maximum value. DataFrames have a .style attribute that itself has some methods to 
alter the appearance of the displayed DataFrame. Highlighting the maximum value makes 
the result much clearer.

Finally, we refactor the code to make it a clean pipeline.

There's more…
By default, the .highlight_max method highlights the maximum value of each column. 
We can use the axis parameter to highlight the maximum value of each row instead. Here, 
we select just the race percentage columns of the college dataset and highlight the race with 
the highest percentage for each school:

>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college_ugds = college.filter(like="UGDS_").head()
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Display maximum column values

Replicating idxmax with method chaining
A good exercise is to attempt an implementation of a built-in DataFrame method on your own. 
This type of replication can give you a deeper understanding of other pandas methods that 
you normally wouldn't have come across. .idxmax is a challenging method to replicate using 
only the methods covered thus far in the book.

This recipe slowly chains together basic methods to eventually find all the row index values 
that contain a maximum column value.

How to do it…
1. Load in the college dataset and execute the same operations as the previous recipe 

to get only the numeric columns that are of interest:
>>> def remove_binary_cols(df):

...     binary_only = df.nunique() == 2

...     cols = binary_only[binary_only].index.tolist()

...     return df.drop(columns=cols)

>>> college_n = (

...     college

...     .assign(

...         MD_EARN_WNE_P10=pd.to_numeric(

...             college.MD_EARN_WNE_P10, errors="coerce"

...         ),

...         GRAD_DEBT_MDN_SUPP=pd.to_numeric(

...             college.GRAD_DEBT_MDN_SUPP, errors="coerce"

...         ),
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...     )

...     .select_dtypes("number")

...     .pipe(remove_binary_cols)

... )

2. Find the maximum of each column with the .max method:
>>> college_n.max().head()

SATVRMID         765.0

SATMTMID         785.0

UGDS          151558.0

UGDS_WHITE         1.0

UGDS_BLACK         1.0

dtype: float64

3. Use the .eq DataFrame method to test each value against the column .max method. 
By default, the .eq method aligns the columns of the column DataFrame with the 
labels of the passed Series index:
>>> college_n.eq(college_n.max()).head()

              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                            ...

Alabama A...     False     False  ...        False            
False

Universit...     False     False  ...        False            
False

Amridge U...     False     False  ...        False            
False

Universit...     False     False  ...        False            
False

Alabama S...     False     False  ...        False            
False

4. All the rows in this DataFrame that have at least one True value must contain 
a column maximum. Let's use the .any method to find all such rows that have 
at least one True value:
>>> has_row_max = (

...     college_n

...     .eq(college_n.max())

...     .any(axis="columns")

... )
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>>> has_row_max.head()

INSTNM

Alabama A & M University               False

University of Alabama at Birmingham    False

Amridge University                     False

University of Alabama in Huntsville    False

Alabama State University               False

dtype: bool

5. There are only 18 columns, which means that there should only be at most 18 True 
values in has_row_max. Let's find out how many there are:
>>> college_n.shape

(7535, 18)

>>> has_row_max.sum()

401

6. This was a bit unexpected, but it turns out that there are columns with many rows 
that equal the maximum value. This is common with many of the percentage columns 
that have a maximum of 1. .idxmax returns the first occurrence of the maximum 
value. Let's back up a bit, remove the .any method, and look at the output from 
step 3. Let's run the .cumsum method instead to accumulate all the True values:
>>> college_n.eq(college_n.max()).cumsum()

              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                            ...

Alabama A...         0         0  ...            0                
0

Universit...         0         0  ...            0                
0

Amridge U...         0         0  ...            0                
0

Universit...         0         0  ...            0                
0

Alabama S...         0         0  ...            0                
0

...                ...       ...  ...          ...              

...

SAE Insti...         1         1  ...            1                
2

Rasmussen...         1         1  ...            1                
2
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National ...         1         1  ...            1                
2

Bay Area ...         1         1  ...            1                
2

Excel Lea...         1         1  ...            1                
2

7. Some columns have one unique maximum, like SATVRMID and SATMTMID, while 
others like UGDS_WHITE have many. 109 schools have 100% of their undergraduates 
as White. If we chain the .cumsum method one more time, the value 1 would only 
appear once in each column and it would be the first occurrence of the maximum:
>>> (college_n.eq(college_n.max()).cumsum().cumsum())

              SATVRMID  SATMTMID  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                            ...

Alabama A...         0         0  ...            0                
0

Universit...         0         0  ...            0                
0

Amridge U...         0         0  ...            0                
0

Universit...         0         0  ...            0                
0

Alabama S...         0         0  ...            0                
0

...                ...       ...  ...          ...              

...

SAE Insti...      7305      7305  ...         3445            
10266

Rasmussen...      7306      7306  ...         3446            
10268

National ...      7307      7307  ...         3447            
10270

Bay Area ...      7308      7308  ...         3448            
10272

Excel Lea...      7309      7309  ...         3449            
10274

8. We can now test the equality of each value against 1 with the .eq method and then 
use the .any method to find rows that have at least one True value:
>>> has_row_max2 = (

...     college_n.eq(college_n.max())
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...     .cumsum()

...     .cumsum()

...     .eq(1)

...     .any(axis="columns")

... )

>>> has_row_max2.head()

INSTNM

Alabama A & M University               False

University of Alabama at Birmingham    False

Amridge University                     False

University of Alabama in Huntsville    False

Alabama State University               False

dtype: bool

9. Check that has_row_max2 has no more True values than the number of columns:
>>> has_row_max2.sum()

16

10. We need all the institutions where has_row_max2 is True. We can use Boolean 
indexing on the Series itself:
>>> idxmax_cols = has_row_max2[has_row_max2].index

>>> idxmax_cols

Index(['Thunderbird School of Global Management',

       'Southwest University of Visual Arts-Tucson', 'ABC Beauty 
College Inc',

       'Velvatex College of Beauty Culture',

       'California Institute of Technology',

       'Le Cordon Bleu College of Culinary Arts-San Francisco',

       'MTI Business College Inc', 'Dongguk University-Los 
Angeles',

       'Mr Leon's School of Hair Design-Moscow',

       'Haskell Indian Nations University', 'LIU Brentwood',

       'Medical College of Wisconsin', 'Palau Community College',

       'California University of Management and Sciences',

       'Cosmopolitan Beauty and Tech School', 'University of 
Phoenix-Arizona'],

      dtype='object', name='INSTNM')
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11. All 16 of these institutions are the index of the first maximum occurrence for at least 
one of the columns. We can check whether they are the same as the ones found with 
the .idxmax method:
>>> set(college_n.idxmax().unique()) == set(idxmax_cols)

True

12. Refactor to an idx_max function:

>>> def idx_max(df):

...     has_row_max = (

...         df

...         .eq(df.max())

...         .cumsum()

...         .cumsum()

...         .eq(1)

...         .any(axis="columns")

...     )

...     return has_row_max[has_row_max].index

>>> idx_max(college_n)

Index(['Thunderbird School of Global Management',

       'Southwest University of Visual Arts-Tucson', 'ABC Beauty 
College Inc',

       'Velvatex College of Beauty Culture',

       'California Institute of Technology',

       'Le Cordon Bleu College of Culinary Arts-San Francisco',

       'MTI Business College Inc', 'Dongguk University-Los 
Angeles',

       'Mr Leon's School of Hair Design-Moscow',

       'Haskell Indian Nations University', 'LIU Brentwood',

       'Medical College of Wisconsin', 'Palau Community College',

       'California University of Management and Sciences',

       'Cosmopolitan Beauty and Tech School', 'University of 
Phoenix-Arizona'],

      dtype='object', name='INSTNM')
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How it works…
The first step replicates work from the previous recipe by converting two columns to numeric 
and eliminating the binary columns. We find the maximum value of each column in step 
2. Care needs to be taken here as pandas silently drops columns that cannot produce a 
maximum. If this happens, then step 3 will still complete but provide False values for each 
column without an available maximum.

Step 4 uses the .any method to scan across each row in search of at least one True value. 
Any row with at least one True value contains a maximum value for a column. We sum up 
the resulting Boolean Series in step 5 to determine how many rows contain a maximum. 
Somewhat unexpectedly, there are far more rows than columns. Step 6 gives an insight into 
why this happens. We take a cumulative sum of the output from step 3 and detect the total 
number of rows that equal the maximum for each column.

Many colleges have 100% of their student population as only a single race. This is by far the 
largest contributor to the multiple rows with maximums. As you can see, there is only one row 
with a maximum value for both SAT score columns and undergraduate population, but several 
of the race columns have a tie for the maximum.

Our goal is to find the first row with the maximum value. We need to take the cumulative sum 
once more so that each column has only a single row equal to 1. Step 8 formats the code 
to have one method per line and runs the .any method as was done in step 4. If this step 
is successful, then we should have no more True values than the number of columns. Step 
9 asserts that this is true.

To validate that we have found the same columns as .idxmax in the previous columns, we 
use Boolean selection on has_row_max2 with itself. The columns will be in a different order, 
so we convert the sequence of column names to sets, which are inherently unordered to 
compare equality.

There's more…
It is possible to complete this recipe in one long line of code chaining the indexing operator 
with an anonymous function. This little trick removes the need for step 10. We can time the 
difference between the .idxmax method and our manual effort in this recipe:

>>> def idx_max(df):

...     has_row_max = (

...         df

...         .eq(df.max())

...         .cumsum()

...         .cumsum()

...         .eq(1)
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...         .any(axis="columns")

...         [lambda df_: df_]

...         .index

...     )

...     return has_row_max

>>> %timeit college_n.idxmax().values

1.12 ms ± 28.4 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

>>> %timeit idx_max(college_n)

5.35 ms ± 55.2 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Our effort is, unfortunately, five times as slow as the built-in .idxmax pandas method, but 
regardless of its performance regression, many creative and practical solutions use the 
accumulation methods like .cumsum with Boolean Series to find streaks or specific patterns 
along an axis.

Finding the most common maximum 
of columns

The college dataset contains the undergraduate population percentage of eight different 
races for over 7,500 colleges. It would be interesting to find the race with the highest 
undergrad population for each school and then find the distribution of this result for the entire 
dataset. We would be able to answer a question like, "What percentage of institutions have 
more White students than any other race?"

In this recipe, we find the race with the highest percentage of the undergraduate population 
for each school with the .idxmax method and then find the distribution of these maximums.

How to do it…
1. Read in the college dataset and select just those columns with undergraduate race 

percentage information:
>>> college = pd.read_csv(

...     "data/college.csv", index_col="INSTNM"

... )

>>> college_ugds = college.filter(like="UGDS_")

>>> college_ugds.head()

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN
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INSTNM                                ...

Alabama A...      0.0333      0.9353  ...    0.0059     0.0138

Universit...      0.5922      0.2600  ...    0.0179     0.0100

Amridge U...      0.2990      0.4192  ...    0.0000     0.2715

Universit...      0.6988      0.1255  ...    0.0332     0.0350

Alabama S...      0.0158      0.9208  ...    0.0243     0.0137

2. Use the .idxmax method applied against the column axis to get the college name 
with the highest race percentage for each row:
>>> highest_percentage_race = college_ugds.idxmax(

...     axis="columns"

... )

>>> highest_percentage_race.head()

INSTNM

Alabama A & M University

University of Alabama at Birmingham

Amridge University

University of Alabama in Huntsville

Alabama State University

dtype: object

3. Use the .value_counts method to return the distribution of maximum occurrences. 
Add the normalize=True parameter so that it sums to 1:

>>> highest_percentage_race.value_counts(normalize=True)

UGDS_WHITE    0.670352

UGDS_BLACK    0.151586

UGDS_HISP     0.129473

UGDS_UNKN     0.023422

UGDS_ASIAN    0.012074

UGDS_AIAN     0.006110

UGDS_NRA      0.004073

UGDS_NHPI     0.001746

UGDS_2MOR     0.001164

dtype: float64
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How it works…
The key to this recipe is recognizing that the columns all represent the same unit of 
information. We can compare these columns with each other, which is usually not the case. 
For instance, it wouldn't make sense to compare SAT verbal scores with the undergraduate 
population. As the data is structured in this manner, we can apply the .idxmax method 
to each row of data to find the column with the largest value. We need to alter its default 
behavior with the axis parameter.

Step 3 completes this operation and returns a Series, to which we can now apply the 
.value_counts method to return the distribution. We pass True to the normalize 
parameter as we are interested in the distribution (relative frequency) and not the raw counts.

There's more…
We might want to explore more and answer the question: For those schools with more Black 
students than any other race, what is the distribution of its second highest race percentage?

>>> (

...     college_ugds

...     [highest_percentage_race == "UGDS_BLACK"]

...     .drop(columns="UGDS_BLACK")

...     .idxmax(axis="columns")

...     .value_counts(normalize=True)

... )

UGDS_WHITE    0.661228

UGDS_HISP     0.230326

UGDS_UNKN     0.071977

UGDS_NRA      0.018234

UGDS_ASIAN    0.009597

UGDS_2MOR     0.006718

UGDS_AIAN     0.000960

UGDS_NHPI     0.000960

dtype: float64

We needed to drop the UGDS_BLACK column before applying the same method from this 
recipe. It seems that these schools with higher Black populations tend to have higher Hispanic 
populations.



285

9
Grouping for 

Aggregation, Filtration, 
and Transformation

Introduction
One of the most fundamental tasks during data analysis involves splitting data into 
independent groups before performing a calculation on each group. This methodology 
has been around for quite some time but has more recently been referred to as split-apply-
combine. This chapter covers the powerful .groupby method, which allows you to group your 
data in any way imaginable and apply any type of function independently to each group before 
returning a single dataset.

Before we get started with the recipes, we will need to know just a little terminology. All basic 
groupby operations have grouping columns, and each unique combination of values in these 
columns represents an independent grouping of the data. The syntax looks as follows:

df.groupby(['list', 'of', 'grouping', 'columns'])
df.groupby('single_column')  # when grouping by a single column

The result of calling the .groupby method is a groupby object. It is this groupby object 
that will be the engine that drives all the calculations for this entire chapter. pandas does very 
little when creating this groupby object, merely validating that grouping is possible. You will 
have to chain methods on this groupby object to unleash its powers.
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The most common use of the .groupby method is to perform an aggregation. What is an 
aggregation? An aggregation takes place when a sequence of many inputs get summarized 
or combined into a single value output. For example, summing up all the values of a column 
or finding its maximum are aggregations applied to a sequence of data. An aggregation takes 
a sequence and reduces it to a single value.

In addition to the grouping columns defined during the introduction, most aggregations have 
two other components, the aggregating columns and aggregating functions. The aggregating 
columns are the columns whose values will be aggregated. The aggregating functions define 
what aggregations take place. Aggregation functions include sum, min, max, mean, count, 
variance, std, and so on.

Defining an aggregation
In this recipe, we examine the flights dataset and perform the simplest aggregation involving 
only a single grouping column, a single aggregating column, and a single aggregating function. 
We will find the average arrival delay for each airline. pandas has different syntaxes to create 
an aggregation, and this recipe will show them.

How to do it…
1. Read in the flights dataset:

>>> import pandas as pd

>>> import numpy as np

>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()

0      1    1        4  ...      65.0        0         0

1      1    1        4  ...     -13.0        0         0

2      1    1        4  ...      35.0        0         0

3      1    1        4  ...      -7.0        0         0

4      1    1        4  ...      39.0        0         0

2. Define the grouping columns (AIRLINE), aggregating columns (ARR_DELAY), and 
aggregating functions (mean). Place the grouping column in the .groupby method 
and then call the .agg method with a dictionary pairing the aggregating column 
with its aggregating function. If you pass in a dictionary, it returns back a DataFrame 
instance:
>>> (flights

...      .groupby('AIRLINE')

...      .agg({'ARR_DELAY':'mean'})
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... )

         ARR_DELAY

AIRLINE           

AA        5.542661

AS       -0.833333

B6        8.692593

DL        0.339691

EV        7.034580

...            ...

OO        7.593463

UA        7.765755

US        1.681105

VX        5.348884

WN        6.397353

Alternatively, you may place the aggregating column in the index operator and then 
pass the aggregating function as a string to .agg. This will return a Series:
>>> (flights

...      .groupby('AIRLINE')

...      ['ARR_DELAY']

...      .agg('mean')

... )

AIRLINE

AA    5.542661

AS   -0.833333

B6    8.692593

DL    0.339691

EV    7.034580

        ...   

OO    7.593463

UA    7.765755

US    1.681105

VX    5.348884

WN    6.397353

Name: ARR_DELAY, Length: 14, dtype: float64
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3. The string names used in the previous step are a convenience that pandas offers you 
to refer to a particular aggregation function. You can pass any aggregating function 
directly to the .agg method, such as the NumPy mean function. The output is the 
same as the previous step:
>>> (flights

...     .groupby('AIRLINE')

...     ['ARR_DELAY']

...     .agg(np.mean)

... )

AIRLINE

AA    5.542661

AS   -0.833333

B6    8.692593

DL    0.339691

EV    7.034580

        ...   

OO    7.593463

UA    7.765755

US    1.681105

VX    5.348884

WN    6.397353

Name: ARR_DELAY, Length: 14, dtype: float64

4. It's possible to skip the agg method altogether in this case and use the code in text 
method directly. This output is also the same as step 3:

>>> (flights

...     .groupby('AIRLINE')

...     ['ARR_DELAY']

...     .mean()

... )

AIRLINE

AA    5.542661

AS   -0.833333

B6    8.692593

DL    0.339691

EV    7.034580

        ...   

OO    7.593463
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UA    7.765755

US    1.681105

VX    5.348884

WN    6.397353

Name: ARR_DELAY, Length: 14, dtype: float64

How it works…
The syntax for the .groupby method is not as straightforward as other methods. Let's 
intercept the chain of methods in step 2 by storing the result of the .groupby method 
as its own variable:

>>> grouped = flights.groupby('AIRLINE')

>>> type(grouped)

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

A completely new intermediate object is first produced with its own distinct attributes and 
methods. No calculations take place at this stage. pandas merely validates the grouping 
columns. This groupby object has an .agg method to perform aggregations. One of 
the ways to use this method is to pass it a dictionary mapping the aggregating column to 
the aggregating function, as done in step 2. If you pass in a dictionary, the result will be 
a DataFrame.

The pandas library often has more than one way to perform the same operation. Step 
3 shows another way to perform a groupby. Instead of identifying the aggregating column in 
the dictionary, place it inside the index operator as if you were selecting it as a column from 
a DataFrame. The function string name is then passed as a scalar to the .agg method. The 
result, in this case, is a Series.

You may pass any aggregating function to the .agg method. pandas allows you to use the 
string names for simplicity, but you may also explicitly call an aggregating function as done 
in step 4. NumPy provides many functions that aggregate values.

Step 5 shows one last syntax flavor. When you are only applying a single aggregating function 
as in this example, you can often call it directly as a method on the groupby object itself 
without .agg. Not all aggregation functions have a method equivalent, but most do.

There's more…
If you do not use an aggregating function with .agg, pandas raises an exception. For 
instance, let's see what happens when we apply the square root function to each group:

>>> (flights
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...    .groupby('AIRLINE')

...    ['ARR_DELAY']

...    .agg(np.sqrt)

... )

Traceback (most recent call last):

  ...

ValueError: function does not reduce

Grouping and aggregating with multiple 
columns and functions

It is possible to group and aggregate with multiple columns. The syntax is slightly different 
than it is for grouping and aggregating with a single column. As usual with any kind of 
grouping operation, it helps to identify the three components: the grouping columns, 
aggregating columns, and aggregating functions.

In this recipe, we showcase the flexibility of the .groupby method by answering the following 
queries:

 f Finding the number of canceled flights for every airline per weekday

 f Finding the number and percentage of canceled and diverted flights for every airline 
per weekday

 f For each origin and destination, finding the total number of flights, the number 
and percentage of canceled flights, and the average and variance of the airtime

How to do it…
1. Read in the flights dataset, and answer the first query by defining the grouping 

columns (AIRLINE, WEEKDAY), the aggregating column (CANCELLED), and the 
aggregating function (sum):
>>> (flights

...     .groupby(['AIRLINE', 'WEEKDAY'])

...     ['CANCELLED'] 

...     .agg('sum')

... )

AIRLINE  WEEKDAY

AA       1          41

         2           9
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         3          16

         4          20

         5          18

                    ..

WN       3          18

         4          10

         5           7

         6          10

         7           7

Name: CANCELLED, Length: 98, dtype: int64

2. Answer the second query by using a list for each pair of grouping and aggregating 
columns, and use a list for the aggregating functions:
>>> (flights

...     .groupby(['AIRLINE', 'WEEKDAY']) 

...     [['CANCELLED', 'DIVERTED']]

...     .agg(['sum', 'mean'])

... )

                CANCELLED           DIVERTED          

                      sum      mean      sum      mean

AIRLINE WEEKDAY                                       

AA      1              41  0.032106        6  0.004699

        2               9  0.007341        2  0.001631

        3              16  0.011949        2  0.001494

        4              20  0.015004        5  0.003751

        5              18  0.014151        1  0.000786

...                   ...       ...      ...       ...

WN      3              18  0.014118        2  0.001569

        4              10  0.007911        4  0.003165

        5               7  0.005828        0  0.000000

        6              10  0.010132        3  0.003040

        7               7  0.006066        3  0.002600

3. Answer the third query using a dictionary in the .agg method to map specific 
aggregating columns to specific aggregating functions:
>>> (flights

...     .groupby(['ORG_AIR', 'DEST_AIR'])
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...     .agg({'CANCELLED':['sum', 'mean', 'size'],

...           'AIR_TIME':['mean', 'var']})

... )

                 CANCELLED            ...    AIR_TIME            

                       sum      mean  ...        mean         var

ORG_AIR DEST_AIR                      ...                        

ATL     ABE              0  0.000000  ...   96.387097   45.778495

        ABQ              0  0.000000  ...  170.500000   87.866667

        ABY              0  0.000000  ...   28.578947    6.590643

        ACY              0  0.000000  ...   91.333333   11.466667

        AEX              0  0.000000  ...   78.725000   47.332692

...                    ...       ...  ...         ...         ...

SFO     SNA              4  0.032787  ...   64.059322   11.338331

        STL              0  0.000000  ...  198.900000  101.042105

        SUN              0  0.000000  ...   78.000000   25.777778

        TUS              0  0.000000  ...  100.200000   35.221053

        XNA              0  0.000000  ...  173.500000    0.500000

4. In pandas 0.25, there is a named aggregation object that can create non-hierarchical 
columns. We will repeat the above query using them:
>>> (flights

...     .groupby(['ORG_AIR', 'DEST_AIR'])

...     .agg(sum_cancelled=pd.NamedAgg(column='CANCELLED', 
aggfunc='sum'),

...          mean_cancelled=pd.NamedAgg(column='CANCELLED', 
aggfunc='mean'),

...          size_cancelled=pd.NamedAgg(column='CANCELLED', 
aggfunc='size'),

...          mean_air_time=pd.NamedAgg(column='AIR_TIME', 
aggfunc='mean'),

...          var_air_time=pd.NamedAgg(column='AIR_TIME', 
aggfunc='var'))

... )

                   sum_cancelled  mean_cancelled  ...  mean_air_
time

ORG_AIR DEST_AIR                                  ...             

ATL     ABE                 0        0.000000     ...    96.387097

        ABQ                 0        0.000000     ...   170.500000
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        ABY                 0        0.000000     ...    28.578947

        ACY                 0        0.000000     ...    91.333333

        AEX                 0        0.000000     ...    78.725000

...                       ...             ...     ...          ...

SFO     SNA                 4        0.032787     ...    64.059322

        STL                 0        0.000000     ...   198.900000

        SUN                 0        0.000000     ...    78.000000

        TUS                 0        0.000000     ...   100.200000

        XNA                 0        0.000000     ...   173.500000

How it works…
To group by multiple columns as in step 1, we pass a list of the string names to the .groupby 
method. Each unique combination of AIRLINE and WEEKDAY forms its own group. Within 
each of these groups, the sum of the canceled flights is calculated and then returned as 
a Series.

Step 2 groups by both AIRLINE and WEEKDAY, but this time aggregates two columns. 
It applies each of the two aggregation functions, using the strings sum and mean, to each 
column, resulting in four returned columns per group.

Step 3 goes even further, and uses a dictionary to map specific aggregating columns to 
different aggregating functions. Notice that the size aggregating function returns the total 
number of rows per group. This is different than the count aggregating function, which 
returns the number of non-missing values per group.

Step 4 shows the new syntax to create flat columns, named aggregations.

There's more…
To flatten the columns in step 3, you can use the .to_flat_index method (available since 
pandas 0.24):

>>> res = (flights

...     .groupby(['ORG_AIR', 'DEST_AIR'])

...     .agg({'CANCELLED':['sum', 'mean', 'size']

...           'AIR_TIME':['mean', 'var']})

... )

>>> res.columns = ['_'.join(x) for x in

...     res.columns.to_flat_index()]
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>>> res

                  CANCELLED_sum  CANCELLED_mean  ...  AIR_TIME_mean 

ORG_AIR DEST_AIR                                 ...

ATL     ABE                 0       0.000000     ...    96.387097

        ABQ                 0       0.000000     ...   170.500000

        ABY                 0       0.000000     ...    28.578947

        ACY                 0       0.000000     ...    91.333333

        AEX                 0       0.000000     ...    78.725000

...                       ...            ...     ...          ...

SFO     SNA                 4       0.032787     ...    64.059322

        STL                 0       0.000000     ...   198.900000

        SUN                 0       0.000000     ...    78.000000

        TUS                 0       0.000000     ...   100.200000

        XNA                 0       0.000000     ...   173.500000

That is kind of ugly and I would prefer a chain operation to flatten the columns. Unfortunately, 
the .reindex method does not support flattening. Instead, we will have to leverage the 
.pipe method:

>>> def flatten_cols(df):

...     df.columns = ['_'.join(x) for x in

...         df.columns.to_flat_index()]

...     return df

>>> res = (flights

...     .groupby(['ORG_AIR', 'DEST_AIR'])

...     .agg({'CANCELLED':['sum', 'mean', 'size'],

...           'AIR_TIME':['mean', 'var']})

...     .pipe(flatten_cols)

... )

>>> res

                  CANCELLED_sum  CANCELLED_mean  ...  AIR_TIME_mean 

ORG_AIR DEST_AIR                                 ...

ATL     ABE                 0       0.000000     ...    96.387097

        ABQ                 0       0.000000     ...   170.500000

        ABY                 0       0.000000     ...    28.578947
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        ACY                 0       0.000000     ...    91.333333

        AEX                 0       0.000000     ...    78.725000

...                       ...            ...     ...          ...

SFO     SNA                 4       0.032787     ...    64.059322

        STL                 0       0.000000     ...   198.900000

        SUN                 0       0.000000     ...    78.000000

        TUS                 0       0.000000     ...   100.200000

        XNA                 0       0.000000     ...   173.500000

Be aware that when grouping with multiple columns, pandas creates a hierarchical index, or 
multi-index. In the preceding example, it returned 1,130 rows. However, if one of the columns 
that we group by is categorical (and has a category type, not an object type), then pandas 
will create a Cartesian product of all combinations for each level. In this case, it returns 
2,710 rows. However, if you have categorical columns with higher cardinality, you can get 
many more values:

>>> res = (flights

...     .assign(ORG_AIR=flights.ORG_AIR.astype('category'))

...     .groupby(['ORG_AIR', 'DEST_AIR'])

...     .agg({'CANCELLED':['sum', 'mean', 'size'],

...           'AIR_TIME':['mean', 'var']})

... )

>>> res

                 CANCELLED       ...    AIR_TIME           

                       sum mean  ...        mean        var

ORG_AIR DEST_AIR                 ...                       

ATL     ABE            0.0  0.0  ...   96.387097  45.778495

        ABI            NaN  NaN  ...         NaN        NaN

        ABQ            0.0  0.0  ...  170.500000  87.866667

        ABR            NaN  NaN  ...         NaN        NaN

        ABY            0.0  0.0  ...   28.578947   6.590643

...                    ...  ...  ...         ...        ...

SFO     TYS            NaN  NaN  ...         NaN        NaN

        VLD            NaN  NaN  ...         NaN        NaN

        VPS            NaN  NaN  ...         NaN        NaN

        XNA            0.0  0.0  ...  173.500000   0.500000

        YUM            NaN  NaN  ...         NaN        NaN
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To remedy the combinatoric explosion, use the observed=True parameter. This makes 
the categorical group bys work like grouping with string types, and only shows the observed 
values and not the Cartesian product:

>>> res = (flights

...     .assign(ORG_AIR=flights.ORG_AIR.astype('category'))

...     .groupby(['ORG_AIR', 'DEST_AIR'], observed=True)

...     .agg({'CANCELLED':['sum', 'mean', 'size'],

...           'AIR_TIME':['mean', 'var']})

... )

>>> res

                 CANCELLED            ...    AIR_TIME            

                       sum      mean  ...        mean         var

ORG_AIR DEST_AIR                      ...                        

LAX     ABQ              1  0.018182  ...   89.259259   29.403215

        ANC              0  0.000000  ...  307.428571   78.952381

        ASE              1  0.038462  ...  102.920000  102.243333

        ATL              0  0.000000  ...  224.201149  127.155837

        AUS              0  0.000000  ...  150.537500   57.897310

...                    ...       ...  ...         ...         ...

MSP     TTN              1  0.125000  ...  124.428571   57.952381

        TUL              0  0.000000  ...   91.611111   63.075163

        TUS              0  0.000000  ...  176.000000   32.000000

        TVC              0  0.000000  ...   56.600000   10.300000

        XNA              0  0.000000  ...   90.642857  115.939560

Removing the MultiIndex after grouping
Inevitably, when using groupby, you will create a MultiIndex. MultiIndexes can happen in both 
the index and the columns. DataFrames with MultiIndexes are more difficult to navigate and 
occasionally have confusing column names as well.

In this recipe, we perform an aggregation with the .groupby method to create a DataFrame 
with a MultiIndex for the rows and columns. Then, we manipulate the index so that it has 
a single level and the column names are descriptive.
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How to do it…
1. Read in the flights dataset, write a statement to find the total and average miles 

flown, and the maximum and minimum arrival delay for each airline for each 
weekday:
>>> flights = pd.read_csv('data/flights.csv')

>>> airline_info = (flights

...     .groupby(['AIRLINE', 'WEEKDAY'])

...     .agg({'DIST':['sum', 'mean'],

...           'ARR_DELAY':['min', 'max']}) 

...     .astype(int)

... )

>>> airline_info

                    DIST       ARR_DELAY     

                     sum  mean       min  max

AIRLINE WEEKDAY                              

AA      1        1455386  1139       -60  551

        2        1358256  1107       -52  725

        3        1496665  1117       -45  473

        4        1452394  1089       -46  349

        5        1427749  1122       -41  732

...                  ...   ...       ...  ...

WN      3         997213   782       -38  262

        4        1024854   810       -52  284

        5         981036   816       -44  244

        6         823946   834       -41  290

        7         945679   819       -45  261

2. Both the rows and columns are labeled by a MultiIndex with two levels. Let's squash 
both down to just a single level. To address the columns, we use the MultiIndex 
method, .to_flat_index. Let's display the output of each level and then 
concatenate both levels before setting it as the new column values:
>>> airline_info.columns.get_level_values(0)

Index(['DIST', 'DIST', 'ARR_DELAY', 'ARR_DELAY'], dtype='object')

>>> airline_info.columns.get_level_values(1)

Index(['sum', 'mean', 'min', 'max'], dtype='object')

>>> airline_info.columns.to_flat_index()



Grouping for Aggregation, Filtration, and Transformation

298

Index([('DIST', 'sum'), ('DIST', 'mean'), ('ARR_DELAY', 'min'),

       ('ARR_DELAY', 'max')],

      dtype='object')

>>> airline_info.columns = ['_'.join(x) for x in

...     airline_info.columns.to_flat_index()]

>>> airline_info

                 DIST_sum  DIST_mean  ARR_DELAY_min  ARR_DELAY_max

AIRLINE WEEKDAY                                                 

AA      1         1455386       1139          -60            551

        2         1358256       1107          -52            725

        3         1496665       1117          -45            473

        4         1452394       1089          -46            349

        5         1427749       1122          -41            732

...                   ...        ...          ...            ...

WN      3          997213        782          -38            262

        4         1024854        810          -52            284

        5          981036        816          -44            244

        6          823946        834          -41            290

        7          945679        819          -45            261

3. A quick way to get rid of the row MultiIndex is to use the .reset_index method:
>>> airline_info.reset_index()

   AIRLINE  WEEKDAY  ...  ARR_DELAY_min  ARR_DELAY_max

0       AA        1  ...          -60            551

1       AA        2  ...          -52            725

2       AA        3  ...          -45            473

3       AA        4  ...          -46            349

4       AA        5  ...          -41            732

..     ...      ...  ...          ...            ...

93      WN        3  ...          -38            262

94      WN        4  ...          -52            284

95      WN        5  ...          -44            244

96      WN        6  ...          -41            290

97      WN        7  ...          -45            261
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4. Refactor the code to make it readable. Use the pandas 0.25 functionality to flatten 
columns automatically:

>>> (flights

...     .groupby(['AIRLINE', 'WEEKDAY'])

...     .agg(dist_sum=pd.NamedAgg(column='DIST', aggfunc='sum'),

...          dist_mean=pd.NamedAgg(column='DIST', aggfunc='mean'),

...          arr_delay_min=pd.NamedAgg(column='ARR_DELAY', 
aggfunc='min'),

...          arr_delay_max=pd.NamedAgg(column='ARR_DELAY', 
aggfunc='max'))

...     .astype(int)

...     .reset_index()

... )

   AIRLINE  WEEKDAY  ...  ARR_DELAY_min  ARR_DELAY_max

0       AA        1  ...            -60            551

1       AA        2  ...            -52            725

2       AA        3  ...            -45            473

3       AA        4  ...            -46            349

4       AA        5  ...            -41            732

..     ...      ...  ...            ...            ...

93      WN        3  ...            -38            262

94      WN        4  ...            -52            284

95      WN        5  ...            -44            244

96      WN        6  ...            -41            290

97      WN        7  ...            -45            261

How it works…
When using the .agg method to perform an aggregation on multiple columns, pandas creates 
an index object with two levels. The aggregating columns become the top level, and the 
aggregating functions become the bottom level. pandas displays MultiIndex levels differently 
to single-level columns. Except for the innermost levels, repeated index values do not get 
displayed in Jupyter or a Python shell. You can inspect the DataFrame from step 1 to verify 
this. For instance, the DIST column shows up only once, but it refers to both of the first 
two columns.
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Step 2 defines new columns by first retrieving the underlying values of each of the levels with 
the MultiIndex method, .get_level_values. This method accepts an integer identifying 
the index level. They are numbered beginning with zero from the outside (top/left). We use the 
recently added index method, .to_flat_index, in combination with a list comprehension 
to create strings for each column. We assign these new values to the columns attribute.

In step 3, we make use of the .reset_index method to push both index levels into columns. 
This is easy, and I wish there was a similar method for column name compaction.

In step 4, we use the NamedAgg class (new in pandas 0.25) to create flat aggregate columns.

There's more…
By default, at the end of a groupby operation, pandas puts all of the grouping columns in the 
index. The as_index parameter in the .groupby method can be set to False to avoid this 
behavior. You can chain the .reset_index method after grouping to get the same effect as 
seen in step 3. Let's see an example of this by finding the average distance traveled per flight 
from each airline:

>>> (flights

...     .groupby(['AIRLINE'], as_index=False)

...     ['DIST']

...     .agg('mean')

...     .round(0)

... )

   AIRLINE    DIST

0       AA  1114.0

1       AS  1066.0

2       B6  1772.0

3       DL   866.0

4       EV   460.0

..     ...     ...

9       OO   511.0

10      UA  1231.0

11      US  1181.0

12      VX  1240.0

13      WN   810.0
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Take a look at the order of the airlines in the previous result. By default, pandas sorts the 
grouping columns. The sort parameter exists within the .groupby method and defaults 
to True. You may set it to False to keep the order of the grouping columns the same as 
how they are encountered in the dataset. There is a small performance improvement by not 
sorting your data.

Grouping with a custom aggregation 
function

pandas provides a number of aggregation functions to use with the groupby object. At some 
point, you may need to write your own custom user-defined function that does not exist in 
pandas or NumPy.

In this recipe, we use the college dataset to calculate the mean and standard deviation 
of the undergraduate student population per state. We then use this information to find the 
maximum number of standard deviations from the mean that any single population value 
is per state.

How to do it…
1. Read in the college dataset, and find the mean and standard deviation of the 

undergraduate population by state:
>>> college = pd.read_csv('data/college.csv')

>>> (college

...     .groupby('STABBR')

...     ['UGDS']

...     .agg(['mean', 'std'])

...     .round(0)

... )

          mean      std

STABBR                 

AK      2493.0   4052.0

AL      2790.0   4658.0

AR      1644.0   3143.0

AS      1276.0      NaN

AZ      4130.0  14894.0

...        ...      ...

VT      1513.0   2194.0
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WA      2271.0   4124.0

WI      2655.0   4615.0

WV      1758.0   5957.0

WY      2244.0   2745.0

2. This output isn't quite what we desire. We are not looking for the mean and standard 
deviations of the entire group but the maximum number of standard deviations away 
from the mean for any one institution. To calculate this, we need to subtract the mean 
undergraduate population by state from each institution's undergraduate population 
and then divide by the standard deviation. This standardizes the undergraduate 
population for each group. We can then take the maximum of the absolute value of 
these scores to find the one that is farthest away from the mean. pandas does not 
provide a function capable of doing this. Instead, we will need to create a custom 
function:
>>> def max_deviation(s):

...     std_score = (s - s.mean()) / s.std()

...     return std_score.abs().max()

3. After defining the function, pass it directly to the .agg method to complete the 
aggregation:

>>> (college

...     .groupby('STABBR')

...     ['UGDS']

...     .agg(max_deviation)

...     .round(1)

... )

STABBR

AK    2.6

AL    5.8

AR    6.3

AS    NaN

AZ    9.9

     ... 

VT    3.8

WA    6.6

WI    5.8

WV    7.2

WY    2.8

Name: UGDS, Length: 59, dtype: float64
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How it works…
There is no predefined pandas function to calculate the maximum number of standard 
deviations away from the mean. We need to write our own function. Notice that this custom 
function, max_deviation, accepts a single parameter, s.

In step 3, you will notice that the function name is placed inside the .agg method without 
directly being called. Nowhere is the parameter s explicitly passed to max_deviation. 
Instead, pandas implicitly passes the UGDS column as a Series to max_deviation.

The max_deviation function is called once for each group. As s is a Series, all normal 
Series methods are available. It subtracts the mean of that particular grouping from each 
of the values in the group before dividing by the standard deviation in a process called 
standardization.

As we are interested in absolute deviation from the mean, we take the absolute value from 
all the standardized scores and return the maximum. The .agg method requires that we 
return a scalar from the function, or else an exception will be raised.

pandas defaults to using the sample standard deviation, which is undefined for any groups 
with just a single value. For instance, the state abbreviation AS (American Samoa) has a 
missing value returned as it has only a single institution in the dataset.

There's more…
It is possible to apply our custom function to multiple aggregating columns. We simply add 
more column names to the indexing operator. The max_deviation function only works with 
numeric columns:

>>> (college

...     .groupby('STABBR')

...     [['UGDS', 'SATVRMID', 'SATMTMID']]

...     .agg(max_deviation)

...     .round(1)

... )

        UGDS  SATVRMID  SATMTMID

STABBR                          

AK       2.6       NaN       NaN

AL       5.8       1.6       1.8

AR       6.3       2.2       2.3

AS       NaN       NaN       NaN

AZ       9.9       1.9       1.4
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...      ...       ...       ...

VT       3.8       1.9       1.9

WA       6.6       2.2       2.0

WI       5.8       2.4       2.2

WV       7.2       1.7       2.1

WY       2.8       NaN       NaN

You can also use your custom aggregation function along with the prebuilt functions. The 
following does this and groups by state and religious affiliation:

>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATVRMID', 'SATMTMID']]

...     .agg([max_deviation, 'mean', 'std'])

...     .round(1)

... )

                         UGDS          ... SATMTMID      

                max_deviation    mean  ...     mean   std

STABBR RELAFFIL                        ...               

AK     0                 2.1   3508.9  ...      NaN   NaN

       1                 1.1    123.3  ...    503.0   NaN

AL     0                 5.2   3248.8  ...    515.8  56.7

       1                 2.4    979.7  ...    485.6  61.4

AR     0                 5.8   1793.7  ...    503.6  39.0

...                      ...      ...  ...      ...   ...

WI     0                 5.3   2879.1  ...    591.2  85.7

       1                 3.4   1716.2  ...    526.6  42.5

WV     0                 6.9   1873.9  ...    480.0  27.7

       1                 1.3    716.4  ...    484.8  17.7

WY     0                 2.8   2244.4  ...    540.0   NaN

Notice that pandas uses the name of the function as the name for the returned column. 
You can change the column name directly with the .rename method or you can modify 
the function attribute .__name__:

>>> max_deviation.__name__

'max_deviation'

>>> max_deviation.__name__ = 'Max Deviation'

>>> (college
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...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATVRMID', 'SATMTMID']]

...     .agg([max_deviation, 'mean', 'std'])

...     .round(1)

... )

                         UGDS          ... SATMTMID      

                Max Deviation    mean  ...     mean   std

STABBR RELAFFIL                        ...               

AK     0                 2.1   3508.9  ...      NaN   NaN

       1                 1.1    123.3  ...    503.0   NaN

AL     0                 5.2   3248.8  ...    515.8  56.7

       1                 2.4    979.7  ...    485.6  61.4

AR     0                 5.8   1793.7  ...    503.6  39.0

...                      ...      ...  ...      ...   ...

WI     0                 5.3   2879.1  ...    591.2  85.7

       1                 3.4   1716.2  ...    526.6  42.5

WV     0                 6.9   1873.9  ...    480.0  27.7

       1                 1.3    716.4  ...    484.8  17.7

WY     0                 2.8   2244.4  ...    540.0   NaN

Customizing aggregating functions with 
*args and **kwargs

When writing your own user-defined customized aggregation function, pandas implicitly 
passes it each of the aggregating columns one at a time as a Series. Occasionally, you 
will need to pass more arguments to your function than just the Series itself. To do so, you 
need to be aware of Python's ability to pass an arbitrary number of arguments to functions.

The signature to .agg is agg(func, *args, **kwargs). The func parameter is 
a reducing function, the string name of a reducing method, a list of reducing functions, 
or a dictionary mapping columns to functions or a list of functions. Additionally, as we have 
seen, you can use keyword arguments to create named aggregations.

If you have a reducing function that takes additional arguments that you would like to use, 
you can leverage the *args and **kwargs parameters to pass arguments to the reduction 
function. You can use *args to pass an arbitrary number of positional arguments to your 
customized aggregation function. Similarly, **kwargs allows you to pass an arbitrary 
number of keyword arguments.
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In this recipe, we will build a customized function for the college dataset that finds the 
percentage of schools by state and religious affiliation that have an undergraduate population 
between two values.

How to do it…
1. Define a function that returns the percentage of schools with an undergraduate 

population of between 1,000 and 3,000:
>>> def pct_between_1_3k(s):

...     return (s

...         .between(1_000, 3_000)

...         .mean()

...         * 100

...     )

2. Calculate this percentage grouping by state and religious affiliation:
>>> (college

...     .groupby(['STABBR', 'RELAFFIL'])

...     ['UGDS'] 

...     .agg(pct_between_1_3k)

...     .round(1)

... )

STABBR  RELAFFIL        

AK      0           14.3

        1            0.0

AL      0           23.6

AR      0           27.9

                    ... 

WI      0           13.8

        1           36.0

WV      0           24.6

        1           37.5

WY      0           54.5

Name: UGDS, Length: 112, dtype: float64

3. This function works, but it does not give the user any flexibility to choose the lower 
and upper bound. Let's create a new function that allows the user to parameterize 
these bounds:
>>> def pct_between(s, low, high):

...     return s.between(low, high).mean() * 100
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4. Pass this new function to the .agg method along with the lower and upper bounds:

>>> (college

...     .groupby(['STABBR', 'RELAFFIL'])

...     ['UGDS'] 

...     .agg(pct_between, 1_000, 10_000)

...     .round(1)

... )

STABBR  RELAFFIL        

AK      0           42.9

        1            0.0

AL      0           45.8

        1           37.5

AR      0           39.7

                    ... 

WI      0           31.0

        1           44.0

WV      0           29.2

        1           37.5

WY      0           72.7

Name: UGDS, Length: 112, dtype: float64

How it works…
Step 1 creates a function that doesn't accept any extra arguments. The upper and lower 
bounds are hardcoded into the function, which isn't very flexible. Step 2 shows the results 
of this aggregation.

We create a more flexible function in step 3 where we parameterize both the lower and upper 
bounds dynamically. Step 4 is where the magic of *args and **kwargs comes into play. 
In this particular example, we pass two non-keyword arguments, 1_000 and 10_000, to 
the .agg method. pandas passes these two arguments respectively to the low and high 
parameters of pct_between.

There are a few ways we could achieve the same result in step 4. We could have explicitly 
used keyword parameters to produce the same result:

 (college

     .groupby(['STABBR', 'RELAFFIL'])

     ['UGDS']
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     .agg(pct_between, high=10_000, low=1_000)

     .round(1)

 )

There's more…
If we want to call multiple aggregation functions and some of them need parameters, we can 
utilize Python's closure functionality to create a new function that has the parameters closed 
over in its calling environment:

>>> def between_n_m(n, m):

...     def wrapper(ser):

...         return pct_between(ser, n, m)

...     wrapper.__name__ = f'between_{n}_{m}'

...     return wrapper

>>> (college

...     .groupby(['STABBR', 'RELAFFIL'])

...     ['UGDS'] 

...     .agg([between_n_m(1_000, 10_000), 'max', 'mean'])

...     .round(1)

... )

                 between_1000_10000      max    mean

STABBR RELAFFIL

AK     0                       42.9  12865.0  3508.9

       1                        0.0    275.0   123.3

AL     0                       45.8  29851.0  3248.8

       1                       37.5   3033.0   979.7

AR     0                       39.7  21405.0  1793.7

...                             ...      ...     ...

WI     0                       31.0  29302.0  2879.1

       1                       44.0   8212.0  1716.2

WV     0                       29.2  44924.0  1873.9

       1                       37.5   1375.0   716.4

WY     0                       72.7   9910.0  2244.4
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Examining the groupby object
The immediate result from using the .groupby method on a DataFrame is a groupby object. 
Usually, we chain operations on this object to do aggregations or transformations without ever 
storing the intermediate values in variables.

In this recipe, we examine the groupby object to examine individual groups.

How to do it…
1. Let's get started by grouping the state and religious affiliation columns from the 

college dataset, saving the result to a variable and confirming its type:
>>> college = pd.read_csv('data/college.csv')

>>> grouped = college.groupby(['STABBR', 'RELAFFIL'])

>>> type(grouped)

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

2. Use the dir function to discover the attributes of a groupby object:
>>> print([attr for attr in dir(grouped) if not

...     attr.startswith('_')])

['CITY', 'CURROPER', 'DISTANCEONLY', 'GRAD_DEBT_MDN_SUPP', 'HBCU', 
'INSTNM',

'MD_EARN_ WNE_P10', 'MENONLY', 'PCTFLOAN', 'PCTPELL', 'PPTUG_EF', 
'RELAFFIL',

'SATMTMID', 'SATVRMID' , 'STABBR', 'UG25ABV', 'UGDS', 'UGDS_2MOR', 
'UGDS_AIAN',

'UGDS_ASIAN', 'UGDS_BLACK', 'UGDS _HISP', 'UGDS_NHPI', 'UGDS_NRA', 
'UGDS_UNKN',

'UGDS_WHITE', 'WOMENONLY', 'agg', 'aggregate ', 'all', 'any', 
'apply',

'backfill', 'bfill', 'boxplot', 'corr', 'corrwith', 'count', 'co 
v', 'cumcount',

'cummax', 'cummin', 'cumprod', 'cumsum', 'describe', 'diff', 
'dtypes', 'ex

panding', 'ffill', 'fillna', 'filter', 'first', 'get_group', 
'groups', 'head',

'hist', 'id xmax', 'idxmin', 'indices', 'last', 'mad', 'max', 
'mean', 'median',

'min', 'ndim', 'ngroup ', 'ngroups', 'nth', 'nunique', 'ohlc', 
'pad',
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'pct_change', 'pipe', 'plot', 'prod', 'quan tile', 'rank', 
'resample',

'rolling', 'sem', 'shift', 'size', 'skew', 'std', 'sum', 'tail' , 
'take',

'transform', 'tshift', 'var']

3. Find the number of groups with the .ngroups attribute:
>>> grouped.ngroups

112

4. To find the uniquely identifying labels for each group, look in the .groups attribute, 
which contains a dictionary of each unique group mapped to all the corresponding 
index labels of that group. Because we grouped by two columns, each of the keys has 
a tuple, one value for the STABBR column and another for the RELAFFIL column:
>>> groups = list(grouped.groups)

>>> groups[:6]

[('AK', 0), ('AK', 1), ('AL', 0), ('AL', 1), ('AR', 0), ('AR', 1)]

5. Retrieve a single group with the .get_group method by passing it a tuple of an 
exact group label. For example, to get all the religiously affiliated schools in the state 
of Florida, do the following:
>>> grouped.get_group(('FL', 1))

           INSTNM         CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

712   The Bapt...   Graceville  ...        30800           20052

713   Barry Un...        Miami  ...        44100           28250

714   Gooding ...  Panama City  ...          NaN     PrivacyS...

715   Bethune-...  Daytona ...  ...        29400           36250

724   Johnson ...    Kissimmee  ...        26300           20199

...           ...          ...  ...          ...             ...

7486  Strayer ...  Coral Sp...  ...        49200         36173.5

7487  Strayer ...  Fort Lau...  ...        49200         36173.5

7488  Strayer ...      Miramar  ...        49200         36173.5

7489  Strayer ...        Miami  ...        49200         36173.5

7490  Strayer ...        Miami  ...        49200         36173.5

6. You may want to take a peek at each individual group. This is possible because 
groupby objects are iterable. If you are in Jupyter, you can leverage the display 
function to show each group in a single cell (otherwise, Jupyter will only show the 
result of the last statement of the cell):
from IPython.display import display
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 for name, group in grouped:

      print(name)

      display(group.head(3))

Displaying multiple dataframes

However, I typically want to see some example data from a single group to figure out 
what function I want to apply to the groups. If I know the names of the values from 
the columns I grouped by, I can use the previous step. Often, I don't know those 
names, but I also don't need to see all of the groups. The following is some debugging 
of the code that is usually sufficient to understand what a group looks like:
>>> for name, group in grouped:

...     print(name)

...     print(group)

...     break

('AK', 0)

           INSTNM       CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

60    Universi...  Anchorage  ...        42500         19449.5

62    Universi...  Fairbanks  ...        36200           19355
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63    Universi...     Juneau  ...        37400           16875

65    AVTEC-Al...     Seward  ...        33500     PrivacyS...

66    Charter ...  Anchorage  ...        39200           13875

67    Alaska C...  Anchorage  ...        28700            8994

5171  Ilisagvi...     Barrow  ...        24900     PrivacyS...

7. You can also call the .head method on your groupby object to get the first rows of 
each group together in a single DataFrame:

>>> grouped.head(2)

           INSTNM        CITY  ... MD_EARN_WNE_P10  GRAD_DEBT_MDN_
SUPP

0     Alabama ...      Normal  ...        30300           33888

1     Universi...  Birmingham  ...        39700         21941.5

2     Amridge ...  Montgomery  ...        40100           23370

10    Birmingh...  Birmingham  ...        44200           27000

43    Prince I...    Elmhurst  ...  PrivacyS...           20992

...           ...         ...  ...          ...             ...

5289  Pacific ...    Mangilao  ...  PrivacyS...     PrivacyS...

6439  Touro Un...   Henderson  ...          NaN     PrivacyS...

7352  Marinell...   Henderson  ...        21200          9796.5

7404  Universi...   St. Croix  ...        31800           15150

7419  Computer...  Las Cruces  ...        21300           14250

How it works…
Step 1 creates our groupby object. We can display all the public attributes and methods to 
reveal the functionality of an object as was done in step 2. Each group is uniquely identified by 
a tuple containing a unique combination of the values in the grouping columns. pandas allows 
you to select a specific group as a DataFrame with the .get_group method shown in step 5.

It is rare that you will need to iterate through your groups. In fact, you should avoid doing 
so, as it can be quite slow. Occasionally, however, you will have no other choice. When 
iterating through a groupby object, you are given a tuple containing the group name and the 
DataFrame with the grouping columns moved into the index. This tuple is unpacked into the 
name and group variables in the for loop in step 6.

One thing you can do while iterating through your groups is to display a few of the rows from 
each group directly in the notebook. To do this, you can either use the print function or the 
display function from the IPython.display module if you are using Jupyter.
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There's more…
There are several useful methods that were not explored from the list in step 2. Take, for 
instance, the .nth method, which, when provided with a list of integers, selects those specific 
rows from each group. For example, the following operation selects the first and last rows from 
each group:

>>> grouped.nth([1, -1])

                      INSTNM         CITY  ...  MD_EARN_WNE_P10 

STABBR RELAFFIL                            ...

AK     0         Universi...    Fairbanks  ...        36200

       0         Ilisagvi...       Barrow  ...        24900

       1         Alaska P...    Anchorage  ...        47000

       1         Alaska C...     Soldotna  ...          NaN

AL     0         Universi...   Birmingham  ...        39700

...                      ...          ...  ...          ...

WV     0         BridgeVa...  South  C...  ...          NaN

       1         Appalach...   Mount Hope  ...        28700

       1         West Vir...  Nutter Fort  ...        16700

WY     0         Central ...     Riverton  ...        25200

       0         CollegeA...     Cheyenne  ...        25600

Filtering for states with a minority majority
Previously, we examined using Boolean arrays to filter rows. In a similar fashion, when using 
the .groupby method, we can filter out groups. The .filter method of the groupby object 
accepts a function that must return either True or False to indicate whether a group is kept.

This .filter method applied after a call to the .groupby method is completely different to 
the DataFrame .filter method covered in the Selecting columns with methods recipe from 
Chapter 2, Essential DataFrame Operations.

One thing to be aware of is that when the .filter method is applied, the result does not use 
the grouping columns as the index, but keeps the original index! The DataFrame .filter 
method filters columns, not values.

In this recipe, we use the college dataset to find all the states that have more non-white 
undergraduate students than white. This is a dataset from the US, where whites form the 
majority and therefore, we are looking for states with a minority majority.
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How to do it…
1. Read in the college dataset, group by state, and display the total number of groups. 

This should equal the number of unique states retrieved from the .nunique Series 
method:
>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> grouped = college.groupby('STABBR')

>>> grouped.ngroups

59

>>> college['STABBR'].nunique() # verifying the same number

59

2. The grouped variable has a .filter method, which accepts a custom function 
that determines whether a group is kept. The custom function accepts a DataFrame 
of the current group and is required to return a Boolean. Let's define a function 
that calculates the total percentage of minority students and returns True if this 
percentage is greater than a user-defined threshold:
>>> def check_minority(df, threshold):

...     minority_pct = 1 - df['UGDS_WHITE']

...     total_minority = (df['UGDS'] * minority_pct).sum()

...     total_ugds = df['UGDS'].sum()

...     total_minority_pct = total_minority / total_ugds

...     return total_minority_pct > threshold

3. Use the .filter method passed with the check_minority function and a 
threshold of 50% to find all states that have a minority majority:
>>> college_filtered = grouped.filter(check_minority, 
threshold=.5)

>>> college_filtered

                     CITY STABBR  ...  MD_EARN_WNE_P10  GRAD_DEBT_
MDN_SUPP

INSTNM                            ...

Everest C...      Phoenix     AZ  ...        28600             
9500

Collins C...      Phoenix     AZ  ...        25700            
47000

Empire Be...      Phoenix     AZ  ...        17800             
9588

Empire Be...       Tucson     AZ  ...        18200             
9833

Thunderbi...     Glendale     AZ  ...       118900      
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PrivacyS...

...                   ...    ...  ...          ...              

...

WestMed C...       Merced     CA  ...          NaN          
15623.5Vantage C...      El Paso     TX  ...          NaN             
9500

SAE Insti...   Emeryville     CA  ...          NaN             
9500

Bay Area ...     San Jose     CA  ...          NaN      
PrivacyS...

Excel Lea...  San Antonio     TX  ...          NaN            
12125

4. Just looking at the output may not be indicative of what happened. The DataFrame 
starts with the state of Arizona (AZ) and not Alaska (AK), so we can visually confirm 
that something changed. Let's compare the shape of this filtered DataFrame with the 
original. Looking at the results, about 60% of the rows have been filtered, and only 
20 states remain that have a minority majority:

>>> college.shape

(7535, 26)

>>> college_filtered.shape

(3028, 26)

>>> college_filtered['STABBR'].nunique()

20

How it works…
This recipe takes a look at the total population of all the institutions on a state-by-state basis. 
The goal is to keep all the rows from the states, as a whole, that have a minority majority. 
This requires us to group our data by state, which we do in step 1. We find that there are 
59 independent groups.

The .filter groupby method either keeps all the rows in a group or filters them out. It does 
not change the number of columns. The .filter groupby method performs this gatekeeping 
through a user-defined function, check_minority, in this recipe. This function accepts a 
DataFrame of each group and needs to return a Boolean.

Inside the check_minority function, the percentage and the total number of non-white 
students for each institution are first calculated followed by the total number of all students. 
Finally, the percentage of non-white students for the entire state is checked against the given 
threshold, which produces a Boolean.
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The final result is a DataFrame with the same columns as the original (and the same index, 
not the grouped index), but with the rows from the states that don't meet the threshold filtered 
out. As it is possible that the head of the filtered DataFrame is the same as the original, you 
need to do some inspection to ensure that the operation completed successfully. We verify 
this by checking the number of rows and unique states.

There's more…
Our function, check_minority, is flexible and accepts a parameter to lower or raise the 
percentage of minority threshold. Let's check the shape and number of unique states for 
a couple of other thresholds:

>>> college_filtered_20 = grouped.filter(check_minority, threshold=.2)

>>> college_filtered_20.shape

(7461, 26)

>>> college_filtered_20['STABBR'].nunique()

57

>>> college_filtered_70 = grouped.filter(check_minority, threshold=.7)

>>> college_filtered_70.shape

(957, 26)

>>> college_filtered_70['STABBR'].nunique()

10

Transforming through a weight loss bet
One method to increase motivation to lose weight is to make a bet with someone else. The 
scenario in this recipe will track weight loss from two individuals throughout a four-month 
period and determine a winner.

In this recipe, we use simulated data from two individuals to track the percentage of weight 
loss over four months. At the end of each month, a winner will be declared based on the 
individual who lost the highest percentage of body weight for that month. To track weight 
loss, we group our data by month and person, and then call the .transform method to find 
the percentage weight loss change for each week against the start of the month.

We will use the .transform method in this recipe. This method returns a new object that 
preserves the index of the original DataFrame but allows you to do calculations on groups 
of the data.
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How to do it…
1. Read in the raw weight_loss dataset, and examine the first month of data from the 

two people, Amy and Bob. There are a total of four weigh-ins per month:
>>> weight_loss = pd.read_csv('data/weight_loss.csv')

>>> weight_loss.query('Month == "Jan"')

  Name Month    Week  Weight

0  Bob   Jan  Week 1     291

1  Amy   Jan  Week 1     197

2  Bob   Jan  Week 2     288

3  Amy   Jan  Week 2     189

4  Bob   Jan  Week 3     283

5  Amy   Jan  Week 3     189

6  Bob   Jan  Week 4     283

7  Amy   Jan  Week 4     190

2. To determine the winner for each month, we only need to compare weight loss from 
the first week to the last week of each month. But, if we wanted to have weekly 
updates, we can also calculate weight loss from the current week to the first week 
of each month. Let's create a function that is capable of providing weekly updates. 
It will take a Series and return a Series of the same size:
>>> def percent_loss(s):

...     return ((s - s.iloc[0]) / s.iloc[0]) * 100

3. Let's test out this function for Bob during the month of January:
>>> (weight_loss

...     .query('Name=="Bob" and Month=="Jan"')

...     ['Weight']

...     .pipe(percent_loss)

... )

0    0.000000

2   -1.030928

4   -2.749141

6   -2.749141

Name: Weight, dtype: float64
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4. After the first week, Bob lost 1% of his body weight. He continued losing weight during 
the second week but made no progress during the last week. We can apply this 
function to every single combination of person and month to get the weight loss per 
week in relation to the first week of the month. To do this, we need to group our data 
by Name and Month, and then use the .transform method to apply this custom 
function. The function we pass to .transform needs to maintain the index of the 
group that is passed into it, so we can use percent_loss here:
>>> (weight_loss

...     .groupby(['Name', 'Month'])

...     ['Weight'] 

...     .transform(percent_loss)

... )

0     0.000000

1     0.000000

2    -1.030928

3    -4.060914

4    -2.749141

        ...   

27   -3.529412

28   -3.065134

29   -3.529412

30   -4.214559

31   -5.294118

Name: Weight, Length: 32, dtype: float64

5. The .transform method takes a function that returns an object with the same 
index (and the same number of rows) as was passed into it. Because it has the 
same index, we can insert it as a column. The .transform method is useful for 
summarizing information from the groups and then adding it back to the original 
DataFrame. We will also filter down to two months of data for Bob:
>>> (weight_loss

...     .assign(percent_loss=(weight_loss

...         .groupby(['Name', 'Month'])

...         ['Weight'] 

...         .transform(percent_loss)

...         .round(1)))

...     .query('Name=="Bob" and Month in ["Jan", "Feb"]')

... )
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   Name Month    Week  Weight  percent_loss

0   Bob   Jan  Week 1     291           0.0

2   Bob   Jan  Week 2     288          -1.0

4   Bob   Jan  Week 3     283          -2.7

6   Bob   Jan  Week 4     283          -2.7

8   Bob   Feb  Week 1     283           0.0

10  Bob   Feb  Week 2     275          -2.8

12  Bob   Feb  Week 3     268          -5.3

14  Bob   Feb  Week 4     268          -5.3

6. Notice that the percentage of weight loss resets after the new month. With this new 
percent_loss column, we can manually determine a winner but let's see whether 
we can find a way to do this automatically. As the only week that matters is the last 
week, let's select week 4:
>>> (weight_loss

...     .assign(percent_loss=(weight_loss

...         .groupby(['Name', 'Month'])

...         ['Weight'] 

...         .transform(percent_loss)

...         .round(1)))

...     .query('Week == "Week 4"')

... )

   Name Month    Week  Weight  percent_loss

6   Bob   Jan  Week 4     283          -2.7

7   Amy   Jan  Week 4     190          -3.6

14  Bob   Feb  Week 4     268          -5.3

15  Amy   Feb  Week 4     173          -8.9

22  Bob   Mar  Week 4     261          -2.6

23  Amy   Mar  Week 4     170          -1.7

30  Bob   Apr  Week 4     250          -4.2

31  Amy   Apr  Week 4     161          -5.3

7. This narrows down the weeks but still doesn't automatically find out the winner of 
each month. Let's reshape this data with the .pivot method so that Bob's and 
Amy's percent weight loss is side by side for each month:
>>> (weight_loss

...     .assign(percent_loss=(weight_loss

...         .groupby(['Name', 'Month'])
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...         ['Weight'] 

...         .transform(percent_loss)

...         .round(1)))

...     .query('Week == "Week 4"')

...     .pivot(index='Month', columns='Name',

...            values='percent_loss')

... )

Name   Amy  Bob

Month          

Apr   -5.3 -4.2

Feb   -8.9 -5.3

Jan   -3.6 -2.7

Mar   -1.7 -2.6

8. This output makes it clearer who has won each month, but we can still go a couple 
of steps further. NumPy has a vectorized if then else function called where, 
which can map a Series or array of Booleans to other values. Let's create a column, 
winner, with the name of the winner:
>>> (weight_loss

...     .assign(percent_loss=(weight_loss

...         .groupby(['Name', 'Month'])

...         ['Weight'] 

...         .transform(percent_loss)

...         .round(1)))

...     .query('Week == "Week 4"')

...     .pivot(index='Month', columns='Name',

...            values='percent_loss')

...     .assign(winner=lambda df_:

...             np.where(df_.Amy < df_.Bob, 'Amy', 'Bob'))

... )

Name   Amy  Bob winner

Month                 

Apr   -5.3 -4.2    Amy

Feb   -8.9 -5.3    Amy

Jan   -3.6 -2.7    Amy

Mar   -1.7 -2.6    Bob
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In Jupyter, you can highlight the winning percentage for each month using the 
.style attribute:
(weight_loss

    .assign(percent_loss=(weight_loss

        .groupby(['Name', 'Month'])

        ['Weight'] 

        .transform(percent_loss)

        .round(1)))

    .query('Week == "Week 4"')

    .pivot(index='Month', columns='Name',

           values='percent_loss')

    .assign(winner=lambda df_:

            np.where(df_.Amy < df_.Bob, 'Amy', 'Bob'))

    .style.highlight_min(axis=1)

)

The highlight minimum

9. Use the .value_counts method to return the final score as the number of months 
won:

>>> (weight_loss

...     .assign(percent_loss=(weight_loss
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...         .groupby(['Name', 'Month'])

...         ['Weight'] 

...         .transform(percent_loss)

...         .round(1)))

...     .query('Week == "Week 4"')

...     .pivot(index='Month', columns='Name',

...            values='percent_loss')

...     .assign(winner=lambda df_:

...             np.where(df_.Amy < df_.Bob, 'Amy', 'Bob'))

...     .winner

...     .value_counts()

... )

Amy    3

Bob    1

Name: winner, dtype: int64

How it works…
Throughout this recipe, the .query method is used to filter data instead of using Boolean 
arrays. Refer to the Improving readability of Boolean indexing with the query method recipe 
in Chapter 7, Filtering Rows for more information.

Our goal is to find the percentage weight loss for each month for each person. One way 
to accomplish this task is to calculate each week's weight loss relative to the start of each 
month. This specific task is perfectly suited to the .transform groupby method. The 
.transform method requires a function as a parameter. This function gets passed each 
group (which can be a Series or DataFrame). It must return a sequence of values the same 
length as the group that was passed in or else an exception will be raised. No aggregation 
or filtering takes place.

Step 2 creates a function that calculates the percent age loss (or gain) relative to the first 
value. It subtracts the first value of the passed Series from all of its values and then divides 
this result by the first value. In step 3, we test this function on one person during one month.

In step 4, we use .groupby with .transform to run this function over every combination 
of person and month. We are transforming the Weight column into the percentage of weight 
lost in the current week.
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The first month of data is outputted for each person in step 6. pandas returns the new data 
as a Series. This Series isn't all that useful by itself and makes more sense appended to the 
original DataFrame as a new column. We complete this operation in step 5.

To determine the winner, only week 4 of each month is necessary. We could stop here and 
manually determine the winner, but pandas supplies us with the functionality to automate 
this. The .pivot function in step 7 reshapes our dataset by pivoting the unique values of one 
column into new column names. The index parameter is used for the column that you do 
not want to pivot. The column passed to the values parameter gets tiled over each unique 
combination of the columns in the index and columns parameters.

The .pivot method only works if there is just a single occurrence of each unique 
combination of the columns in the index and columns parameters. If there is more than one 
unique combination, an exception is raised. You can use the .pivot_table or .groupby 
method in that situation.

Here is an example of using .groupyby with .unstack to emulate the pivot functionality:

>>> (weight_loss

...     .assign(percent_loss=(weight_loss

...         .groupby(['Name', 'Month'])

...         ['Weight'] 

...         .transform(percent_loss)

...         .round(1)))

...     .query('Week == "Week 4"')

...     .groupby(['Month', 'Name'])

...     ['percent_loss']

...     .first()

...     .unstack()

... )

Name   Amy  Bob

Month          

Apr   -5.3 -4.2

Feb   -8.9 -5.3

Jan   -3.6 -2.7

Mar   -1.7 -2.6

After pivoting, we utilize the NumPy where function, whose first argument is a condition 
that produces a Series of Booleans. True values get mapped to Amy, and False values 
get mapped to Bob. We highlight the winner of each month and tally the final score with the 
.value_counts method.
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There's more…
Take a look at the DataFrame output from step 7. Did you notice that the months are in 
alphabetical and not chronological order? pandas unfortunately, in this case at least, orders 
the months for us alphabetically. We can solve this issue by changing the data type of Month 
to a categorical variable. Categorical variables map all the values of each column to an 
integer. We can choose this mapping to be the normal chronological order for the months. 
pandas uses this underlying integer mapping during the .pivot method to order the months 
chronologically:

>>> (weight_loss

...     .assign(percent_loss=(weight_loss

...         .groupby(['Name', 'Month'])

...         ['Weight'] 

...         .transform(percent_loss)

...         .round(1)),

...             Month=pd.Categorical(weight_loss.Month,

...                   categories=['Jan', 'Feb', 'Mar', 'Apr'],

...                   ordered=True))

...     .query('Week == "Week 4"')

...     .pivot(index='Month', columns='Name',

...            values='percent_loss')

... )

Name   Amy  Bob

Month          

Jan   -3.6 -2.7

Feb   -8.9 -5.3

Mar   -1.7 -2.6

Apr   -5.3 -4.2

To convert Month to an ordered category column, use the Categorical constructor. Pass 
it the original column as a Series and a unique sequence of all the categories in the desired 
order to the categories parameter. In general, to sort columns of the object data type by 
something other than alphabetical, convert them to categorical.
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Calculating weighted mean SAT scores per 
state with apply

The groupby object has four methods that accept a function (or functions) to perform a 
calculation on each group. These four methods are .agg, .filter, .transform, and 
.apply. Each of the first three of these methods has a very specific output that the function 
must return. .agg must return a scalar value, .filter must return a Boolean, and 
.transform must return a Series or DataFrame with the same length as the passed group. 
The .apply method, however, may return a scalar value, a Series, or even a DataFrame 
of any shape, therefore making it very flexible. It is also called only once per group (on a 
DataFrame), while the .transform and .agg methods get called once for each aggregating 
column (on a Series). The .apply method's ability to return a single object when operating on 
multiple columns at the same time makes the calculation in this recipe possible.

In this recipe, we calculate the weighted average of both the math and verbal SAT scores 
per state from the college dataset. We weight the scores by the population of undergraduate 
students per school.

How to do it…
1. Read in the college dataset, and drop any rows that have missing values in the UGDS, 

SATMTMID, or SATVRMID columns. We do not want any missing values for those 
columns:
>>> college = pd.read_csv('data/college.csv')

>>> subset = ['UGDS', 'SATMTMID', 'SATVRMID']

>>> college2 = college.dropna(subset=subset)

>>> college.shape

(7535, 27)

>>> college2.shape

(1184, 27)

2. The vast majority of institutions do not have data for our three required columns, 
but this is still more than enough data to continue. Next, create a user-defined 
function to calculate the weighted average of the SAT math scores:
>>> def weighted_math_average(df):

...     weighted_math = df['UGDS'] * df['SATMTMID']

...     return int(weighted_math.sum() / df['UGDS'].sum())
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3. Group by state and pass this function to the .apply method. Because each group 
has multiple columns and we want to reduce those to a single value, we need to use 
.apply. The weighted_math_average function will be called once for each group 
(not on the individual columns in the group):
>>> college2.groupby('STABBR').apply(weighted_math_average)

STABBR

AK    503

AL    536

AR    529

AZ    569

CA    564

     ...

VT    566

WA    555

WI    593

WV    500

WY    540

Length: 53, dtype: int64

4. We successfully returned a scalar value for each group. Let's take a small detour and 
see what the outcome would have been by passing the same function to the .agg 
method (which calls the function for every column):
>>> (college2

...     .groupby('STABBR')

...     .agg(weighted_math_average)

... )

Traceback (most recent call last):

  ...

KeyError: 'UGDS'

5. The weighted_math_average function gets applied to each non-aggregating 
column in the DataFrame. If you try and limit the columns to just SATMTMID, you 
will get an error as you won't have access to UGDS. So, the best way to complete 
operations that act on multiple columns is with .apply:
>>> (college2

...     .groupby('STABBR')

...     ['SATMTMID'] 

...     .agg(weighted_math_average)

... )
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Traceback (most recent call last):

  ...

KeyError: 'UGDS'

6. A nice feature of .apply is that you can create multiple new columns by returning 
a Series. The index of this returned Series will be the new column names. Let's 
modify our function to calculate the weighted and arithmetic average for both SAT 
scores along with the count of the number of institutions from each group. We return 
these five values in a Series:

>>> def weighted_average(df):

...    weight_m = df['UGDS'] * df['SATMTMID']

...    weight_v = df['UGDS'] * df['SATVRMID']

...    wm_avg = weight_m.sum() / df['UGDS'].sum()

...    wv_avg = weight_v.sum() / df['UGDS'].sum()

...    data = {'w_math_avg': wm_avg,

...            'w_verbal_avg': wv_avg,

...            'math_avg': df['SATMTMID'].mean(),

...            'verbal_avg': df['SATVRMID'].mean(),

...            'count': len(df)

...    }

...    return pd.Series(data)

>>> (college2

...     .groupby('STABBR')

...     .apply(weighted_average)

...     .astype(int)

... )

        w_math_avg  w_verbal_avg  math_avg  verbal_avg  count

STABBR

AK             503           555       503         555      1

AL             536           533       504         508     21

AR             529           504       515         491     16

AZ             569           557       536         538      6

CA             564           539       562         549     72

...            ...           ...       ...         ...    ...

VT             566           564       526         527      8

WA             555           541       551         548     18

WI             593           556       545         516     14

WV             500           487       481         473     17

WY             540           535       540         535      1
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How it works…
In order for this recipe to complete correctly, we need to filter for institutions that do not have 
missing values for UGDS, SATMTMID, and SATVRMID. By default, the .dropna method drops 
rows that have one or more missing values. We must use the subset parameter to limit the 
columns it looks at. It only considers the UGDS, SATMTMID, or SATVRMID columns for missing 
values.

If we do not remove the missing values, it will throw off the computations for the weighted 
averages. Next, you can see that the weighted scores for AK are 5 and 6, which does not 
make sense:

>>> (college

...     .groupby('STABBR')

...     .apply(weighted_average)

... )

        w_math_avg  w_verbal_avg    math_avg  verbal_avg  count

STABBR

AK        5.548091      6.121651  503.000000  555.000000   10.0

AL      261.895658    260.550109  504.285714  508.476190   96.0

AR      301.054792    287.264872  515.937500  491.875000   86.0

AS        0.000000      0.000000         NaN         NaN    1.0

AZ       61.815821     60.511712  536.666667  538.333333  133.0

...            ...           ...         ...         ...    ...

VT      389.967094    388.696848  526.875000  527.500000   27.0

WA      274.885878    267.880280  551.222222  548.333333  123.0

WI      153.803086    144.160115  545.071429  516.857143  112.0

WV      224.697582    218.843452  481.705882  473.411765   73.0

WY      216.761180    214.754132  540.000000  535.000000   11.0

    

In step 2, we define a function that calculates the weighted average for just the SATMTMID 
column. The weighted average differs from the arithmetic mean because each value is 
multiplied by a weight. This quantity is then summed and divided by the sum of the weights. 
In this case, our weight is the undergraduate student population.

In step 3, we pass this function to the .apply method. Our function, weighted_math_
average, gets passed a DataFrame of all the original columns for each group. It returns 
a single scalar value, the weighted average of SATMTMID. At this point, you might think 
that this calculation is possible using the .agg method. Directly replacing .apply with 
.agg does not work as .agg returns a value for each of its aggregating columns.
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Step 6 shows the versatility of .apply. We build a new function that calculates the weighted 
and arithmetic average of both SAT columns as well as the number of rows for each group. To 
use .apply to create multiple columns, you must return a Series. The index values are used 
as column names in the resulting DataFrame. You can return as many values as you want with 
this method.

Note that because I'm using a Python version greater than 3.5, I can use a normal dictionary 
in weighted_average to create a Series. This is because since Python 3.6, the dictionary 
is sorted by default.

There's more…
In this recipe, we returned a single row as a Series for each group. It's possible to return any 
number of rows and columns for each group by returning a DataFrame.

In addition to finding just the arithmetic and weighted means, let's also find the geometric and 
harmonic means of both SAT columns and return the results as a DataFrame with rows as the 
name of the type of mean and columns as the SAT type. To ease the burden on us, we use the 
NumPy function average to compute the weighted average and the SciPy functions gmean and 
hmean for geometric and harmonic means:

>>> from scipy.stats import gmean, hmean

>>> def calculate_means(df):

...     df_means = pd.DataFrame(index=['Arithmetic', 'Weighted',

...                                    'Geometric', 'Harmonic'])

...     cols = ['SATMTMID', 'SATVRMID']

...     for col in cols:

...         arithmetic = df[col].mean()

...         weighted = np.average(df[col], weights=df['UGDS'])

...         geometric = gmean(df[col])

...         harmonic = hmean(df[col])

...         df_means[col] = [arithmetic, weighted,

...                          geometric, harmonic]

...     df_means['count'] = len(df)

...     return df_means.astype(int)

>>> (college2

...     .groupby('STABBR')

...     .apply(calculate_means)

... )

                   SATMTMID  SATVRMID  count
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STABBR                                      

AK     Arithmetic       503       555      1

       Weighted         503       555      1

       Geometric        503       555      1

       Harmonic         503       555      1

AL     Arithmetic       504       508     21

...                     ...       ...    ...

WV     Harmonic         480       472     17

WY     Arithmetic       540       535      1

       Weighted         540       535      1

       Geometric        540       534      1

       Harmonic         540       535      1

Grouping by continuous variables
When grouping in pandas, you typically use columns with discrete repeating values. If there 
are no repeated values, then grouping would be pointless as there would only be one row 
per group. Continuous numeric columns typically have few repeated values and are generally 
not used to form groups. However, if we can transform columns with continuous values into a 
discrete column by placing each value in a bin, rounding them, or using some other mapping, 
then grouping with them makes sense.

In this recipe, we explore the flights dataset to discover the distribution of airlines for different 
travel distances. This allows us, for example, to find the airline that makes the most flights 
between 500 and 1,000 miles. To accomplish this, we use the pandas cut function to 
discretize the distance of each flight flown.

How to do it…
1. Read in the flights dataset:

>>> flights = pd.read_csv('data/flights.csv')

>>> flights

       MONTH  DAY  WEEKDAY  ... ARR_DELAY DIVERTED CANCELLED

0          1    1        4  ...      65.0        0         0

1          1    1        4  ...     -13.0        0         0

2          1    1        4  ...      35.0        0         0

3          1    1        4  ...      -7.0        0         0

4          1    1        4  ...      39.0        0         0
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...      ...  ...      ...  ...       ...      ...       ...

58487     12   31        4  ...     -19.0        0         0

58488     12   31        4  ...       4.0        0         0

58489     12   31        4  ...      -5.0        0         0

58490     12   31        4  ...      34.0        0         0

58491     12   31        4  ...      -1.0        0         0

2. If we want to find the distribution of airlines over a range of distances, we need to 
place the values of the DIST column into discrete bins. Let's use the pandas cut 
function to split the data into five bins:
>>> bins = [-np.inf, 200, 500, 1000, 2000, np.inf]

>>> cuts = pd.cut(flights['DIST'], bins=bins)

>>> cuts

0         (500.0, 1000.0]

1        (1000.0, 2000.0]

2         (500.0, 1000.0]

3        (1000.0, 2000.0]

4        (1000.0, 2000.0]

               ...

58487    (1000.0, 2000.0]

58488      (200.0, 500.0]

58489      (200.0, 500.0]

58490     (500.0, 1000.0]

58491     (500.0, 1000.0]

Name: DIST, Length: 58492, dtype: category

Categories (5, interval[float64]): [(-inf, 200.0] < (200.0, 500.0] 
< (500.0, 1000.0] <

                                 (1000.0, 2000.0] < (2000.0, inf]]

3. An ordered categorical Series is created. To help get an idea of what happened, let's 
count the values of each category:
>>> cuts.value_counts()

(500.0, 1000.0]     20659

(200.0, 500.0]      15874

(1000.0, 2000.0]    14186

(2000.0, inf]        4054

(-inf, 200.0]        3719

Name: DIST, dtype: int64
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4. The cuts Series can now be used to form groups. pandas allows you to pass many 
types into the .groupby method. Pass the cuts Series to the .groupby method 
and then call the .value_counts method on the AIRLINE column to find the 
distribution for each distance group. Notice that SkyWest (OO) makes up 33% of 
flights of less than 200 miles but only 16% of those between 200 and 500 miles:

>>> (flights

...     .groupby(cuts)

...     ['AIRLINE']

...     .value_counts(normalize=True) 

...     .round(3)

... )

DIST           AIRLINE         

(-inf, 200.0]  OO         0.326

               EV         0.289

               MQ         0.211

               DL         0.086

               AA         0.052

                          ...  

(2000.0, inf]  WN         0.046

               HA         0.028

               NK         0.019

               AS         0.012

               F9         0.004

Name: AIRLINE, Length: 57, dtype: float64

How it works…
In step 2, the .cut function places each value of the DIST column into one of five bins. 
The bins are created by a sequence of six numbers defining the edges. You always need one 
more edge than the number of bins. You can pass the bins parameter an integer, which 
automatically creates that number of equal-width bins. Negative infinity and positive infinity 
values are available in NumPy and ensure that all values get placed in a bin. If you have 
values that are outside the bin edges, they will be made missing and not be placed in a bin.

The cuts variable is now a Series of five ordered categories. It has all the normal Series 
methods and, in step 3, the .value_counts method is used to get a sense of its 
distribution.
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The .groupby method allows you to pass any object to group on. This means that you are 
able to form groups from something completely unrelated to the current DataFrame. Here, 
we group by the values in the cuts variable. For each grouping, we find the percentage of 
flights per airline with .value_counts by setting normalize to True.

Some interesting insights can be drawn from this result. Looking at the full result, SkyWest 
is the leading airline for under 200 miles but has no flights over 2,000 miles. In contrast, 
American Airlines has the fifth highest total for flights under 200 miles but has by far the 
most flights between 1,000 and 2,000 miles.

There's more…
We can find more results when grouping by the cuts variable. For instance, we can find the 
25th, 50th, and 75th percentile airtime for each distance grouping. As airtime is in minutes, 
we can divide by 60 to get hours. This will return a Series with a MultiIndex:

>>> (flights

...   .groupby(cuts)

...   ['AIR_TIME']

...   .quantile(q=[.25, .5, .75]) 

...   .div(60)

...   .round(2)

... )

DIST

(-inf, 200.0]     0.25    0.43

                  0.50    0.50

                  0.75    0.57

(200.0, 500.0]    0.25    0.77

                  0.50    0.92

                          ... 

(1000.0, 2000.0]  0.50    2.93

                  0.75    3.40

(2000.0, inf]     0.25    4.30

                  0.50    4.70

                  0.75    5.03

Name: AIR_TIME, Length: 15, dtype: float64     



Grouping for Aggregation, Filtration, and Transformation

334

We can use this information to create informative string labels when using the cut function. 
These labels replace the interval notation found in the index. We can also chain the 
.unstack method, which transposes the inner index level to column names:

>>> labels=['Under an Hour', '1 Hour', '1-2 Hours',

...         '2-4 Hours', '4+ Hours']

>>> cuts2 = pd.cut(flights['DIST'], bins=bins, labels=labels)

>>> (flights

...    .groupby(cuts2)

...    ['AIRLINE']

...    .value_counts(normalize=True) 

...    .round(3) 

...    .unstack() 

... )

AIRLINE           AA     AS     B6  ...     US     VX     WN

DIST                                ...

Under an Hour  0.052    NaN    NaN  ...    NaN    NaN  0.009

1 Hour         0.071  0.001  0.007  ...  0.016  0.028  0.194

1-2 Hours      0.144  0.023  0.003  ...  0.025  0.004  0.138

2-4 Hours      0.264  0.016  0.003  ...  0.040  0.012  0.160

4+ Hours       0.212  0.012  0.080  ...  0.065  0.074  0.046

Counting the total number of flights 
between cities

In the flights dataset, we have data on the origin and destination airport. It is trivial to count 
the number of flights originating in Houston and landing in Atlanta, for instance. What is more 
difficult is counting the total number of flights between the two cities.

In this recipe, we count the total number of flights between two cities, regardless of which 
one is the origin or destination. To accomplish this, we sort the origin and destination airports 
alphabetically so that each combination of airports always occurs in the same order. We can 
then use this new column arrangement to form groups and then to count.

How to do it…
1. Read in the flights dataset, and find the total number of flights between each origin 

and destination airport:
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>>> flights = pd.read_csv('data/flights.csv')

>>> flights_ct = flights.groupby(['ORG_AIR', 'DEST_AIR']).size()

>>> flights_ct

ORG_AIR  DEST_AIR       

ATL      ABE          31

         ABQ          16

         ABY          19

         ACY           6

         AEX          40

                    ... 

SFO      SNA         122

         STL          20

         SUN          10

         TUS          20

         XNA           2

Length: 1130, dtype: int64

2. Select the total number of flights between Houston (IAH) and Atlanta (ATL) in both 
directions:
>>> flights_ct.loc[[('ATL', 'IAH'), ('IAH', 'ATL')]]

ORG_AIR  DEST_AIR

ATL      IAH         121

IAH      ATL         148

dtype: int64

3. We could simply sum these two numbers together to find the total flights between 
the cities, but there is a more efficient and automated solution that can work for all 
flights. Let's sort the origin and destination columns for each row alphabetically. We 
will use axis='columns' to do that:
>>> f_part3 = (flights  

...   [['ORG_AIR', 'DEST_AIR']] 

...   .apply(lambda ser:

...          ser.sort_values().reset_index(drop=True),

...          axis='columns')

... )

>>> f_part3

      DEST_AIR ORG_AIR

0          SLC     LAX
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1          IAD     DEN

2          VPS     DFW

3          DCA     DFW

4          MCI     LAX

...        ...     ...

58487      DFW     SFO

58488      SFO     LAS

58489      SBA     SFO

58490      ATL     MSP

58491      BOI     SFO

4. Now that the origin and destination values in each row are sorted, the column names 
are not correct. Let's rename them to something more generic and then again find 
the total number of flights between all cities:
>>> rename_dict = {0:'AIR1', 1:'AIR2'}  

>>> (flights     

...   [['ORG_AIR', 'DEST_AIR']]

...   .apply(lambda ser:

...          ser.sort_values().reset_index(drop=True),

...          axis='columns')

...   .rename(columns=rename_dict)

...   .groupby(['AIR1', 'AIR2'])

...   .size()

... )

AIR1  AIR2

ATL   ABE      31

      ABQ      16

      ABY      19

      ACY       6

      AEX      40

             ... 

SFO   SNA     122

      STL      20

      SUN      10

      TUS      20

      XNA       2

Length: 1130, dtype: int64
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5. Let's select all the flights between Atlanta and Houston and verify that they match the 
sum of the values in step 2:
>>> (flights     

...   [['ORG_AIR', 'DEST_AIR']]

...   .apply(lambda ser:

...          ser.sort_values().reset_index(drop=True),

...          axis='columns')

...   .rename(columns=rename_dict)

...   .groupby(['AIR1', 'AIR2'])

...   .size()

...   .loc[('ATL', 'IAH')]

... )

269

6. If we try and select flights with Houston followed by Atlanta, we get an error:

>>> (flights

...   [['ORG_AIR', 'DEST_AIR']]

...   .apply(lambda ser:

...          ser.sort_values().reset_index(drop=True),

...          axis='columns')

...   .rename(columns=rename_dict)

...   .groupby(['AIR1', 'AIR2'])

...   .size()

...   .loc[('IAH', 'ATL')]

... )

Traceback (most recent call last)

  ...

KeyError: 'ATL'

How it works…
In step 1, we form groups by the origin and destination airport columns and then apply the 
.size method to the groupby object, which returns the total number of rows for each group. 
Notice that we could have passed the string size to the .agg method to achieve the same 
result. In step 2, the total number of flights for each direction between Atlanta and Houston 
are selected. The result is a Series that has a MultiIndex with two levels. One way to select 
rows from a MultiIndex is to pass the .loc index operator a tuple of the exact level values. 
Here, we select two different rows, ('ATL', 'HOU') and ('HOU', 'ATL'). We use a list 
of tuples to do this correctly.
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Step 3 is the most important step in the recipe. We would like to have just one label for all 
flights between Atlanta and Houston and so far we have two. If we sort each combination 
of origin and destination airports alphabetically, we would then have a single label for flights 
between airports. To do this, we use the .apply method on a DataFrame. This is different 
from the groupby .apply method. No groups are formed in step 3.

The DataFrame .apply method must be passed a function. In this case, it's a lambda 
function that sorts each row. By default, this function is passed each column. We can change 
the direction of computation by using axis='columns' (or axis=1). The lambda function 
has each row of data passed to it implicitly as a Series. It returns a Series with sorted 
airport codes. We have to call .reset_index so that the columns do not realign after the 
application of the function.

The .apply method iterates over all rows using the lambda function. After completion of 
this operation, the values in the two columns are sorted for each row. The column names are 
now meaningless. We rename the column names in the next step and then perform the same 
grouping and aggregation as was done in step 2. This time, all flights between Atlanta and 
Houston fall under the same label.

There's more…
Steps 3 through 6 are expensive operations and take several seconds to complete. There 
are only about 60,000 rows, so this solution would not scale well to larger data. Calling 
the .apply method with axis='columns' (or axis=1) is one of the least performant 
operations in all of pandas. Internally, pandas loops over each row and does not provide 
any speed boosts from NumPy. If possible, avoid using .apply with axis=1.

We can get a massive speed increase with the NumPy sort function. Let's go ahead and use 
this function and analyze its output. By default, it sorts each row:

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> data_sorted[:10]

array([['LAX', 'SLC'],

       ['DEN', 'IAD'],

       ['DFW', 'VPS'],

       ['DCA', 'DFW'],

       ['LAX', 'MCI'],

       ['IAH', 'SAN'],

       ['DFW', 'MSY'],

       ['PHX', 'SFO'],

       ['ORD', 'STL'],

       ['IAH', 'SJC']], dtype=object)
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A two-dimensional NumPy array is returned. NumPy does not do grouping operations so let's 
use the DataFrame constructor to create a new DataFrame and check whether it equals the 
DataFrame from step 3:

>>> flights_sort2 = pd.DataFrame(data_sorted, columns=['AIR1', 'AIR2'])

>>> flights_sort2.equals(f_part3.rename(columns={0:'AIR1', 1:'AIR2'}))

True

Because the DataFrames are the same, you can replace step 3 with the previous faster 
sorting routine. Let's time the difference between each of the different sorting methods:

>>> %%timeit

>>> flights_sort = (flights   

...     [['ORG_AIR', 'DEST_AIR']] 

...    .apply(lambda ser:

...          ser.sort_values().reset_index(drop=True),

...          axis='columns')

... )

1min 5s ± 2.67 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

>>> %%timeit

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> flights_sort2 = pd.DataFrame(data_sorted,

...     columns=['AIR1', 'AIR2'])

14.6 ms ± 173 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

The NumPy solution is 4,452 times faster than using .apply with pandas in this example.

Finding the longest streak of on-time flights
One of the most important metrics for airlines is their on-time flight performance. The 
Federal Aviation Administration considers a flight delayed when it arrives at least 15 minutes 
later than its scheduled arrival time. pandas includes methods to calculate the total and 
percentage of on-time flights per airline. While these basic summary statistics are an 
important metric, there are other non-trivial calculations that are interesting, such as finding 
the length of consecutive on-time flights for each airline at each of its origin airports.
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In this recipe, we find the longest consecutive streak of on-time flights for each airline at 
each origin airport. This requires each value in a column to be aware of the value immediately 
following it. We make clever use of the .diff and .cumsum methods to find streaks before 
applying this methodology to each of the groups.

How to do it…
1. Before we get started with the flights dataset, let's practice counting streaks of ones 

with a small sample Series:
>>> s = pd.Series([0, 1, 1, 0, 1, 1, 1, 0])

>>> s

0    0

1    1

2    1

3    0

4    1

5    1

6    1

7    0

dtype: int64

2. Our final representation of the streaks of ones will be a Series of the same length 
as the original with an independent count beginning from one for each streak. To get 
started, let's use the .cumsum method:
>>> s1 = s.cumsum()

>>> s1

0    0

1    1

2    2

3    2

4    3

5    4

6    5

7    5

dtype: int64

The max_streak function we develop in this section exposes a 
regression in pandas 1.0 and 1.0.1. This bug (https://github.
com/pandas-dev/pandas/issues/31802) should be fixed in 
pandas 1.0.2.

https://github.com/pandas-dev/pandas/issues/31802
https://github.com/pandas-dev/pandas/issues/31802
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3. We have now accumulated all the ones going down the Series. Let's multiply this 
Series by the original:
>>> s.mul(s1)

0    0

1    1

2    2

3    0

4    3

5    4

6    5

7    0

dtype: int64

4. We have only non-zero values where we originally had ones. This result is fairly close 
to what we desire. We just need to restart each streak at one instead of where the 
cumulative sum left off. Let's chain the .diff method, which subtracts the previous 
value from the current:
>>> s.mul(s1).diff()

0    NaN

1    1.0

2    1.0

3   -2.0

4    3.0

5    1.0

6    1.0

7   -5.0

dtype: float64

5. A negative value represents the end of a streak. We need to propagate the negative 
values down the Series and use them to subtract away the excess accumulation from 
step 2. To do this, we will make all non-negative values missing with the .where 
method:
>>> (s

...     .mul(s.cumsum())

...     .diff()

...     .where(lambda x: x < 0)

... )

0    NaN
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1    NaN

2    NaN

3   -2.0

4    NaN

5    NaN

6    NaN

7   -5.0

dtype: float64

6. We can now propagate these values down with the .ffill method:
>>> (s

...     .mul(s.cumsum())

...     .diff()

...     .where(lambda x: x < 0)

...     .ffill()

... )

0    NaN

1    NaN

2    NaN

3   -2.0

4   -2.0

5   -2.0

6   -2.0

7   -5.0

dtype: float64

7. Finally, we can add this Series back to the cumulative sum to clear out the excess 
accumulation:
>>> (s

...     .mul(s.cumsum())

...     .diff()

...     .where(lambda x: x < 0)

...     .ffill()

...     .add(s.cumsum(), fill_value=0)

... )

0    0.0

1    1.0
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2    2.0

3    0.0

4    1.0

5    2.0

6    3.0

7    0.0

dtype: float64

8. Now that we have a working consecutive streak finder, we can find the longest streak 
per airline and origin airport. Let's read in the flights dataset and create a column 
to represent on-time arrival:
>>> flights = pd.read_csv('data/flights.csv')

>>> (flights

...     .assign(ON_TIME=flights['ARR_DELAY'].lt(15).astype(int))

...     [['AIRLINE', 'ORG_AIR', 'ON_TIME']]

... )

      AIRLINE ORG_AIR  ON_TIME

0          WN     LAX        0

1          UA     DEN        1

2          MQ     DFW        0

3          AA     DFW        1

4          WN     LAX        0

...       ...     ...      ...

58487      AA     SFO        1

58488      F9     LAS        1

58489      OO     SFO        1

58490      WN     MSP        0

58491      OO     SFO        1

9. Use our logic from the first seven steps to define a function that returns the maximum 
streak of ones for a given Series:
>>> def max_streak(s):

...     s1 = s.cumsum()

...     return (s

...        .mul(s1)

...        .diff()

...        .where(lambda x: x < 0) 

...        .ffill()
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...        .add(s1, fill_value=0)

...        .max()

...     )

10. Find the maximum streak of on-time arrivals per airline and origin airport along with 
the total number of flights and the percentage of on-time arrivals. First, sort the day 
of the year and the scheduled departure time:

>>> (flights

...     .assign(ON_TIME=flights['ARR_DELAY'].lt(15).astype(int))

...     .sort_values(['MONTH', 'DAY', 'SCHED_DEP']) 

...     .groupby(['AIRLINE', 'ORG_AIR'])

...     ['ON_TIME'] 

...     .agg(['mean', 'size', max_streak])

...     .round(2)

... )

                 mean  size  max_streak

AIRLINE ORG_AIR

AA      ATL      0.82   233          15

        DEN      0.74   219          17

        DFW      0.78  4006          64

        IAH      0.80   196          24

        LAS      0.79   374          29

...               ...   ...         ...

WN      LAS      0.77  2031          39

        LAX      0.70  1135          23

        MSP      0.84   237          32

        PHX      0.77  1724          33

        SFO      0.76   445          17

How it works…
Finding streaks in the data is not a straightforward operation in pandas and requires methods 
that look ahead or behind, such as .diff or .shift, or those that remember their current 
state, such as .cumsum. The final result from the first seven steps is a Series the same length 
as the original that keeps track of all consecutive ones. Throughout these steps, we use the 
.mul and .add methods instead of their operator equivalents, (*) and (+). In my opinion, this 
allows for a slightly cleaner progression of calculations from left to right. You, of course, can 
replace these with the actual operators.
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Ideally, we would like to tell pandas to apply the .cumsum method to the start of each streak 
and reset itself after the end of each one. It takes many steps to convey this message to 
pandas. Step 2 accumulates all the ones in the Series as a whole. The rest of the steps slowly 
remove any excess accumulation. To identify this excess accumulation, we need to find the 
end of each streak and subtract this value from the beginning of the next streak.

To find the end of each streak, we cleverly make all values not part of the streak zero by 
multiplying the cumulative sum by the original Series of zeros and ones in step 3. The first 
zero following a non-zero, marks the end of a streak. That's good, but again, we need to 
eliminate the excess accumulation. Knowing where the streak ends doesn't exactly get us 
there.

In step 4, we use the .diff method to find this excess. The .diff method takes the 
difference between the current value and any value located a set number of rows away 
from it. By default, the difference between the current and the immediately preceding value 
is returned.

Only negative values are meaningful in step 4. Those are the ones immediately following 
the end of a streak. These values need to be propagated down until the end of the following 
streak. To eliminate (make missing) all the values we don't care about, we use the .where 
method (this is different from the NumPy where function), which takes a Boolean array of the 
same size as the calling Series. By default, all the True values remain the same, while the 
False values become missing. The .where method allows you to use the calling Series as 
part of the conditional by taking a function as its first parameter. An anonymous function is 
used, which gets passed the calling Series implicitly and checks whether each value is less 
than zero. The result of step 5 is a Series where only the negative values are preserved, with 
the rest changed to missing.

The .ffill method in step 6 replaces missing values with the last non-missing value going 
down a Series. As the first three values don't follow a non-missing value, they remain missing. 
We finally have our Series that removes the excess accumulation. We add our accumulation 
Series to the result of step 6 to get the streaks all beginning from zero. The .add method 
allows us to replace the missing values with the fill_value parameter. This completes the 
process of finding streaks of ones in the dataset. When doing complex logic like this, it is a 
good idea to use a small dataset where you know what the final output will be. It would be 
quite a difficult task to start at step 8 and build this streak-finding logic while grouping.

In step 8, we create the ON_TIME column. One item of note is that the canceled flights have 
missing values for ARR_DELAY, which do not pass the Boolean condition and therefore result 
in a zero for the ON_TIME column. Canceled flights are treated the same as delayed.

Step 9 turns our logic from the first seven steps into a function and chains the .max 
method to return the longest streak. As our function returns a single value, it is formally an 
aggregating function and can be passed to the .agg method in step 10. To ensure that we 
are looking at consecutive flights, we use the .sort_values method to sort by date and 
scheduled departure time.
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There's more…
Now that we have found the longest streaks of on-time arrivals, we can easily find the opposite 
– the longest streak of delayed arrivals. The following function returns two rows for each group 
passed to it. The first row is the start of the streak, and the last row is the end of the streak. 
Each row contains the month and day that the streak started and ended, along with the total 
streak length:

>>> def max_delay_streak(df):

...     df = df.reset_index(drop=True)

...     late = 1 - df['ON_TIME']

...     late_sum = late.cumsum()

...     streak = (late

...         .mul(late_sum)

...         .diff()

...         .where(lambda x: x < 0) 

...         .ffill()

...         .add(late_sum, fill_value=0)

...     )

...     last_idx = streak.idxmax()

...     first_idx = last_idx - streak.max() + 1

...     res = (df

...         .loc[[first_idx, last_idx], ['MONTH', 'DAY']]

...         .assign(streak=streak.max())

...     )

...     res.index = ['first', 'last']

...     return res

>>> (flights

...     .assign(ON_TIME=flights['ARR_DELAY'].lt(15).astype(int))

...     .sort_values(['MONTH', 'DAY', 'SCHED_DEP']) 

...     .groupby(['AIRLINE', 'ORG_AIR']) 

...     .apply(max_delay_streak) 

...     .sort_values('streak', ascending=False)

... )

                       MONTH   DAY  streak

AIRLINE ORG_AIR

AA      DFW     first    2.0  26.0    38.0
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                last     3.0   1.0    38.0

MQ      ORD     last     1.0  12.0    28.0

                first    1.0   6.0    28.0

        DFW     last     2.0  26.0    25.0

...                      ...   ...     ...

US      LAS     last     1.0   7.0     1.0

AS      ATL     first    5.0   4.0     1.0

OO      LAS     first    2.0   8.0     1.0

EV      PHX     last     8.0   1.0     0.0

                first    NaN   NaN     0.0

As we are using the .apply groupby method, a DataFrame of each group is passed to the 
max_delay_streak function. Inside this function, the index of the DataFrame is dropped 
and replaced by a RangeIndex in order for us to easily find the first and last row of the 
streak. The ON_TIME column is inverted and then the same logic is used to find streaks 
of delayed flights. The index of the first and last rows of the streak are stored as variables. 
These indexes are then used to select the month and day when the streaks ended. We use a 
DataFrame to return our results. We label and name the index to make the final result clearer.

Our final results show the longest delayed streaks accompanied by the first and last date. 
Let's investigate to see whether we can find out why these delays happened. Inclement 
weather is a common reason for delayed or canceled flights. Looking at the first row, American 
Airlines (AA) started a streak of 38 delayed flights in a row from the Dallas Fort-Worth (DFW) 
airport beginning February 26 until March 1,2015. Looking at historical weather data from 
February 27, 2015, two inches of snow fell, which was a record for that day. This was a 
major weather event for DFW and caused problems for the entire city. Notice that DFW 
makes another appearance as the third longest streak, but this time a few days earlier and 
for a different airline.
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10
Restructuring Data 

into a Tidy Form

Introduction
All the datasets used in the preceding chapters have not had much or any work done to 
change their structure. We immediately began processing the datasets in their original shape. 
Many datasets in the wild will need a significant amount of restructuring before commencing 
a more detailed analysis. In some cases, an entire project might only concern itself with 
formatting the data in such a way that it can be easily processed by someone else.

There are many terms that are used to describe the process of data restructuring, with tidy 
data being the most common to data scientists. Tidy data is a term coined by Hadley Wickham 
to describe a form of data that makes analysis easy to do. This chapter will cover many 
ideas formulated by Hadley and how to accomplish them with pandas. To learn a great deal 
more about tidy data, read Hadley's paper (http://vita.had.co.nz/papers/tidy-
data.pdf).

The following is an example of untidy data:

Name Category Value
Jill Bank 2,300
Jill Color Red
John Bank 1,100
Jill Age 40
John Color Purple

http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf
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The following is an example of tidy data:

Name Age Bank Color
Jill 40 2,300 Red
John 38 Purple

What is tidy data? Hadley puts forth three guiding principles that determine whether a dataset 
is tidy:

 f Each variable forms a column

 f Each observation forms a row

 f Each type of observational unit forms a table

Any dataset that does not meet these guidelines is considered messy. This definition will 
make more sense once we start restructuring our data into tidy form, but for now, we'll need 
to know what variables, observations, and observational units are.

Using this jargon, a variable is not referring to a Python variable, it is a piece of data. It is good 
to think about the distinction between a variable name and the variable value. The variable 
names are labels, such as gender, race, salary, and position. The variable values are those 
things liable to change for every observation, such as male, female, or other for gender.

A single observation is the collection of all variable values for a single observational unit. 
To help understand what an observational unit might be, consider a retail store, which has 
data for each transaction, employee, customer, item, and the store itself. Each of these can 
be viewed as an observational unit and would require its own table. Combining employee 
information (like the number of hours worked) with customer information (like the amount 
spent) in the same table would break this tidy principle.

The first step to resolving messy data is to recognize it when it exists, and there are boundless 
possibilities. Hadley explicitly mentions five of the most common types of messy data:

 f Column names are values, not variable names

 f Multiple variables are stored in column names

 f Variables are stored in both rows and columns

 f Multiple types of observational units are stored in the same table

 f A single observational unit is stored in multiple tables

It is important to understand that tidying data does not typically involve changing the values 
of your dataset, filling in missing values, or doing any sort of analysis. Tidying data consists 
in changing the shape or structure of the data to meet the tidy principles. Tidy data is akin 
to having all your tools in the toolbox instead of scattered randomly throughout your house. 
Having the tools properly in the toolbox allows all other tasks to be completed easily. Once 
the data is in the correct form, it becomes much easier to perform further analysis.
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Once you have spotted messy data, you will use the pandas library to restructure the data, 
so that it is tidy. The main tidy tools that pandas has available for you are the DataFrame 
methods .stack, .melt, .unstack, and .pivot. More complex tidying involves ripping 
apart text, which necessitates the .str accessor. Other helper methods, such as .rename, 
.rename_axis, .reset_index, and .set_index, will help with applying the final touches 
to tidy data.

Tidying variable values as column names 
with stack

To help understand the differences between tidy and messy data, let's take a look at a table 
that may or may not be in tidy form:

>>> import pandas as pd

>>> import numpy as np

>>> state_fruit = pd.read_csv('data/state_fruit.csv', index_col=0)

>>> state_fruit

         Apple  Orange  Banana

Texas       12      10      40

Arizona      9       7      12

Florida      0      14     190

There does not appear to be anything messy about this table, and the information is easily 
consumable. However, according to the tidy principles, it isn't tidy. Each column name is the 
value of a variable. In fact, none of the variable names are even present in the DataFrame. 
One of the first steps to transform a messy dataset into tidy data is to identify all of the 
variables. In this particular dataset, we have variables for state and fruit. There's also the 
numeric data that wasn't identified anywhere in the context of the problem. We can label 
this variable as weight or any other sensible name.

This particular messy dataset contains variable values as column names. We will need to 
transpose these column names into column values. In this recipe, we use the stack method 
to restructure our DataFrame into tidy form.

How to do it…
1. First, take note that the state names are in the index of the DataFrame. These states 

are correctly placed vertically and do not need to be restructured. It is the column 
names that are the problem. The .stack method takes all of the column names 
and pivots them into the index. Typically, when you call the .stack method, the data 
becomes taller. 
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2. Note that in this case, the result collapses from a DataFrame to a Series:
>>> state_fruit.stack()

Texas    Apple      12

         Orange     10

         Banana     40

Arizona  Apple       9

         Orange      7

         Banana     12

Florida  Apple       0

         Orange     14

         Banana    190

dtype: int64

3. Notice that we now have a Series with a MultiIndex. There are now two levels in 
the index. The original index has been pushed to the left to make room for the fruit 
column names. With this one command, we now essentially have tidy data. Each 
variable, state, fruit, and weight is vertical. Let's use the .reset_index method 
to turn the result into a DataFrame:
>>> (state_fruit

...    .stack()

...    .reset_index()

... )

   level_0 level_1    0

0    Texas   Apple   12

1    Texas  Orange   10

2    Texas  Banana   40

3  Arizona   Apple    9

4  Arizona  Orange    7

5  Arizona  Banana   12

6  Florida   Apple    0

7  Florida  Orange   14

8  Florida  Banana  190

4. Our structure is now correct, but the column names are meaningless. Let's replace 
them with proper identifiers:
>>> (state_fruit

...    .stack()

...    .reset_index()
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...    .rename(columns={'level_0':'state', 

...       'level_1': 'fruit', 0: 'weight'})

... )

     state   fruit  weight

0    Texas   Apple      12

1    Texas  Orange      10

2    Texas  Banana      40

3  Arizona   Apple       9

4  Arizona  Orange       7

5  Arizona  Banana      12

6  Florida   Apple       0

7  Florida  Orange      14

8  Florida  Banana     190

5. Instead of using the .rename method, it is possible to use the lesser-known Series 
method .rename_axis to set the names of the index levels before using .reset_
index:
>>> (state_fruit

...     .stack()

...     .rename_axis(['state', 'fruit'])

... )

state    fruit

Texas    Apple      12

         Orange     10

         Banana     40

Arizona  Apple       9

         Orange      7

         Banana     12

Florida  Apple       0

         Orange     14

         Banana    190

dtype: int64

6. From here, we can chain the .reset_index method with the name parameter to 
reproduce the output from step 3:

>>> (state_fruit

...     .stack()
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...     .rename_axis(['state', 'fruit'])

...     .reset_index(name='weight')

... )

     state   fruit  weight

0    Texas   Apple      12

1    Texas  Orange      10

2    Texas  Banana      40

3  Arizona   Apple       9

4  Arizona  Orange       7

5  Arizona  Banana      12

6  Florida   Apple       0

7  Florida  Orange      14

8  Florida  Banana     190

How it works…
The .stack method is powerful, and it takes time to understand and appreciate fully. 
By default, it takes the (innermost level in hierarchical columns of) column names and 
transposes them, so they become the new innermost index level. Notice how each old 
column name still labels its original value by being paired with each state. There were nine 
original values in a 3 x 3 DataFrame, which got transformed into a single Series with the 
same number of values. The original first row of data became the first three values in the 
resulting Series.

After resetting the index in step 2, pandas defaults our DataFrame columns to level_0, 
level_1, and 0 (two strings and one integer). This is because the Series calling this method 
has two index levels that were formally unnamed. pandas also refers to indexes by integer, 
beginning from zero from the outside.

Step 3 shows an intuitive way to rename the columns with the .rename method.

Alternatively, it is possible to set the column names by chaining the .rename_axis method 
that uses a list of values as the index level names. pandas uses these index level names 
as the new column names when the index is reset. Additionally, the .reset_index method 
has a name parameter corresponding to the new column name of the Series values.

All Series have a name attribute that can be assigned or changed with the .rename 
method. It is this attribute that becomes the column name when using .reset_index.
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There's more…
One of the keys to using .stack is to place all of the columns that you do not wish to 
transform in the index. The dataset in this recipe was initially read with the states in the index. 
Let's take a look at what would have happened if we did not read the states into the index:

>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2

     State  Apple  Orange  Banana

0    Texas     12      10      40

1  Arizona      9       7      12

2  Florida      0      14     190

As the state names are not in the index, using .stack on this DataFrame reshapes all values 
into one long Series of values:

>>> state_fruit2.stack()

0  State       Texas

   Apple          12

   Orange         10

   Banana         40

1  State     Arizona

              ...   

   Banana         12

2  State     Florida

   Apple           0

   Orange         14

   Banana        190

Length: 12, dtype: object

This command reshapes all the columns, this time including the states, and is not at all what 
we need. To reshape this data correctly, you will need to put all the non-reshaped columns 
into the index first with the .set_index method, and then use .stack. The following code 
gives a similar result to step 1:

>>> state_fruit2.set_index('State').stack()

State

Texas    Apple      12

         Orange     10

         Banana     40

Arizona  Apple       9
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         Orange      7

         Banana     12

Florida  Apple       0

         Orange     14

         Banana    190

dtype: int64

Tidying variable values as column names 
with melt

Like most large Python libraries, pandas has many different ways to accomplish the same 
task, the differences usually being readability and performance. A DataFrame has a method 
named .melt that is similar to the .stack method described in the previous recipe but gives 
a bit more flexibility.

In this recipe, we use the .melt method to tidy a DataFrame with variable values as column 
names.

How to do it…
1. Read in the state_fruit2.csv dataset:

>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2

     State  Apple  Orange  Banana

0    Texas     12      10      40

1  Arizona      9       7      12

2  Florida      0      14     190

2. Use the .melt method by passing the appropriate columns to the id_vars and 
value_vars parameters:
>>> state_fruit2.melt(id_vars=['State'],

...     value_vars=['Apple', 'Orange', 'Banana'])

     State variable  value

0    Texas    Apple     12

1  Arizona    Apple      9

2  Florida    Apple      0

3    Texas   Orange     10
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4  Arizona   Orange      7

5  Florida   Orange     14

6    Texas   Banana     40

7  Arizona   Banana     12

8  Florida   Banana    190

3. This one step creates tidy data for us. By default, .melt refers to the transformed 
column names as variables and the corresponding values as values. Conveniently, 
.melt has two additional parameters, var_name and value_name, that give you 
the ability to rename these two columns:

>>> state_fruit2.melt(id_vars=['State'],

...                    value_vars=['Apple', 'Orange', 'Banana'],

...                    var_name='Fruit',

...                    value_name='Weight')

     State   Fruit  Weight

0    Texas   Apple      12

1  Arizona   Apple       9 
2  Florida   Apple       0

3    Texas  Orange      10

4  Arizona  Orange       7

5  Florida  Orange      14

6    Texas  Banana      40

7  Arizona  Banana      12

8  Florida  Banana     190

How it works…
The .melt method reshapes your DataFrame. It takes up to five parameters, with two of them 
being crucial to understanding how to reshape your data correctly:

 f id_vars is a list of column names that you want to preserve as columns and not 
reshape

 f value_vars is a list of column names that you want to reshape into a single column

The id_vars, or the identification variables, remain in the same column but repeat for each 
of the columns passed to value_vars. One crucial aspect of .melt is that it ignores values 
in the index, and it silently drops your index and replaces it with a default RangeIndex. This 
means that if you do have values in your index that you would like to keep, you will need to 
reset the index first before using melt.
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There's more…
All the parameters for the .melt method are optional, and if you desire all your values to be 
in a single column and their old column labels to be in the other, you may call .melt with the 
default parameters:

>>> state_fruit2.melt()

   variable    value

0     State    Texas

1     State  Arizona

2     State  Florida

3     Apple       12

4     Apple        9

..      ...      ...

7    Orange        7

8    Orange       14

9    Banana       40

10   Banana       12

11   Banana      190

More realistically, you might have lots of variables that need melting and would like to specify 
only the identification variables. In that case, calling .melt in the following manner will yield 
the same result as in step 2. You don't even need a list when melting a single column and can 
pass its string value:

>>> state_fruit2.melt(id_vars='State')

     State variable  value

0    Texas    Apple     12

1  Arizona    Apple      9

2  Florida    Apple      0

3    Texas   Orange     10

4  Arizona   Orange      7

5  Florida   Orange     14

6    Texas   Banana     40

7  Arizona   Banana     12

8  Florida   Banana    190
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Stacking multiple groups of variables 
simultaneously

Some datasets contain multiple groups of variables as column names that need to be 
stacked simultaneously into their own columns. An example involving the movie dataset can 
help clarify this. Let's begin by selecting all columns containing the actor names and their 
corresponding Facebook likes:

>>> movie = pd.read_csv('data/movie.csv')

>>> actor = movie[['movie_title', 'actor_1_name',

...                'actor_2_name', 'actor_3_name',

...                'actor_1_facebook_likes',

...                'actor_2_facebook_likes',

...                'actor_3_facebook_likes']]

>>> actor.head()

                                  movie_title  ...

0                                      Avatar  ...

1    Pirates of the Caribbean: At World's End  ...

2                                     Spectre  ...

3                       The Dark Knight Rises  ...

4  Star Wars: Episode VII - The Force Awakens  ...

If we define our variables as the title of the movie, the actor name, and the number of 
Facebook likes, then we will need to stack two sets of columns, which is not possible using 
a single call to .stack or .melt.

In this recipe, we will tidy our actor DataFrame by simultaneously stacking the actor names 
and their corresponding Facebook likes with the wide_to_long function.

How to do it…
1. We will be using the wide_to_long function to reshape our data into tidy form. 

To use this function, we will need to change the column names that we are stacking, 
so that they end with a digit. We first create a user-defined function to change the 
column names:
>>> def change_col_name(col_name):

...     col_name = col_name.replace('_name', '')

...     if 'facebook' in col_name:

...         fb_idx = col_name.find('facebook')
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...         col_name = (col_name[:5] + col_name[fb_idx - 1:] 

...                + col_name[5:fb_idx-1])

...     return col_name

2. Pass this function to the rename method to transform all the column names:
>>> actor2 = actor.rename(columns=change_col_name)

>>> actor2

      movie_title      actor_1  ... actor_facebook_likes_2

0          Avatar  CCH Pounder  ...        936.0

1     Pirates ...  Johnny Depp  ...       5000.0

2         Spectre  Christop...  ...        393.0

3     The Dark...    Tom Hardy  ...      23000.0

4     Star War...  Doug Walker  ...         12.0

...           ...          ...  ...          ...

4911  Signed S...  Eric Mabius  ...        470.0

4912  The Foll...  Natalie Zea  ...        593.0

4913  A Plague...  Eva Boehnke  ...          0.0

4914  Shanghai...    Alan Ruck  ...        719.0

4915  My Date ...  John August  ...         23.0

3. Use the wide_to_long function to stack the actor and Facebook sets of columns 
simultaneously:

>>> stubs = ['actor', 'actor_facebook_likes']

>>> actor2_tidy = pd.wide_to_long(actor2,

...     stubnames=stubs,

...     i=['movie_title'],

...     j='actor_num',

...     sep='_')

>>> actor2_tidy.head()

                              actor  actor_facebook_likes

movie_title  actor_num                          

Avatar       1          CCH Pounder       1000.0

Pirates o... 1          Johnny Depp      40000.0

Spectre      1          Christop...      11000.0

The Dark ... 1            Tom Hardy      27000.0

Star Wars... 1          Doug Walker        131.0
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How it works…
The wide_to_long function works in a fairly specific manner. Its main parameter is 
stubnames, which is a list of strings. Each string represents a single column grouping. All 
columns that begin with this string will be stacked into a single column. In this recipe, there 
are two groups of columns: actor, and actor_facebook_likes. By default, each of these 
groups of columns will need to end in a digit. This digit will subsequently be used to label the 
reshaped data. Each of these column groups has an underscore character separating the 
stubname from the ending digit. To account for this, you must use the sep parameter.

The original column names do not match the pattern needed for wide_to_long to work. 
The column names could have been changed manually by specifying their values with a list. 
This could quickly become a lot of typing so instead, we define a function that automatically 
converts our columns to a format that works. The change_col_name function removes *_
name* from the actor columns and rearranges the Facebook columns so that now they both 
end in digits.

To accomplish the column renaming, we use the .rename method in step 2. It accepts many 
different types of arguments, one of which is a function. When passing it to a function, every 
column name gets implicitly passed to it one at a time.

We have now correctly created two groups of columns, those beginning with actor and 
actor_facebook_likes that will be stacked. In addition to this, wide_to_long 
requires a unique column, parameter i, to act as an identification variable that will not 
be stacked. Also required is the parameter j, which renames the identifying digit stripped 
from the end of the original column names. By default, the suffix parameter contains the 
regular expression, r'\d+', that searches for one or more digits. The \d is a special token 
that matches the digits 0-9. The plus sign, +, makes the expression match for one or more 
of these digits.

There's more…
The function wide_to_long works when all groupings of variables have the same numeric 
ending like they did in this recipe. When your variables do not have the same ending or don't 
end in a digit, you can still use wide_to_long to do simultaneous column stacking. For 
instance, let's take a look at the following dataset:

>>> df = pd.read_csv('data/stackme.csv')

>>> df

  State Country    a1   b2   Test  d  e

0    TX      US  0.45  0.3  Test1  2  6

1    MA      US  0.03  1.2  Test2  9  7

2    ON     CAN  0.70  4.2  Test3  4  2
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Let's say we wanted columns a1 and b1 stacked together, as well as columns d and e. 
Additionally, we wanted to use a1 and b1 as labels for the rows. To accomplish this task, 
we would need to rename the columns so that they ended in the label we desired:

>>> df.rename(columns = {'a1':'group1_a1', 'b2':'group1_b2',

...                      'd':'group2_a1', 'e':'group2_b2'})

  State Country  ...  group2_a1  group2_b2

0    TX      US  ...          2          6

1    MA      US  ...          9          7

2    ON     CAN  ...          4          2

We would then need to modify the suffix parameter, which normally defaults to a regular 
expression that selects digits. Here, we tell it to find any number of characters:

>>> pd.wide_to_long(

...        df.rename(columns = {'a1':'group1_a1', 

...                  'b2':'group1_b2',

...                  'd':'group2_a1', 'e':'group2_b2'}),

...     stubnames=['group1', 'group2'],

...     i=['State', 'Country', 'Test'],

...     j='Label',

...     suffix='.+',

...     sep='_')

                           group1  group2

State Country Test  Label

TX    US      Test1 a1       0.45       2

                    b2       0.30       6

MA    US      Test2 a1       0.03       9

                    b2       1.20       7

ON    CAN     Test3 a1       0.70       4

                    b2       4.20       2

Inverting stacked data
DataFrames have two similar methods, .stack and .melt, to convert horizontal column names 
into vertical column values. DataFrames can invert these two operations with the .unstack and 
.pivot methods, respectively. .stack and .unstack are methods that allow control over only the 
column and row indexes, while .melt and .pivot give more flexibility to choose which columns 
are reshaped.
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In this recipe, we will call .stack and .melt on a dataset and promptly invert the operation 
with the .unstack and .pivot methods.

How to do it…
1. Read in the college dataset with the institution name as the index, and with only the 

undergraduate race columns:
>>> def usecol_func(name):

...     return 'UGDS_' in name or name == 'INSTNM'

>>> college = pd.read_csv('data/college.csv',

...     index_col='INSTNM',

...     usecols=usecol_func)

>>> college

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...

Alabama A...      0.0333      0.9353  ...    0.0059     0.0138

Universit...      0.5922      0.2600  ...    0.0179     0.0100

Amridge U...      0.2990      0.4192  ...    0.0000     0.2715

Universit...      0.6988      0.1255  ...    0.0332     0.0350

Alabama S...      0.0158      0.9208  ...    0.0243     0.0137

...                  ...         ...  ...       ...        ...

SAE Insti...         NaN         NaN  ...       NaN        NaN

Rasmussen...         NaN         NaN  ...       NaN        NaN

National ...         NaN         NaN  ...       NaN        NaN

Bay Area ...         NaN         NaN  ...       NaN        NaN

Excel Lea...         NaN         NaN  ...       NaN        NaN

2. Use the .stack method to convert each horizontal column name to a vertical index 
level:
>>> college_stacked = college.stack()

>>> college_stacked

INSTNM

Alabama A & M University         UGDS_WHITE    0.0333

                                 UGDS_BLACK    0.9353

                                 UGDS_HISP     0.0055

                                 UGDS_ASIAN    0.0019

                                 UGDS_AIAN     0.002
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                                                ...

Coastal Pines Technical College  UGDS_AIAN     0.0034

                                 UGDS_NHPI     0.0017

                                 UGDS_2MOR     0.0191

                                 UGDS_NRA      0.0028

                                 UGDS_UNKN     0.0056

Length: 61866, dtype: float64

3. Invert this stacked data back to its original form with the .unstack method:
>>> college_stacked.unstack()

              UGDS_WHITE  UGDS_BLACK  ...  UGDS_NRA  UGDS_UNKN

INSTNM                                ...

Alabama A...      0.0333      0.9353  ...    0.0059     0.0138

Universit...      0.5922      0.2600  ...    0.0179     0.0100

Amridge U...      0.2990      0.4192  ...    0.0000     0.2715

Universit...      0.6988      0.1255  ...    0.0332     0.0350

Alabama S...      0.0158      0.9208  ...    0.0243     0.0137

...                  ...         ...  ...       ...        ...

Hollywood...      0.2182      0.4182  ...    0.0182     0.0909

Hollywood...      0.1200      0.3333  ...    0.0000     0.0667

Coachella...      0.3284      0.1045  ...    0.0000     0.0000

Dewey Uni...      0.0000      0.0000  ...    0.0000     0.0000

Coastal P...      0.6762      0.2508  ...    0.0028     0.0056

4. A similar sequence of operations can be done with .melt followed by .pivot. 
First, read in the data without putting the institution name in the index:
>>> college2 = pd.read_csv('data/college.csv',

...    usecols=usecol_func)

>>> college2

           INSTNM  UGDS_WHITE  ...  UGDS_NRA  UGDS_UNKN

0     Alabama ...      0.0333  ...    0.0059     0.0138

1     Universi...      0.5922  ...    0.0179     0.0100

2     Amridge ...      0.2990  ...    0.0000     0.2715

3     Universi...      0.6988  ...    0.0332     0.0350

4     Alabama ...      0.0158  ...    0.0243     0.0137

...           ...         ...  ...       ...        ...

7530  SAE Inst...         NaN  ...       NaN        NaN
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7531  Rasmusse...         NaN  ...       NaN        NaN

7532  National...         NaN  ...       NaN        NaN

7533  Bay Area...         NaN  ...       NaN        NaN

7534  Excel Le...         NaN  ...       NaN        NaN

5. Use the .melt method to transpose all the race columns into a single column:
>>> college_melted = college2.melt(id_vars='INSTNM',

...     var_name='Race',

...     value_name='Percentage')

>>> college_melted

            INSTNM        Race  Percentage

0      Alabama ...  UGDS_WHITE      0.0333

1      Universi...  UGDS_WHITE      0.5922

2      Amridge ...  UGDS_WHITE      0.2990

3      Universi...  UGDS_WHITE      0.6988

4      Alabama ...  UGDS_WHITE      0.0158

...            ...         ...         ...

67810  SAE Inst...   UGDS_UNKN         NaN

67811  Rasmusse...   UGDS_UNKN         NaN

67812  National...   UGDS_UNKN         NaN

67813  Bay Area...   UGDS_UNKN         NaN

67814  Excel Le...   UGDS_UNKN         NaN

6. Use the .pivot method to invert this previous result:
>>> melted_inv = college_melted.pivot(index='INSTNM',

...     columns='Race',

...     values='Percentage')

>>> melted_inv

Race          UGDS_2MOR  UGDS_AIAN  ...  UGDS_UNKN  UGDS_WHITE

INSTNM                              ...

A & W Hea...     0.0000     0.0000  ...     0.0000      0.0000

A T Still...        NaN        NaN  ...        NaN         NaN

ABC Beaut...     0.0000     0.0000  ...     0.0000      0.0000

ABC Beaut...     0.0000     0.0000  ...     0.0000      0.2895

AI Miami ...     0.0018     0.0000  ...     0.4644      0.0324

...                 ...        ...  ...        ...         ...

Yukon Bea...     0.0000     0.1200  ...     0.0000      0.8000
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Z Hair Ac...     0.0211     0.0000  ...     0.0105      0.9368

Zane Stat...     0.0218     0.0029  ...     0.2399      0.6995

duCret Sc...     0.0976     0.0000  ...     0.0244      0.4634

eClips Sc...     0.0000     0.0000  ...     0.0000      0.1446

7. Notice that the institution names are now shuttled over into the index and are not in 
their original order. The column names are not in their original order. To get an exact 
replication of our starting DataFrame from step 4, use the .loc index operator to 
select rows and columns simultaneously and then reset the index:

>>> college2_replication = (melted_inv

...     .loc[college2['INSTNM'], college2.columns[1:]]

...     .reset_index()

... )

>>> college2.equals(college2_replication)

True

How it works…
There are multiple ways to accomplish the same thing in step 1. Here, we show the versatility 
of the read_csv function. The usecols parameter accepts either a list of the columns that 
we would like to import or a function that dynamically determines them. We use a function 
that checks whether the column name contains UGDS_ or is equal to INSTNM. The function 
is passed each column name as a string and must return a Boolean. A considerable amount 
of memory can be saved in this manner.

The stack method in step 2 puts all column names into the innermost index level and returns 
a Series. In step 3, the .unstack method inverts this operation by taking all the values in the 
innermost index level and converting them to column names. Note that the sizes of the results 
of steps 1 and 3 are different because .stack drops missing values by default. If you pass in 
the dropna=False parameter, it will round-trip correctly.

Step 4 reads in the same dataset as in step 1 but does not put the institution name in the 
index because the .melt method isn't able to access it. Step 5 uses the .melt method 
to transpose all the Race columns. It does this by leaving the value_vars parameter as 
its default value, None. When not specified, all the columns not present in the id_vars 
parameter get transposed.

Step 6 inverts the operation from step 5 with the .pivot method, which accepts three 
parameters. Most parameters take a single column as a string (the values parameter may 
also accept a list of column names). The column referenced by the index parameter remains 
vertical and becomes the new index. The values of the column referenced by the columns 
parameter become the column names. The values referenced by the values parameter 
become tiled to correspond with the intersection of their former index and columns label.
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To make a replication with pivot, we need to sort the rows and columns in the same order as 
the original. As the institution name is in the index, we use the .loc index operator to sort the 
DataFrame by its original index.

There's more…
To help further understand .stack and .unstack, let's use them to transpose the 
college DataFrame. In this context, we are using the precise mathematical definition of the 
transposing of a matrix, where the new rows are the old columns of the original data matrix.

If you take a look at the output from step 2, you'll notice that there are two index levels. By 
default, the .unstack method uses the innermost index level as the new column values. 
Index levels are numbered beginning from zero from the outside. pandas defaults the level 
parameter of the .unstack method to -1, which refers to the innermost index. We can 
instead .unstack the outermost column using level=0:

>>> college.stack().unstack(0)

INSTNM      Alaba/rsity  ...  Coast/llege

UGDS_WHITE       0.0333  ...       0.6762

UGDS_BLACK       0.9353  ...       0.2508

UGDS_HISP        0.0055  ...       0.0359

UGDS_ASIAN       0.0019  ...       0.0045

UGDS_AIAN        0.0024  ...       0.0034

UGDS_NHPI        0.0019  ...       0.0017

UGDS_2MOR        0.0000  ...       0.0191

UGDS_NRA         0.0059  ...       0.0028

UGDS_UNKN        0.0138  ...       0.0056

There is a way to transpose a DataFrame that does not require .stack or .unstack. Use the 
.transpose method or the .T attribute like this:

>>> college.T

>>> college.transpose()

INSTNM      Alaba/rsity  ...  Coast/llege

UGDS_WHITE       0.0333  ...       0.6762

UGDS_BLACK       0.9353  ...       0.2508

UGDS_HISP        0.0055  ...       0.0359

UGDS_ASIAN       0.0019  ...       0.0045

UGDS_AIAN        0.0024  ...       0.0034

UGDS_NHPI        0.0019  ...       0.0017
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UGDS_2MOR        0.0000  ...       0.0191

UGDS_NRA         0.0059  ...       0.0028

UGDS_UNKN        0.0138  ...       0.0056

Unstacking after a groupby aggregation
Grouping data by a single column and performing an aggregation on a single column returns 
a result that is easy to consume. When grouping by more than one column, a resulting 
aggregation might not be structured in a manner that makes consumption easy. Since 
.groupby operations, by default, put the unique grouping columns in the index, the .unstack 
method can be beneficial to rearrange the data so that it is presented in a manner that is 
more useful for interpretation.

In this recipe, we use the employee dataset to perform an aggregation, grouping by multiple 
columns. We then use the .unstack method to reshape the result into a format that makes 
for easier comparisons of different groups.

How to do it…
1. Read in the employee dataset and find the mean salary by race:

>>> employee = pd.read_csv('data/employee.csv')

>>> (employee

...     .groupby('RACE')

...     ['BASE_SALARY']

...     .mean()

...     .astype(int)

... )

RACE

American Indian or Alaskan Native    60272

Asian/Pacific Islander               61660

Black or African American            50137

Hispanic/Latino                      52345

Others                               51278

White                                64419

Name: BASE_SALARY, dtype: int64
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2. This is a groupby operation that results in a Series that is easy to read and has no 
need to reshape. Let's now find the average salary for all races by gender. Note that 
the result is a Series:
>>> (employee

...     .groupby(['RACE', 'GENDER'])

...     ['BASE_SALARY'] 

...     .mean()

...     .astype(int)

... )

RACE                               GENDER

American Indian or Alaskan Native  Female    60238

                                   Male      60305

Asian/Pacific Islander             Female    63226

                                   Male      61033

Black or African American          Female    48915

                                             ...

Hispanic/Latino                    Male      54782

Others                             Female    63785

                                   Male      38771

White                              Female    66793

                                   Male      63940

Name: BASE_SALARY, Length: 12, dtype: int64

3. This aggregation is more complex and can be reshaped to make different 
comparisons easier. For instance, it would be easier to compare male versus female 
salaries for each race if they were side by side and not vertical as they are now. Let's 
call on .unstack on the gender index level:
>>> (employee

...     .groupby(['RACE', 'GENDER'])

...     ['BASE_SALARY'] 

...     .mean()

...     .astype(int)

...     .unstack('GENDER')

... )

GENDER                             Female   Male

RACE

American Indian or Alaskan Native   60238  60305
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Asian/Pacific Islander              63226  61033

Black or African American           48915  51082

Hispanic/Latino                     46503  54782

Others                              63785  38771

White                               66793  63940

4. Similarly, we can unstack the race index level:

>>> (employee

...     .groupby(['RACE', 'GENDER'])

...     ['BASE_SALARY'] 

...     .mean()

...     .astype(int)

...     .unstack('RACE')

... )

RACE    American Indian or Alaskan Native  ...  White

GENDER                                     ...

Female                              60238  ...  66793

Male                                60305  ...  63940

How it works…
Step 1 has the simplest possible aggregation with a single grouping column (RACE), a single 
aggregating column (BASE_SALARY), and a single aggregating function (.mean). This result 
is easy to consume and doesn't require any more processing to evaluate. Step 2 groups by 
both race and gender together. The resulting Series (which has a MultiIndex) contains 
all the values in a single dimension, which makes comparisons more difficult. To make the 
information easier to consume, we use the .unstack method to convert the values in one 
(or more) of the levels to columns.

By default, .unstack uses the innermost index level as the new columns. You can specify 
the level you would like to unstack with the level parameter, which accepts either the level 
name as a string or the level integer location. It is preferable to use the level name over 
the integer location to avoid ambiguity. Steps 3 and 4 unstack each level, which results in 
a DataFrame with a single-level index. It is now much easier to compare salaries from each 
race by gender.
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There's more…
If there are multiple aggregating functions when performing a groupby with a single column 
from a DataFrame, then the immediate result will be a DataFrame and not a Series. For 
instance, let's calculate more aggregations than just the mean, as was done in step 2:

>>> (employee

...     .groupby(['RACE', 'GENDER'])

...     ['BASE_SALARY']

...     .agg(['mean', 'max', 'min'])

...     .astype(int)

... )

                                           mean     max    min

RACE                              GENDER

American Indian or Alaskan Native Female  60238   98536  26125

                                  Male    60305   81239  26125

Asian/Pacific Islander            Female  63226  130416  26125

                                  Male    61033  163228  27914

Black or African American         Female  48915  150416  24960

...                                         ...     ...    ...

Hispanic/Latino                   Male    54782  165216  26104

Others                            Female  63785   63785  63785

                                  Male    38771   38771  38771

White                             Female  66793  178331  27955

                                  Male    63940  210588  26125

Unstacking the Gender column will result in columns with a MultiIndex. From here, you 
can keep swapping row and column levels with both the .unstack and .stack methods 
until you achieve the structure of data you desire:

>>> (employee

...     .groupby(['RACE', 'GENDER'])

...     ['BASE_SALARY']

...     .agg(['mean', 'max', 'min'])

...     .astype(int)

...     .unstack('GENDER')

... )

               mean         ...    min

GENDER       Female   Male  ... Female   Male
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RACE                        ...

American ...  60238  60305  ...  26125  26125

Asian/Pac...  63226  61033  ...  26125  27914

Black or ...  48915  51082  ...  24960  26125

Hispanic/...  46503  54782  ...  26125  26104

Others        63785  38771  ...  63785  38771

White         66793  63940  ...  27955  26125

Replicating pivot_table with a groupby 
aggregation

At first glance, it may seem that the .pivot_table method provides a unique way to 
analyze data. However, after a little massaging, it is possible to replicate its functionality 
with the .groupby method. Knowing this equivalence can help shrink the universe of pandas 
functionality.

In this recipe, we use the flights dataset to create a pivot table and then recreate it using the 
.groupby method.

How to do it…
1. Read in the flights dataset, and use the .pivot_table method to find the total 

number of canceled flights per origin airport for each airline:
>>> flights = pd.read_csv('data/flights.csv')

>>> fpt = flights.pivot_table(index='AIRLINE',

...     columns='ORG_AIR',

...     values='CANCELLED',

...     aggfunc='sum',

...     fill_value=0)

>>> fpt

ORG_AIR  ATL  DEN  DFW  IAH  LAS  LAX  MSP  ORD  PHX  SFO

AIRLINE

AA         3    4   86    3    3   11    3   35    4    2

AS         0    0    0    0    0    0    0    0    0    0

B6         0    0    0    0    0    0    0    0    0    1

DL        28    1    0    0    1    1    4    0    1    2

EV        18    6   27   36    0    0    6   53    0    0

...      ...  ...  ...  ...  ...  ...  ...  ...  ...  ...
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OO         3   25    2   10    0   15    4   41    9   33

UA         2    9    1   23    3    6    2   25    3   19

US         0    0    2    2    1    0    0    6    7    3

VX         0    0    0    0    0    3    0    0    0    3

WN         9   13    0    0    7   32    1    0    6   25

2. To replicate this with the .groupby method, we will need to groupby two columns 
and then unstack them. A groupby aggregation cannot replicate this table. The trick 
is to group by all the columns in both the index and columns parameters first:
>>> (flights

...     .groupby(['AIRLINE', 'ORG_AIR'])

...     ['CANCELLED']

...     .sum()

... )

AIRLINE  ORG_AIR

AA       ATL         3

         DEN         4

         DFW        86

         IAH         3

         LAS         3

                    ..

WN       LAS         7

         LAX        32

         MSP         1

         PHX         6

         SFO        25

Name: CANCELLED, Length: 114, dtype: int64

3. Use the .unstack method to pivot the ORG_AIR index level to column names:

>>> fpg = (flights

...     .groupby(['AIRLINE', 'ORG_AIR'])

...     ['CANCELLED']

...     .sum()

...     .unstack('ORG_AIR', fill_value=0)

... )

>>> fpt.equals(fpg)

True
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How it works…
The .pivot_table method is very versatile and flexible but performs a rather similar 
operation to a groupby aggregation with step 1 showing an example. The index parameter 
takes a column (or list of columns) that will not be pivoted and whose unique values will be 
placed in the index. The columns parameter takes a column (or list of columns) that will be 
pivoted and whose unique values will be made into column names. The values parameter 
takes a column (or list of columns) that will be aggregated.

There also exists an aggfunc parameter that takes an aggregating function (or list of 
functions) that determines how the columns in the values parameter get aggregated. 
It defaults to the string mean, and, in this example, we change it to calculate the sum. 
Additionally, some unique combinations of AIRLINE and ORG_AIR do not exist. These 
missing combinations will default to missing values in the resulting DataFrame. Here, 
we use the fill_value parameter to change them to zero.

Step 2 begins the replication process using all the columns in the index and columns 
parameter as the grouping columns. This is the key to making this recipe work. A pivot table 
is an intersection of all the unique combinations of the grouping columns. Step 3 finishes 
the replication by pivoting the innermost index level into column names with the .unstack 
method. Just like with .pivot_table, not all combinations of AIRLINE and ORG_AIR exist; 
we again use the fill_value parameter to force these missing intersections to zero.

There's more…
It is possible to replicate much more complex pivot tables with the .groupby method. 
For instance, take the following result from .pivot_table:

>>> flights.pivot_table(index=['AIRLINE', 'MONTH'],

...     columns=['ORG_AIR', 'CANCELLED'],

...     values=['DEP_DELAY', 'DIST'],

...     aggfunc=['sum', 'mean'],

...     fill_value=0)

                    sum     ...         mean

              DEP_DELAY     ...         DIST

ORG_AIR             ATL     ...          SFO

CANCELLED             0  1  ...            0       1

AIRLINE MONTH               ...

AA      1           -13  0  ...  1860.166667     0.0

        2           -39  0  ...  1337.916667  2586.0

        3            -2  0  ...  1502.758621     0.0
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        4             1  0  ...  1646.903226     0.0

        5            52  0  ...  1436.892857     0.0

...                 ... ..  ...          ...     ...

WN      7          2604  0  ...   636.210526     0.0

        8          1718  0  ...   644.857143   392.0

        9          1033  0  ...   731.578947   354.5

        11          700  0  ...   580.875000   392.0

        12         1679  0  ...   782.256410     0.0

To replicate this with the .groupby method, follow the same pattern from the recipe, place all 
the columns from the index and columns parameters into the .groupby method, and then call 
.unstack to pull the index levels out to the columns:

>>> (flights

...     .groupby(['AIRLINE', 'MONTH', 'ORG_AIR', 'CANCELLED']) 

...     [['DEP_DELAY', 'DIST']]

...     .agg(['mean', 'sum']) 

...     .unstack(['ORG_AIR', 'CANCELLED'], fill_value=0) 

...     .swaplevel(0, 1, axis='columns')

... )

                    mean      ...      sum

               DEP_DELAY      ...     DIST

ORG_AIR              ATL      ...      SFO

CANCELLED              0   1  ...        0       1

AIRLINE MONTH                 ...

AA      1      -3.250000 NaN  ...  33483.0     NaN

        2      -3.000000 NaN  ...  32110.0  2586.0

        3      -0.166667 NaN  ...  43580.0     NaN

        4       0.071429 NaN  ...  51054.0     NaN

        5       5.777778 NaN  ...  40233.0     NaN

...                  ...  ..  ...      ...     ...

WN      7      21.700000 NaN  ...  24176.0     NaN

        8      16.207547 NaN  ...  18056.0   784.0

        9       8.680672 NaN  ...  27800.0   709.0

        11      5.932203 NaN  ...  23235.0   784.0

        12     15.691589 NaN  ...  30508.0     NaN
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The order of the column levels differs, with .pivot_table putting the aggregation functions 
at a level preceding the columns in the values parameter. You can use the .swaplevel 
method to remedy this. It will swap the outermost column (level 0) with the level below that 
(level 1). Also note that the column order is different.

Renaming axis levels for easy reshaping
Reshaping with the .stack and .unstack methods is far easier when each axis (both 
index and column) level has a name. pandas allows users to reference each axis level by 
integer location or by name. Since integer location is implicit and not explicit, you should 
consider using level names whenever possible. This advice follows from The Zen of Python 
(type import this if you are not familiar with it), a short list of guiding principles for Python, 
of which the second one is "Explicit is better than implicit."

When grouping or aggregating with multiple columns, the resulting pandas object will have 
multiple levels in one or both of the axes. In this recipe, we will name each level of each axis 
and then use the .stack and .unstack methods to reshape the data to the desired form.

How to do it…
1. Read in the college dataset, and find a few basic summary statistics on the 

undergraduate population and SAT math scores by institution and religious affiliation:
>>> college = pd.read_csv('data/college.csv')

>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

... )

                UGDS                 SATMTMID

                size    min      max     size    min    max

STABBR RELAFFIL

AK     0           7  109.0  12865.0        7    NaN    NaN

       1           3   27.0    275.0        3  503.0  503.0

AL     0          72   12.0  29851.0       72  420.0  590.0

       1          24   13.0   3033.0       24  400.0  560.0

AR     0          68   18.0  21405.0       68  427.0  565.0

...              ...    ...      ...      ...    ...    ...

WI     0          87   20.0  29302.0       87  480.0  680.0
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       1          25    4.0   8212.0       25  452.0  605.0

WV     0          65   20.0  44924.0       65  430.0  530.0

       1           8   63.0   1375.0        8  455.0  510.0

WY     0          11   52.0   9910.0       11  540.0  540.0

2. Notice that both index levels have names and are the old column names. The column 
levels, on the other hand, do not have names. Use the .rename_axis method to 
give them level names:
>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

...     .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

... )

AGG_COLS        UGDS                 SATMTMID

AGG_FUNCS       size    min      max     size    min    max

STABBR RELAFFIL

AK     0           7  109.0  12865.0        7    NaN    NaN

       1           3   27.0    275.0        3  503.0  503.0

AL     0          72   12.0  29851.0       72  420.0  590.0

       1          24   13.0   3033.0       24  400.0  560.0

AR     0          68   18.0  21405.0       68  427.0  565.0

...              ...    ...      ...      ...    ...    ...

WI     0          87   20.0  29302.0       87  480.0  680.0

       1          25    4.0   8212.0       25  452.0  605.0

WV     0          65   20.0  44924.0       65  430.0  530.0

       1           8   63.0   1375.0        8  455.0  510.0

WY     0          11   52.0   9910.0       11  540.0  540.0

3. Now that each axis level has a name, reshaping is a breeze. Use the .stack method 
to move the AGG_FUNCS column to an index level:
>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

...     .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

...     .stack('AGG_FUNCS')

... )



Restructuring Data into a Tidy Form

378

AGG_COLS                      UGDS  SATMTMID

STABBR RELAFFIL AGG_FUNCS

AK     0        size           7.0       7.0

                min          109.0       NaN

                max        12865.0       NaN

       1        size           3.0       3.0

                min           27.0     503.0

...                            ...       ...

WV     1        min           63.0     455.0

                max         1375.0     510.0

WY     0        size          11.0      11.0

                min           52.0     540.0

                max         9910.0     540.0

4. By default, stacking places the new column level in the innermost index position. Use 
the .swaplevel method to move AGG_FUNCS from the innermost level to the outer 
level:
>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

...     .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

...     .stack('AGG_FUNCS')

...     .swaplevel('AGG_FUNCS', 'STABBR',

...        axis='index')

... )

AGG_COLS                      UGDS  SATMTMID

AGG_FUNCS RELAFFIL STABBR

size      0        AK          7.0       7.0

min       0        AK        109.0       NaN

max       0        AK      12865.0       NaN

size      1        AK          3.0       3.0

min       1        AK         27.0     503.0

...                            ...       ...

                   WV         63.0     455.0

max       1        WV       1375.0     510.0

size      0        WY         11.0      11.0
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min       0        WY         52.0     540.0

max       0        WY       9910.0     540.0

5. We can continue to make use of the axis level names by sorting levels with the 
.sort_index method:
>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

...     .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

...     .stack('AGG_FUNCS')

...     .swaplevel('AGG_FUNCS', 'STABBR', axis='index') 

...     .sort_index(level='RELAFFIL', axis='index') 

...     .sort_index(level='AGG_COLS', axis='columns')

... )

AGG_COLS                   SATMTMID      UGDS

AGG_FUNCS RELAFFIL STABBR

max       0        AK           NaN   12865.0

                   AL         590.0   29851.0

                   AR         565.0   21405.0

                   AS           NaN    1276.0

                   AZ         580.0  151558.0

...                             ...       ...

size      1        VI           1.0       1.0

                   VT           5.0       5.0

                   WA          17.0      17.0

                   WI          25.0      25.0

                   WV           8.0       8.0

6. To completely reshape your data, you might need to stack some columns while 
unstacking others. Chain the two methods together:
>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

...     .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

...     .stack('AGG_FUNCS')
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...     .unstack(['RELAFFIL', 'STABBR'])

... )

AGG_COLS      UGDS         ... SATMTMID

RELAFFIL         0      1  ...        1      0

STABBR          AK     AK  ...       WV     WY

AGG_FUNCS                  ...

size           7.0    3.0  ...      8.0   11.0

min          109.0   27.0  ...    455.0  540.0

max        12865.0  275.0  ...    510.0  540.0

7. Stack all the columns at once to return a Series:
>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

...     .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

...     .stack(['AGG_FUNCS', 'AGG_COLS'])

... )

STABBR  RELAFFIL  AGG_FUNCS  AGG_COLS

AK      0         size       UGDS            7.0

                             SATMTMID        7.0

                  min        UGDS          109.0

                  max        UGDS        12865.0

        1         size       UGDS            3.0

                                          ...

WY      0         size       SATMTMID       11.0

                  min        UGDS           52.0

                             SATMTMID      540.0

                  max        UGDS         9910.0

                             SATMTMID      540.0

Length: 640, dtype: float64

8. We can also unstack everything in the index. In this case, it collapses to a very wide 
result, which pandas displays as a Series:

>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]
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...     .agg(['size', 'min', 'max'])

...     .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

...     .unstack(['STABBR', 'RELAFFIL']) 

... )

AGG_COLS  AGG_FUNCS  STABBR  RELAFFIL

UGDS      size       AK      0             7.0

                             1             3.0

                     AL      0            72.0

                             1            24.0

                     AR      0            68.0

                                         ...

SATMTMID  max        WI      1           605.0

                     WV      0           530.0

                             1           510.0

                     WY      0           540.0

                             1             NaN

Length: 708, dtype: float64

How it works…
It is common for the result of a call to the .groupby method to produce a DataFrame or 
Series with multiple axis levels. The resulting DataFrame from the groupby operation in step 
1 has multiple levels for each axis. The column levels are not named, which would require us 
to reference them only by their integer location. To ease our ability to reference the column 
levels, we rename them with the .rename_axis method.

The .rename_axis method is a bit strange in that it can modify both the level names 
and the level values based on the type of the first argument passed to it. Passing it a list 
(or a scalar if there is only one level) changes the names of the levels. In step 2, we pass  
the .rename_axis method a list and are returned a DataFrame with all axis levels named.

Once all the axis levels have names, we can control the structure of data. Step 3 stacks 
the AGG_FUNCS column into the innermost index level. The .swaplevel method in step 
4 accepts the name or position of the levels that you want to swap as the first two arguments. 
In step 5, the .sort_index method is called twice and sorts the values of each level. Notice 
that the values of the column level are the column names SATMTMID and UGDS.

We can get vastly different output by both stacking and unstacking, as done in step 6. 
It is also possible to stack or unstack every single column or index level, and both will 
collapse into a Series.
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There's more…
If you wish to dispose of the level values altogether, you may set them to None. You can do 
this when you want to reduce visual clutter or when it is obvious what the column levels 
represent and no further processing will take place:

>>> (college

...     .groupby(['STABBR', 'RELAFFIL']) 

...     [['UGDS', 'SATMTMID']]

...     .agg(['size', 'min', 'max'])

...     .rename_axis([None, None], axis='index') 

...     .rename_axis([None, None], axis='columns')

... )

         UGDS                 SATMTMID

         size    min      max     size    min    max

    AK 0    7  109.0  12865.0        7    NaN    NaN

       1    3   27.0    275.0        3  503.0  503.0

    AL 0   72   12.0  29851.0       72  420.0  590.0

       1   24   13.0   3033.0       24  400.0  560.0

    AR 0   68   18.0  21405.0       68  427.0  565.0

    ...   ...    ...      ...      ...    ...    ...

    WI 0   87   20.0  29302.0       87  480.0  680.0

       1   25    4.0   8212.0       25  452.0  605.0

    WV 0   65   20.0  44924.0       65  430.0  530.0

       1    8   63.0   1375.0        8  455.0  510.0

    WY 0   11   52.0   9910.0       11  540.0  540.0

Tidying when multiple variables are stored 
as column names

One particular flavor of messy data appears whenever the column names contain multiple 
different variables themselves. A common example of this scenario occurs when age and sex 
are concatenated together. To tidy datasets like this, we must manipulate the columns with 
the pandas .str attribute. This attribute contains additional methods for string processing.

In this recipe, we will first identify all the variables, of which some will be concatenated 
together as column names. We then reshape the data and parse the text to extract the 
correct variable values.
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How to do it…
1. Read in the men's weightlifting dataset, and identify the variables:

>>> weightlifting = pd.read_csv('data/weightlifting_men.csv')

>>> weightlifting

  Weight Category  M35 35-39  ...  M75 75-79  M80 80+

0           56           137  ...         62       55

1           62           152  ...         67       57

2           69           167  ...         75       60

3           77           182  ...         82       65

4           85           192  ...         87       70

5           94           202  ...         90       75

6          105           210  ...         95       80

7         105+           217  ...        100       85

2. The variables are the Weight Category, a combination of sex and age, and the 
qualifying total. The age and sex variables have been concatenated together into a 
single cell. Before we can separate them, let's use the .melt method to transpose 
the age and sex column names into a single vertical column:
>>> (weightlifting

...     .melt(id_vars='Weight Category',

...           var_name='sex_age',

...           value_name='Qual Total')

... )

   Weight Category    sex_age  Qual Total

0            56     M35 35-39         137

1            62     M35 35-39         152

2            69     M35 35-39         167

3            77     M35 35-39         182

4            85     M35 35-39         192

..          ...           ...         ...

75           77       M80 80+          65

76           85       M80 80+          70

77           94       M80 80+          75

78          105       M80 80+          80

79         105+       M80 80+          85
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3. Select the sex_age column, and use the .split method available from the .str 
attribute to split the column into two different columns:
>>> (weightlifting

...     .melt(id_vars='Weight Category',

...           var_name='sex_age',

...           value_name='Qual Total')

...     ['sex_age']

...     .str.split(expand=True)

... )

      0      1

0   M35  35-39

1   M35  35-39

2   M35  35-39

3   M35  35-39

4   M35  35-39

..  ...    ...

75  M80    80+

76  M80    80+

77  M80    80+

78  M80    80+

79  M80    80+

4. This operation returned a DataFrame with meaningless column names. Let's rename 
the columns:
>>> (weightlifting

...     .melt(id_vars='Weight Category',

...           var_name='sex_age',

...           value_name='Qual Total')

...     ['sex_age']

...     .str.split(expand=True)

...     .rename(columns={0:'Sex', 1:'Age Group'})

... )

    Sex  Age Group

0   M35      35-39

1   M35      35-39

2   M35      35-39

3   M35      35-39
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4   M35      35-39

..  ...        ...

75  M80        80+

76  M80        80+

77  M80        80+

78  M80        80+

79  M80        80+

5. Create a Sex column using an index operation after the .str attribute to select the 
first character from the renamed Sex column:
>>> (weightlifting

...     .melt(id_vars='Weight Category',

...           var_name='sex_age',

...           value_name='Qual Total')

...     ['sex_age']

...     .str.split(expand=True)

...     .rename(columns={0:'Sex', 1:'Age Group'})

...     .assign(Sex=lambda df_: df_.Sex.str[0])

... )

   Sex  Age Group

0    M      35-39

1    M      35-39

2    M      35-39

3    M      35-39

4    M      35-39

..  ..        ...

75   M        80+

76   M        80+

77   M        80+

78   M        80+

79   M        80+

6. Use the pd.concat function to concatenate this DataFrame with the Weight 
Category and Qual Total columns:
>>> melted = (weightlifting

...     .melt(id_vars='Weight Category',

...           var_name='sex_age',
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...           value_name='Qual Total')

... )

>>> tidy = pd.concat([melted

...            ['sex_age']

...            .str.split(expand=True)

...            .rename(columns={0:'Sex', 1:'Age Group'})

...            .assign(Sex=lambda df_: df_.Sex.str[0]),

...           melted[['Weight Category', 'Qual Total']]],

...           axis='columns'

... )

>>> tidy

   Sex  Age Group Weight Category  Qual Total

0    M      35-39           56            137

1    M      35-39           62            152

2    M      35-39           69            167

3    M      35-39           77            182

4    M      35-39           85            192

..  ..        ...          ...            ...

75   M        80+           77             65

76   M        80+           85             70

77   M        80+           94             75

78   M        80+          105             80

79   M        80+         105+             85

7. This same result could have been created with the following:

>>> melted = (weightlifting

...     .melt(id_vars='Weight Category',

...           var_name='sex_age',

...           value_name='Qual Total')

... )

>>> (melted

...     ['sex_age']

...     .str.split(expand=True)

...     .rename(columns={0:'Sex', 1:'Age Group'})

...     .assign(Sex=lambda df_: df_.Sex.str[0],

...             Category=melted['Weight Category'],
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...             Total=melted['Qual Total'])

... )

   Sex  Age Group Category  Total

0    M      35-39       56    137

1    M      35-39       62    152

2    M      35-39       69    167

3    M      35-39       77    182

4    M      35-39       85    192

..  ..        ...      ...    ...

75   M        80+       77     65

76   M        80+       85     70

77   M        80+       94     75

78   M        80+      105     80

79   M        80+     105+     85

How it works…
The weightlifting dataset, like many datasets, has easily digestible information in its raw form. 
Still, technically it is messy, as all but one of the column names contain information for sex 
and age. Once the variables are identified, we can begin to tidy the dataset. Whenever column 
names contain variables, you will need to use the .melt (or .stack) method. The Weight 
Category variable is already in the correct position, so we keep it as an identifying variable 
by passing it to the id_vars parameter. Note that we don't explicitly need to name all the 
columns that we are melting with value_vars. By default, all the columns not present in 
id_vars get melted.

The sex_age column needs to be parsed, and split into two variables. For this, we turn to the 
extra functionality provided by the .str attribute, only available to Series (a single DataFrame 
column) or an index (this is not hierarchical). The .split method is one of the more common 
methods in this situation, as it can separate different parts of the string into their own 
columns.By default, it splits on an empty space, but you may also specify a string or regular 
expression with the pat parameter. When the expand parameter is set to True, a new 
column forms for each independent split character segment. When False, a single column is 
returned, containing a list of all the segments.

After renaming the columns in step 4, we need to use the .str attribute again. This attribute 
allows us to index or slice off of it, just like a string. Here, we select the first character, which 
is the variable for sex. We could go further and split the ages into two separate columns for 
minimum and maximum age, but it is common to refer to the entire age group in this manner, 
so we leave it as is.
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Step 6 shows one of two different methods to join all the data together. The concat function 
accepts a collection of DataFrames and either concatenates them vertically (axis='index') 
or horizontally (axis='columns'). Because the two DataFrames are indexed identically, it 
is possible to assign the values of one DataFrame to new columns in the other, as done in 
step 7.

There's more…
Another way to complete this recipe, beginning after step 2, is by assigning new columns from 
the sex_age column without using the .split method. The .assign method may be used 
to add these new columns dynamically:

>>> tidy2 = (weightlifting

...     .melt(id_vars='Weight Category',

...           var_name='sex_age',

...           value_name='Qual Total')

...     .assign(Sex=lambda df_:df_.sex_age.str[0],

...             **{'Age Group':(lambda df_: (df_

...                 .sex_age

...                 .str.extract(r'(\d{2}[-+](?:\d{2})?)',

...                              expand=False)))})

...     .drop(columns='sex_age')

... )

>>> tidy2

   Weight Category  Qual Total Sex Age Group

0            56            137   M     35-39

1            62            152   M     35-39

2            69            167   M     35-39

3            77            182   M     35-39

4            85            192   M     35-39

..          ...            ...  ..       ...

75           77             65   M       80+

76           85             70   M       80+

77           94             75   M       80+

78          105             80   M       80+

79         105+             85   M       80+
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>>> tidy.sort_index(axis=1).equals(tidy2.sort_index(axis=1))

True

The Sex column is found in the same manner as done in step 5. Because we are not using 
.split, the Age Group column must be extracted in a different manner. The .extract 
method uses a complex regular expression to extract very specific portions of the string. 
To use .extract correctly, your pattern must contain capture groups. A capture group is 
formed by enclosing parentheses around a portion of the pattern. In this example, the entire 
expression is one large capture group. It begins with \d{2}, which searches for exactly 
two digits, followed by either a literal plus or minus, optionally followed by two more digits. 
Although the last part of the expression, (?:\d{2})?, is surrounded by parentheses, the ?: 
denotes that it is not a capture group. It is technically a non-capturing group used to express 
two digits together as optional. The sex_age column is no longer needed and is dropped.

Finally, the two tidy DataFrames are compared against one another and are found to be 
equivalent.

Tidying when multiple variables are stored 
as a single column

Tidy datasets must have a single column for each variable. Occasionally, multiple variable 
names are placed in a single column with their corresponding value placed in another.

In this recipe, we identify the column containing the improperly structured variables and pivot 
it to create tidy data.

How to do it…
1. Read in the restaurant inspections dataset, and convert the Date column data type 

to datetime64:
>>> inspections = pd.read_csv('data/restaurant_inspections.csv',

...     parse_dates=['Date'])

>>> inspections

                              Name  ...

0                E & E Grill House  ...

1                E & E Grill House  ...

2                E & E Grill House  ...

3                E & E Grill House  ...

4                E & E Grill House  ...

..                             ...  ...
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495  PIER SIXTY ONE-THE LIGHTHOUSE  ...

496  PIER SIXTY ONE-THE LIGHTHOUSE  ...

497  PIER SIXTY ONE-THE LIGHTHOUSE  ...

498  PIER SIXTY ONE-THE LIGHTHOUSE  ...

499  PIER SIXTY ONE-THE LIGHTHOUSE  ...

2. This dataset has two columns, Name and Date, that are each correctly contained 
in a single column. The Info column has five different variables: Borough, Cuisine, 
Description, Grade, and Score. Let's attempt to use the .pivot method to keep the 
Name and Date columns vertical, create new columns out of all the values in the 
Info column, and use the Value column as their intersection:
>>> inspections.pivot(index=['Name', 'Date'],

...     columns='Info', values='Value')

Traceback (most recent call last):

  ...

NotImplementedError: > 1 ndim Categorical are not supported at 
this time

3. Unfortunately, pandas developers have not implemented this functionality for us. 
Thankfully, for the most part, pandas has multiple ways of accomplishing the same 
task. Let's put Name, Date, and Info into the index:
>>> inspections.set_index(['Name','Date', 'Info'])

                                           Value

Name         Date       Info

E & E Gri... 2017-08-08 Borough        MANHATTAN

                        Cuisine         American

                        Description  Non-food...

                        Grade                  A

                        Score                9.0

...                                          ...

PIER SIXT... 2017-09-01 Borough        MANHATTAN

                        Cuisine         American

                        Description  Filth fl...

                        Grade                  Z

                        Score               33.0

4. Use the .unstack method to pivot all the values in the Info column:
>>> (inspections

...     .set_index(['Name','Date', 'Info']) 
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...     .unstack('Info')

... )

                               Value               ...

Info                         Borough      Cuisine  ... Grade Score

Name         Date                                  ...

3 STAR JU... 2017-05-10     BROOKLYN  Juice, S...  ...     A  12.0

A & L PIZ... 2017-08-22     BROOKLYN        Pizza  ...     A   9.0

AKSARAY T... 2017-07-25     BROOKLYN      Turkish  ...     A  13.0

ANTOJITOS... 2017-06-01     BROOKLYN  Latin (C...  ...     A  10.0

BANGIA       2017-06-16    MANHATTAN       Korean  ...     A   9.0

...                              ...          ...  ...   ...   ...

VALL'S PI... 2017-03-15  STATEN I...  Pizza/It...  ...     A   9.0

VIP GRILL    2017-06-12     BROOKLYN  Jewish/K...  ...     A  10.0

WAHIZZA      2017-04-13    MANHATTAN        Pizza  ...     A  10.0

WANG MAND... 2017-08-29       QUEENS       Korean  ...     A  12.0

XIAOYAN Y... 2017-08-29       QUEENS       Korean  ...     Z  49.0

5. Make the index levels into columns with the .reset_index method:
>>> (inspections

...     .set_index(['Name','Date', 'Info']) 

...     .unstack('Info')

...     .reset_index(col_level=-1)

... )

.                             ... Value

Info         Name       Date  ... Grade Score

0     3 STAR J... 2017-05-10  ...     A  12.0

1     A & L PI... 2017-08-22  ...     A   9.0

2     AKSARAY ... 2017-07-25  ...     A  13.0

3     ANTOJITO... 2017-06-01  ...     A  10.0

4          BANGIA 2017-06-16  ...     A   9.0

..            ...        ...  ...   ...   ...

95    VALL'S P... 2017-03-15  ...     A   9.0

96      VIP GRILL 2017-06-12  ...     A  10.0

97        WAHIZZA 2017-04-13  ...     A  10.0

98    WANG MAN... 2017-08-29  ...     A  12.0

99    XIAOYAN ... 2017-08-29  ...     Z  49.0
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6. The dataset is tidy, but there is some annoying leftover pandas debris that needs to 
be removed. Let's use the .droplevel method to remove the top column level and 
then rename the index level to None:
>>> (inspections

...     .set_index(['Name','Date', 'Info']) 

...     .unstack('Info')

...     .reset_index(col_level=-1)

...     .droplevel(0, axis=1)

...     .rename_axis(None, axis=1)

... )

           Name       Date  ... Grade Score

0   3 STAR J... 2017-05-10  ...     A  12.0

1   A & L PI... 2017-08-22  ...     A   9.0

2   AKSARAY ... 2017-07-25  ...     A  13.0

3   ANTOJITO... 2017-06-01  ...     A  10.0

4        BANGIA 2017-06-16  ...     A   9.0

..          ...        ...  ...   ...   ...

95  VALL'S P... 2017-03-15  ...     A   9.0

96    VIP GRILL 2017-06-12  ...     A  10.0

97      WAHIZZA 2017-04-13  ...     A  10.0

98  WANG MAN... 2017-08-29  ...     A  12.0

99  XIAOYAN ... 2017-08-29  ...     Z  49.0

7. The creation of the column MultiIndex in step 4 could have been avoided by 
converting that one column DataFrame in step 3 into a Series with the .squeeze 
method. The following code produces the same result as the previous step:

>>> (inspections

...     .set_index(['Name','Date', 'Info']) 

...     .squeeze() 

...     .unstack('Info') 

...     .reset_index() 

...     .rename_axis(None, axis='columns')

... )

           Name       Date  ... Grade Score

0   3 STAR J... 2017-05-10  ...     A  12.0

1   A & L PI... 2017-08-22  ...     A   9.0

2   AKSARAY ... 2017-07-25  ...     A  13.0

3   ANTOJITO... 2017-06-01  ...     A  10.0
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4        BANGIA 2017-06-16  ...     A   9.0

..          ...        ...  ...   ...   ...

95  VALL'S P... 2017-03-15  ...     A   9.0

96    VIP GRILL 2017-06-12  ...     A  10.0

97      WAHIZZA 2017-04-13  ...     A  10.0

98  WANG MAN... 2017-08-29  ...     A  12.0

99  XIAOYAN ... 2017-08-29  ...     Z  49.0

How it works…
In step 1, we notice that there are five variables placed vertically in the Info column with 
their corresponding value in the Value column. Because we need to pivot each of these five 
variables as horizontal column names, it would seem that the .pivot method would work. 
Unfortunately, pandas developers have yet to implement this special case when there is more 
than one non-pivoted column. We are forced to use a different method.

The .unstack method also pivots vertical data, but only for data in the index. Step 3 begins 
this process by moving both the columns that will and will not be pivoted into the index with 
the .set_index method. Once these columns are in the index, the .unstack method can 
be put to work, as done in step 4.

Notice that as we are unstacking a DataFrame, pandas keeps the original column names 
(here, it is just a single column, Value) and creates a MultiIndex with the old column 
names as the upper level. The dataset is now essentially tidy, but we go ahead and make our 
non-pivoted columns normal columns with the .reset_index method. Because we have 
MultiIndex columns, we can choose which level the new column names will belong to with 
the col_level parameter. By default, the names are inserted into the uppermost level (level 
0). We use -1 to indicate the bottommost level.

After all this, we have some excess DataFrame names and indexes that need to be discarded. 
We use .droplevel and .rename_axis to remedy that. These columns still have a useless 
.name attribute, Info, which is renamed None.

Cleaning up the MultiIndex columns could have been avoided by forcing the resulting 
DataFrame from step 3 to a Series. The .squeeze method works on single-column 
DataFrames and turns them into Series.

There's more…
It is possible to use the .pivot_table method, which has no restrictions on how many non-
pivoted columns are allowed. The .pivot_table method differs from .pivot by performing 
an aggregation for all the values that correspond to the intersection between the columns in 
the index and columns parameters.
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Because there may be multiple values in this intersection, .pivot_table requires the user 
to pass it an aggregating function to output a single value. We use the first aggregating 
function, which takes the first of the values of the group. In this particular example, there 
is exactly one value for each intersection, so there is nothing to be aggregated. The default 
aggregation function is the mean, which will produce an error here, since some of the values 
are strings:

>>> (inspections

...     .pivot_table(index=['Name', 'Date'],

...                  columns='Info',

...                  values='Value',

...                  aggfunc='first') 

...     .reset_index() 

...     .rename_axis(None, axis='columns')

... )

           Name       Date  ... Grade Score

0   3 STAR J... 2017-05-10  ...     A  12.0

1   A & L PI... 2017-08-22  ...     A   9.0

2   AKSARAY ... 2017-07-25  ...     A  13.0

3   ANTOJITO... 2017-06-01  ...     A  10.0

4        BANGIA 2017-06-16  ...     A   9.0

..          ...        ...  ...   ...   ...

95  VALL'S P... 2017-03-15  ...     A   9.0

96    VIP GRILL 2017-06-12  ...     A  10.0

97      WAHIZZA 2017-04-13  ...     A  10.0

98  WANG MAN... 2017-08-29  ...     A  12.0

99  XIAOYAN ... 2017-08-29  ...     Z  49.0

Tidying when two or more values are stored 
in the same cell

Tabular data, by nature, is two-dimensional, and thus, there is a limited amount of information 
that can be presented in a single cell. As a workaround, you will occasionally see datasets 
with more than a single value stored in the same cell. Tidy data allows for just a single value 
for each cell. To rectify these situations, you will typically need to parse the string data into 
multiple columns with the methods from the .str attribute.
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In this recipe, we examine a dataset that has a column containing multiple different variables 
in each cell. We use the .str attribute to parse these strings into separate columns to tidy 
the data.

How to do it...
1. Read in the Texas cities dataset:

>>> cities = pd.read_csv('data/texas_cities.csv')

>>> cities

      City             Geolocation

0  Houston  29.7604° N, 95.3698° W

1   Dallas  32.7767° N, 96.7970° W

2   Austin  30.2672° N, 97.7431° W

2. The City column looks good and contains exactly one value. The Geolocation 
column, on the other hand, contains four variables: latitude, latitude direction, 
longitude, and longitude direction. Let's split the Geolocation column into four 
separate columns. We will use the regular expression that matches any character 
followed by a space:
>>> geolocations = cities.Geolocation.str.split(pat='. ',

...     expand=True)

>>> geolocations.columns = ['latitude', 'latitude direction',

...     'longitude', 'longitude direction']

3. Because the original data type for the Geolocation was an object, all the new 
columns are also objects. Let's change latitude and longitude into float types:
>>> geolocations = geolocations.astype({'latitude':'float',

...    'longitude':'float'})

>>> geolocations.dtypes

latitude               float64

latitude direction      object

longitude              float64

longitude direction     object

dtype: object

4. Combine these new columns with the City column from the original:

>>> (geolocations

...     .assign(city=cities['City'])

... )
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   latitude latitude direction  ...  longitude direction     city

0   29.7604            N        ...            W          Houston

1   32.7767            N        ...            W           Dallas

2   30.2672            N        ...            W           Austin

How it works…
After reading the data, we decide how many variables there are in the dataset. Here, we chose 
to split the Geolocation column into four variables, but we could have just chosen two for 
latitude and longitude and used a negative sign to differentiate between west and east 
and south and north.

There are a few ways to parse the Geolocation column with the methods from the .str 
attribute. The easiest way is to use the .split method. We pass it a regular expression 
defined by any character (the period) and a space. When a space follows any character, a split 
is made, and a new column is formed. The first occurrence of this pattern takes place at the 
end of the latitude. A space follows the degree character, and a split is formed. The splitting 
characters are discarded and not kept in the resulting columns. The next split matches the 
comma and space following directly after the latitude direction.

A total of three splits are made, resulting in four columns. The second line in step 2 provides 
them with meaningful names. Even though the resulting latitude and longitude columns 
appear to be float types, they are not. They were originally parsed from an object column 
and therefore remain object data types. Step 3 uses a dictionary to map the column names 
to their new types.

Instead of using a dictionary, which would require a lot of typing if you had many column 
names, you can use the function to_numeric to attempt to convert each column to either 
integer or float. To apply this function iteratively over each column, use the .apply 
method with the following:

>>> geolocations.apply(pd.to_numeric, errors='ignore')

   latitude latitude direction  longitude longitude direction

0   29.7604                  N    95.3698                   W

1   32.7767                  N    96.7970                   W

2   30.2672                  N    97.7431                   W

Step 4 concatenates the city to the DataFrame to complete the process of making tidy data.
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There's more…
The .split method worked well in this example with a regular expression. For other 
examples, some columns might require you to create splits on several different patterns. 
To search for multiple regular expressions, use the pipe character (|). For instance, if we 
wanted to split only the degree symbol and comma, each followed by a space, we would 
do the following:

>>> cities.Geolocation.str.split(pat=r'° |, ', expand=True)

         0  1        2  3

0  29.7604  N  95.3698  W

1  32.7767  N  96.7970  W

2  30.2672  N  97.7431  W

This returns the same DataFrame from step 2. Any number of additional split patterns may be 
appended to the preceding string pattern with the pipe character.

The .extract method is another method that allows you to extract specific groups within 
each cell. These capture groups must be enclosed in parentheses. Anything that matches 
outside the parentheses is not present in the result. The following line produces the same 
output as step 2:

''' {.sourceCode .pycon}

>>> cities.Geolocation.str.extract(r'([0-9.]+). (N|S), ([0-9.]+). (E|W)',

...    expand=True)

         0  1        2  3

0  29.7604  N  95.3698  W

1  32.7767  N  96.7970  W

2  30.2672  N  97.7431  W

'''

This regular expression has four capture groups. The first and third groups search for at 
least one or more consecutive digits with decimals. The second and fourth groups search 
for a single character (the direction). The first and third capture groups are separated by any 
character followed by a space. The second capture group is separated by a comma and then 
a space.
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Tidying when variables are stored in column 
names and values

One particularly difficult form of messy data to diagnose appears whenever variables are 
stored both horizontally across the column names and vertically down column values. 
This type of dataset usually is not found in a database, but from a summarized report that 
someone else has already generated.

How to do it…
In this recipe, data is reshaped into tidy data with the .melt and .pivot_table methods.

1. Read in the sensors dataset:
>>> sensors = pd.read_csv('data/sensors.csv')

>>> sensors

  Group     Property  2012  2013  2014  2015  2016

0     A     Pressure   928   873   814   973   870

1     A  Temperature  1026  1038  1009  1036  1042

2     A         Flow   819   806   861   882   856

3     B     Pressure   817   877   914   806   942

4     B  Temperature  1008  1041  1009  1002  1013

5     B         Flow   887   899   837   824   873

2. The only variable placed correctly in a vertical column is Group. The Property 
column appears to have three unique variables, Pressure, Temperature, and 
Flow. The rest of the columns 2012 to 2016 are themselves a single variable, which 
we can sensibly name Year. It isn't possible to restructure this kind of messy data 
with a single DataFrame method. Let's begin with the .melt method to pivot the 
years into their own column:
>>> sensors.melt(id_vars=['Group', 'Property'], var_name='Year')

   Group     Property  Year  value

0      A     Pressure  2012    928

1      A  Temperature  2012   1026

2      A         Flow  2012    819

3      B     Pressure  2012    817

4      B  Temperature  2012   1008

..   ...          ...   ...    ...

25     A  Temperature  2016   1042
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26     A         Flow  2016    856

27     B     Pressure  2016    942

28     B  Temperature  2016   1013

29     B         Flow  2016    873

3. This takes care of one of our issues. Let's use the .pivot_table method to pivot 
the Property column into new column names:

>>> (sensors

...     .melt(id_vars=['Group', 'Property'], var_name='Year') 

...     .pivot_table(index=['Group', 'Year'],

...                  columns='Property', values='value') 

...     .reset_index() 

...     .rename_axis(None, axis='columns')

... )

  Group  Year  Flow  Pressure  Temperature

0     A  2012   819       928         1026

1     A  2013   806       873         1038

2     A  2014   861       814         1009

3     A  2015   882       973         1036

4     A  2016   856       870         1042

5     B  2012   887       817         1008

6     B  2013   899       877         1041

7     B  2014   837       914         1009

8     B  2015   824       806         1002

9     B  2016   873       942         1013

How it works…
Once we have identified the variables in step 1, we can begin our restructuring. pandas does 
not have a method to pivot columns simultaneously, so we must take on this task one step 
at a time. We correct the years by keeping the Property column vertical by passing it to the 
id_vars parameter in the .melt method.

The result is now the pattern of messy data found in the recipe before last. As explained 
in the There's more... section of that recipe, we must use .pivot_table to pivot a 
DataFrame when using more than one column in the index parameter. After pivoting, the 
Group and Year variables are stuck in the index. We push them back out as columns with 
.reset_index. The .pivot_table method preserves the column name used in the 
columns parameter as the name of the column index. After resetting the index, this name is 
meaningless, and we remove it with .rename_axis.
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There's more…
Whenever a solution involves .melt, .pivot_table, or .pivot, you can be sure that there 
is an alternative method using .stack and .unstack. The trick is first to move the columns 
that are not currently being pivoted into the index:

>>> (sensors

...     .set_index(['Group', 'Property']) 

...     .rename_axis('Year', axis='columns') 

...     .stack() 

...     .unstack('Property') 

...     .rename_axis(None, axis='columns') 

...     .reset_index()

... )

  Group  Year  Flow  Pressure  Temperature

0     A  2012   819       928         1026

1     A  2013   806       873         1038

2     A  2014   861       814         1009

3     A  2015   882       973         1036

4     A  2016   856       870         1042

5     B  2012   887       817         1008

6     B  2013   899       877         1041

7     B  2014   837       914         1009

8     B  2015   824       806         1002

9     B  2016   873       942         1013
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11
Combining 

Pandas Objects

Introduction
A wide variety of options are available to combine two or more DataFrames or Series together. 
The append method is the least flexible and only allows for new rows to be appended 
to a DataFrame. The concat method is very versatile and can combine any number of 
DataFrames or Series on either axis. The join method provides fast lookups by aligning 
a column of one DataFrame to the index of others. The merge method provides SQL-like 
capabilities to join two DataFrames together.

Appending new rows to DataFrames
When performing data analysis, it is far more common to create new columns than new rows. 
This is because a new row of data usually represents a new observation, and as an analyst, 
it is typically not your job to continually capture new data. Data capture is usually left to other 
platforms like relational database management systems. Nevertheless, it is a necessary 
feature to know as it will crop up from time to time.

In this recipe, we will begin by appending rows to a small dataset with the .loc attribute and 
then transition to using the .append method.
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How to do it…
1. Read in the names dataset, and output it:

>>> import pandas as pd

>>> import numpy as np

>>> names = pd.read_csv('data/names.csv')

>>> names

       Name  Age

0  Cornelia   70

1     Abbas   69

2  Penelope    4

3      Niko    2

2. Let's create a list that contains some new data and use the .loc attribute to set 
a single row label equal to this new data:
>>> new_data_list = ['Aria', 1]

>>> names.loc[4] = new_data_list

>>> names

       Name  Age

0  Cornelia   70

1     Abbas   69

2  Penelope    4

3      Niko    2

4      Aria    1

3. The .loc attribute uses labels to refer to the rows. In this case, the row labels exactly 
match the integer location. It is possible to append more rows with non-integer labels:
>>> names.loc['five'] = ['Zach', 3]

>>> names

          Name  Age

0     Cornelia   70

1        Abbas   69

2     Penelope    4

3         Niko    2

4         Aria    1

five      Zach    3



Chapter 11

403

4. To be more explicit in associating variables to values, you may use a dictionary. Also, 
in this step, we can dynamically choose the new index label to be the length of the 
DataFrame:
>>> names.loc[len(names)] = {'Name':'Zayd', 'Age':2}

>>> names

          Name  Age

0     Cornelia   70

1        Abbas   69

2     Penelope    4

3         Niko    2

4         Aria    1

five      Zach    3

6         Zayd    2

5. A Series can hold the new data as well and works exactly the same as a dictionary:
>>> names.loc[len(names)] = pd.Series({'Age':32, 'Name':'Dean'})

>>> names

          Name  Age

0     Cornelia   70

1        Abbas   69

2     Penelope    4

3         Niko    2

4         Aria    1

five      Zach    3

6         Zayd    2

7         Dean   32

6. The preceding operations all use the .loc attribute to make changes to the names 
DataFrame in-place. There is no separate copy of the DataFrame that is returned. 
In the next few steps, we will look at the .append method, which does not modify 
the calling DataFrame. Instead, it returns a new copy of the DataFrame with the 
appended row(s). Let's begin with the original names DataFrame and attempt to 
append a row. The first argument to .append must be either another DataFrame, 
Series, dictionary, or a list of these, but not a list like the one in step 2. Let's see 
what happens when we attempt to use a dictionary with .append:
>>> names = pd.read_csv('data/names.csv')

>>> names.append({'Name':'Aria', 'Age':1})

Traceback (most recent call last):

  ...

TypeError: Can only append a Series if ignore_index=True or if the 
Series has a name
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7. This error message appears to be slightly incorrect. We are passing a dictionary and 
not a Series but nevertheless, it gives us instructions on how to correct it, we need 
to pass the ignore_index=True parameter:
>>> names.append({'Name':'Aria', 'Age':1}, ignore_index=True)

       Name  Age

0  Cornelia   70

1     Abbas   69

2  Penelope    4

3      Niko    2

4      Aria    1

8. This works but ignore_index is a sneaky parameter. When set to True, the old 
index will be removed completely and replaced with a RangeIndex from 0 to n-1. 
For instance, let's specify an index for the names DataFrame:
>>> names.index = ['Canada', 'Canada', 'USA', 'USA']

>>> names

            Name  Age

Canada  Cornelia   70

Canada     Abbas   69

USA     Penelope    4

USA         Niko    2

9. Rerun the code from step 7, and you will get the same result. The original index 
is completely ignored.

10. Let's continue with this names DataFrame with the country strings in the index. 
Let's append a Series that has a name attribute with the .append method:
>>> s = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s

Name    Zach

Age        3

Name: 4, dtype: object

>>> names.append(s)

            Name  Age

Canada  Cornelia   70

Canada     Abbas   69

USA     Penelope    4

USA         Niko    2

4           Zach    3
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11. The .append method is more flexible than the .loc attribute. It supports appending 
multiple rows at the same time. One way to accomplish this is by passing in a list of 
Series:
>>> s1 = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s2 = pd.Series({'Name': 'Zayd', 'Age': 2}, name='USA')

>>> names.append([s1, s2])

            Name  Age

Canada  Cornelia   70

Canada     Abbas   69

USA     Penelope    4

USA         Niko    2

4           Zach    3

USA         Zayd    2

12. Small DataFrames with only two columns are simple enough to manually write out 
all the column names and values. When they get larger, this process will be quite 
painful. For instance, let's take a look at the 2016 baseball dataset:
>>> bball_16 = pd.read_csv('data/baseball16.csv')

>>> bball_16

    playerID  yearID  stint teamID  ...   HBP   SH   SF  GIDP

0   altuv...    2016      1    HOU  ...   7.0  3.0  7.0  15.0

1   bregm...    2016      1    HOU  ...   0.0  0.0  1.0   1.0

2   castr...    2016      1    HOU  ...   1.0  1.0  0.0   9.0

3   corre...    2016      1    HOU  ...   5.0  0.0  3.0  12.0

4   gatti...    2016      1    HOU  ...   4.0  0.0  5.0  12.0

..       ...     ...    ...    ...  ...   ...  ...  ...   ...

11  reedaj01    2016      1    HOU  ...   0.0  0.0  1.0   1.0

12  sprin...    2016      1    HOU  ...  11.0  0.0  1.0  12.0

13  tucke...    2016      1    HOU  ...   2.0  0.0  0.0   2.0

14  valbu...    2016      1    HOU  ...   1.0  3.0  2.0   5.0

15  white...    2016      1    HOU  ...   2.0  0.0  2.0   6.0

13. This dataset contains 22 columns and it would be easy to mistype a column name or 
forget one altogether if you were manually entering new rows of data. To help protect 
against these mistakes, let's select a single row as a Series and chain the .to_dict 
method to it to get an example row as a dictionary:
>>> data_dict = bball_16.iloc[0].to_dict()

>>> data_dict
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{'playerID': 'altuvjo01', 'yearID': 2016, 'stint': 1, 'teamID': 
'HOU', 'lgID': 'AL', 'G': 161, 'AB': 640, 'R': 108, 'H': 216, 
'2B': 42, '3B': 5, 'HR': 24, 'RBI': 96.0, 'SB': 30.0, 'CS': 10.0, 
'BB': 60, 'SO': 70.0, 'IBB': 11.0, 'HBP': 7.0, 'SH': 3.0, 'SF': 
7.0, 'GIDP': 15.0}

14. Clear the old values with a dictionary comprehension assigning any previous string 
value as an empty string and all others as missing values. This dictionary can now 
serve as a template for any new data you would like to enter:

>>> new_data_dict = {k: '' if isinstance(v, str) else 
...     np.nan for k, v in data_dict.items()}

>>> new_data_dict

{'playerID': '', 'yearID': nan, 'stint': nan, 'teamID': '', 
'lgID': '', 'G': nan, 'AB': nan, 'R': nan, 'H': nan, '2B': nan, 
'3B': nan, 'HR': nan, 'RBI': nan, 'SB': nan, 'CS': nan, 'BB': nan, 
'SO': nan, 'IBB': nan, 'HBP': nan, 'SH': nan, 'SF': nan, 'GIDP': 
nan}

How it works…
The .loc attribute is used to select and assign data based on the row and column labels. The 
first value passed to it represents the row label. In step 2, names.loc[4] refers to the row 
with a label equal to the integer 4. This label does not currently exist in the DataFrame. The 
assignment statement creates a new row with data provided by the list. As was mentioned 
in the recipe, this operation modifies the names DataFrame itself. If there were a previously 
existing row with a label equal to the integer 4, this command would have written over it. Using 
in-place modification makes this indexing operator riskier to use than the .append method, 
which never modifies the original calling DataFrame. Throughout this book we have advocated 
chaining operations, and you should follow suit.

Any valid label may be used with the .loc attribute, as seen in step 3. Regardless of what the 
new label value is, the new row is always appended to the end. Even though assigning with 
a list works, for clarity, it is best to use a dictionary so that we know exactly which columns 
are associated with each value, as done in step 4.

Steps 4 and 5 show a trick to dynamically set the new label to be the current number of rows 
in the DataFrame. Data stored in a Series will also get assigned correctly as long as the index 
labels match the column names.

The rest of the steps use the .append method, which is a method that only appends new 
rows to DataFrames. Most DataFrame methods allow both row and column manipulation 
through an axis parameter. One exception is the .append method, which can only append 
rows to DataFrames.
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Using a dictionary of column names mapped to values isn't enough information for .append 
to work, as seen by the error message in step 6. To correctly append a dictionary without a row 
name, you will have to set the .ignore_index parameter to True.

Step 10 shows you how to keep the old index by converting your dictionary to a Series. Make 
sure to use the name parameter, which is then used as the new index label. Any number 
of rows may be added with append in this manner by passing a list of Series as the first 
argument.

When wanting to append rows in this manner with a much larger DataFrame, you can avoid 
lots of typing and mistakes by converting a single row to a dictionary with the .to_dict 
method and then using a dictionary comprehension to clear out all the old values replacing 
them with some defaults. This can serve as a template for new rows.

There's more…
Appending a single row to a DataFrame is a fairly expensive operation and if you find yourself 
writing a loop to append single rows of data to a DataFrame, then you are doing it wrong. Let's 
first create 1,000 rows of new data as a list of Series:

>>> random_data = []

>>> for i in range(1000):   

...     d = dict()

...     for k, v in data_dict.items():

...         if isinstance(v, str):

...             d[k] = np.random.choice(list('abcde'))

...         else:

...             d[k] = np.random.randint(10)

...     random_data.append(pd.Series(d, name=i + len(bball_16)))

>>> random_data[0]

2B    3

3B    9

AB    3

BB    9

CS    4

Name: 16, dtype: object

Let's time how long it takes to loop through each item making one append at a time:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()
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>>> for row in random_data:

...     bball_16_copy = bball_16_copy.append(row)

4.88 s ± 190 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

That took nearly five seconds for only 1,000 rows. If we instead pass in the entire list of 
Series, we get an enormous speed increase:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()

>>> bball_16_copy = bball_16_copy.append(random_data)

78.4 ms ± 6.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

If you pass in a list of Series objects, the time has been reduced to under one-tenth of 
a second. Internally, pandas converts the list of Series to a single DataFrame and then 
appends the data.

Concatenating multiple DataFrames 
together

The concat function enables concatenating two or more DataFrames (or Series) together, 
both vertically and horizontally. As per usual, when dealing with multiple pandas objects 
simultaneously, concatenation doesn't happen haphazardly but aligns each object by 
their index.

In this recipe, we combine DataFrames both horizontally and vertically with the concat 
function and then change the parameter values to yield different results.

How to do it…
1. Read in the 2016 and 2017 stock datasets, and make their ticker symbol the index:

>>> stocks_2016 = pd.read_csv('data/stocks_2016.csv',

...     index_col='Symbol')

>>> stocks_2017 = pd.read_csv('data/stocks_2017.csv',

...     index_col='Symbol')

>>> stocks_2016

        Shares  Low  High

Symbol                   

AAPL        80   95   110
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TSLA        50   80   130

WMT         40   55    70

>>> stocks_2017

        Shares  Low  High

Symbol                   

AAPL        50  120   140

GE         100   30    40

IBM         87   75    95

SLB         20   55    85

TXN        500   15    23

TSLA       100  100   300

2. Place all the stock datasets into a single list, and then call the concat function 
to concatenate them together along the default axis (0):
>>> s_list = [stocks_2016, stocks_2017]

>>> pd.concat(s_list)

        Shares  Low  High

Symbol                   

AAPL        80   95   110

TSLA        50   80   130

WMT         40   55    70

AAPL        50  120   140

GE         100   30    40

IBM         87   75    95

SLB         20   55    85

TXN        500   15    23

TSLA       100  100   300

3. By default, the concat function concatenates DataFrames vertically, one on 
top of the other. One issue with the preceding DataFrame is that there is no way 
to identify the year of each row. The concat function allows each piece of the 
resulting DataFrame to be labeled with the keys parameter. This label will appear 
in the outermost index level of the concatenated frame and force the creation of a 
MultiIndex. Also, the names parameter has the ability to rename each index level 
for clarity:
>>> pd.concat(s_list, keys=['2016', '2017'],

...    names=['Year', 'Symbol'])  

             Shares  Low  High
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Year Symbol                   

2016 AAPL        80   95   110

     TSLA        50   80   130

     WMT         40   55    70

2017 AAPL        50  120   140

     GE         100   30    40

     IBM         87   75    95

     SLB         20   55    85

     TXN        500   15    23

     TSLA       100  100   300

4. It is also possible to concatenate horizontally by changing the axis parameter 
to columns or 1:
>>> pd.concat(s_list, keys=['2016', '2017'],

...     axis='columns', names=['Year', None])    

Year   2016                2017              

     Shares   Low   High Shares    Low   High

AAPL   80.0  95.0  110.0   50.0  120.0  140.0

GE      NaN   NaN    NaN  100.0   30.0   40.0

IBM     NaN   NaN    NaN   87.0   75.0   95.0

SLB     NaN   NaN    NaN   20.0   55.0   85.0

TSLA   50.0  80.0  130.0  100.0  100.0  300.0

TXN     NaN   NaN    NaN  500.0   15.0   23.0

WMT    40.0  55.0   70.0    NaN    NaN    NaN

5. Notice that missing values appear whenever a stock symbol is present in one year 
but not the other. The concat function, by default, uses an outer join, keeping all 
rows from each DataFrame in the list. However, it gives us an option to keep only 
rows that have the same index values in both DataFrames. This is referred to as 
an inner join. We set the join parameter to inner to change the behavior:

>>> pd.concat(s_list, join='inner', keys=['2016', '2017'],

...     axis='columns', names=['Year', None])

Year     2016            2017          

       Shares Low High Shares  Low High

Symbol                                 

AAPL       80  95  110     50  120  140

TSLA       50  80  130    100  100  300
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How it works…
The concat function accepts a list as the first parameter. This list must be a sequence 
of pandas objects, typically a list of DataFrames or Series. By default, all these objects 
will be stacked vertically, one on top of the other. In this recipe, only two DataFrames are 
concatenated, but any number of pandas objects work. When we were concatenating 
vertically, the DataFrames align by their column names.

In this dataset, all the column names were the same so each column in the 2017 data lined 
up precisely under the same column name in the 2016 data. However, when they were 
concatenated horizontally, as in step 4, only two of the index labels matched from both years 
– AAPL and TSLA. Therefore, these ticker symbols had no missing values for either year. There 
are two types of alignment possible using concat, outer (the default), and inner referred 
to by the join parameter.

There's more…
The .append method is a heavily watered-down version of concat that can only append new 
rows to a DataFrame. Internally, .append just calls the concat function. For instance, step 2 
from this recipe may be duplicated with the following:

>>> stocks_2016.append(stocks_2017)

Shares  Low  High

Symbol                   

AAPL        80   95   110

TSLA        50   80   130

WMT         40   55    70

AAPL        50  120   140

GE         100   30    40

IBM         87   75    95

SLB         20   55    85

TXN        500   15    23

TSLA       100  100   300

Understanding the differences between 
concat, join, and merge

The .merge and .join DataFrame (and not Series) methods and the concat function all 
provide very similar functionality to combine multiple pandas objects together. As they are 
so similar and they can replicate each other in certain situations, it can get very confusing 
regarding when and how to use them correctly. 
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To help clarify their differences, take a look at the following outline:

concat:

 f A pandas function

 f Combines two or more pandas objects vertically or horizontally 

 f Aligns only on the index

 f Errors whenever a duplicate appears in the index

 f Defaults to outer join with the option for inner join

.join:

 f A DataFrame method

 f Combines two or more pandas objects horizontally

 f Aligns the calling DataFrame's column(s) or index with the other object's index (and 
not the columns)

 f Handles duplicate values on the joining columns/index by performing a Cartesian 
product

 f Defaults to left join with options for inner, outer, and right

.merge:

 f A DataFrame method

 f Combines exactly two DataFrames horizontally

 f Aligns the calling DataFrame's column(s) or index with the other DataFrame's 
column(s) or index

 f Handles duplicate values on the joining columns or index by performing a cartesian 
product

 f Defaults to inner join with options for left, outer, and right

In this recipe, we will combine DataFrames. The first situation is simpler with concat while 
the second is simpler with .merge.

How to do it…
1. Let's read in stock data for 2016, 2017, and 2018 into a list of DataFrames using a 

loop instead of three different calls to the read_csv function:
>>> years = 2016, 2017, 2018

>>> stock_tables = [pd.read_csv(

...     f'data/stocks_{year}.csv', index_col='Symbol')
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...     for year in years]

>>> stocks_2016, stocks_2017, stocks_2018 = stock_tables

>>> stocks_2016

        Shares  Low  High

Symbol                   

AAPL        80   95   110

TSLA        50   80   130

WMT         40   55    70

>>> stocks_2017

        Shares  Low  High

Symbol                   

AAPL        50  120   140

GE         100   30    40

IBM         87   75    95

SLB         20   55    85

TXN        500   15    23

TSLA       100  100   300

>>> stocks_2018

        Shares  Low  High

Symbol                   

AAPL        40  135   170

AMZN         8  900  1125

TSLA        50  220   400

2. The concat function is the only pandas method that is able to combine DataFrames 
vertically. Let's do this by passing it the list stock_tables:
>>> pd.concat(stock_tables, keys=[2016, 2017, 2018])

             Shares  Low  High

     Symbol                   

2016 AAPL        80   95   110

     TSLA        50   80   130

     WMT         40   55    70

2017 AAPL        50  120   140

     GE         100   30    40

...             ...  ...   ...
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     TXN        500   15    23

     TSLA       100  100   300

2018 AAPL        40  135   170

     AMZN         8  900  1125

     TSLA        50  220   400

3. It can also combine DataFrames horizontally by changing the axis parameter 
to columns:
>>> pd.concat(dict(zip(years, stock_tables)), axis='columns')

       2016               ...   2018               

     Shares   Low   High  ... Shares    Low    High

AAPL   80.0  95.0  110.0  ...   40.0  135.0   170.0

AMZN    NaN   NaN    NaN  ...    8.0  900.0  1125.0

GE      NaN   NaN    NaN  ...    NaN    NaN     NaN

IBM     NaN   NaN    NaN  ...    NaN    NaN     NaN

SLB     NaN   NaN    NaN  ...    NaN    NaN     NaN

TSLA   50.0  80.0  130.0  ...   50.0  220.0   400.0

TXN     NaN   NaN    NaN  ...    NaN    NaN     NaN

WMT    40.0  55.0   70.0  ...    NaN    NaN     NaN

4. Now that we have started combining DataFrames horizontally, we can use the .join 
and .merge methods to replicate this functionality of concat. Here, we use the 
.join method to combine the stock_2016 and stock_2017 DataFrames. By 
default, the DataFrames align on their index. If any of the columns have the same 
names, then you must supply a value to the lsuffix or rsuffix parameters to 
distinguish them in the result:
>>> stocks_2016.join(stocks_2017, lsuffix='_2016',

...     rsuffix='_2017', how='outer')

        Shares_2016  Low_2016  ...  Low_2017  High_2017

Symbol                         ...

AAPL           80.0      95.0  ...     120.0      140.0

GE              NaN       NaN  ...      30.0       40.0

IBM             NaN       NaN  ...      75.0       95.0

SLB             NaN       NaN  ...      55.0       85.0

TSLA           50.0      80.0  ...     100.0      300.0

TXN             NaN       NaN  ...      15.0       23.0

WMT            40.0      55.0  ...       NaN        NaN
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5. To replicate the output of the concat function from step 3, we can pass a list 
of DataFrames to the .join method:
>>> other = [stocks_2017.add_suffix('_2017'),

...     stocks_2018.add_suffix('_2018')]

>>> stocks_2016.add_suffix('_2016').join(other, how='outer')

      Shares_2016  Low_2016  ...  Low_2018  High_2018

AAPL         80.0      95.0  ...     135.0      170.0

TSLA         50.0      80.0  ...     220.0      400.0

WMT          40.0      55.0  ...       NaN        NaN

GE            NaN       NaN  ...       NaN        NaN

IBM           NaN       NaN  ...       NaN        NaN

SLB           NaN       NaN  ...       NaN        NaN

TXN           NaN       NaN  ...       NaN        NaN

AMZN          NaN       NaN  ...     900.0     1125.0

6. Let's check whether they are equal:
>>> stock_join = stocks_2016.add_suffix('_2016').join(other,

...     how='outer')

>>> stock_concat = (

...    pd.concat(

...         dict(zip(years, stock_tables)), axis="columns")

...    .swaplevel(axis=1)

...    .pipe(lambda df_: 

...        df_.set_axis(df_.columns.to_flat_index(), axis=1))

...    .rename(lambda label: 

...        "_".join([str(x) for x in label]), axis=1)

... )

>>> stock_join.equals(stock_concat)

True

7. Now, let's turn to the .merge method that, unlike concat and .join, can only 
combine two DataFrames together. By default, .merge attempts to align the values 
in the columns that have the same name for each of the DataFrames. However, you 
can choose to have it align on the index by setting the Boolean parameters left_
index and right_index to True. Let's merge the 2016 and 2017 stock data 
together:
>>> stocks_2016.merge(stocks_2017, left_index=True,
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...     right_index=True)

        Shares_x  Low_x  High_x  Shares_y  Low_y  High_y

Symbol

AAPL          80     95     110        50    120     140

TSLA          50     80     130       100    100     300

8. By default, .merge uses an inner join and automatically supplies suffixes for 
identically named columns. Let's change to an outer join and then perform another 
outer join of the 2018 data to replicate the behavior of concat. Note that in pandas 
1.0, the merge index will be sorted and the concat version won't be:
>>> stock_merge = (stocks_2016

...     .merge(stocks_2017, left_index=True,

...            right_index=True, how='outer',

...            suffixes=('_2016', '_2017'))

...     .merge(stocks_2018.add_suffix('_2018'),

...            left_index=True, right_index=True,

...            how='outer')

... )

>>> stock_concat.sort_index().equals(stock_merge)

True

9. Now let's turn our comparison to datasets where we are interested in aligning 
together the values of columns and not the index or column labels themselves. The 
.merge method is built for this situation. Let's take a look at two new small datasets, 
food_prices and food_transactions:
>>> names = ['prices', 'transactions']

>>> food_tables = [pd.read_csv('data/food_{}.csv'.format(name))

...     for name in names]

>>> food_prices, food_transactions = food_tables

>>> food_prices

     item store  price  Date

0    pear     A   0.99  2017

1    pear     B   1.99  2017

2   peach     A   2.99  2017

3   peach     B   3.49  2017

4  banana     A   0.39  2017

5  banana     B   0.49  2017

6   steak     A   5.99  2017
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7   steak     B   6.99  2017

8   steak     B   4.99  2015

>>> food_transactions

   custid     item store  quantity

0       1     pear     A         5

1       1   banana     A        10

2       2    steak     B         3

3       2     pear     B         1

4       2    peach     B         2

5       2    steak     B         1

6       2  coconut     B         4

10. If we wanted to find the total amount of each transaction, we would need to join these 
tables on the item and store columns:
>>> food_transactions.merge(food_prices, on=['item', 'store'])    

   custid    item store  quantity  price  Date

0       1    pear     A         5   0.99  2017

1       1  banana     A        10   0.39  2017

2       2   steak     B         3   6.99  2017

3       2   steak     B         3   4.99  2015

4       2   steak     B         1   6.99  2017

5       2   steak     B         1   4.99  2015

6       2    pear     B         1   1.99  2017

7       2   peach     B         2   3.49  2017

11. The price is now aligned correctly with its corresponding item and store, but there is 
a problem. Customer 2 has a total of four steak items. As the steak item appears 
twice in each table for store B, a Cartesian product takes place between them, 
resulting in four rows. Also, notice that the item, coconut, is missing because there 
was no corresponding price for it. Let's fix both of these issues:
>>> food_transactions.merge(food_prices.query('Date == 2017'),

...     how='left')

   custid     item store  quantity  price    Date

0       1     pear     A         5   0.99  2017.0

1       1   banana     A        10   0.39  2017.0

2       2    steak     B         3   6.99  2017.0
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3       2     pear     B         1   1.99  2017.0

4       2    peach     B         2   3.49  2017.0

5       2    steak     B         1   6.99  2017.0

6       2  coconut     B         4    NaN     NaN

12. We can replicate this with the .join method, but we must first put the joining 
columns of the food_prices DataFrame into the index:
>>> food_prices_join = food_prices.query('Date == 2017') \

...    .set_index(['item', 'store'])

>>> food_prices_join    

              price  Date

item   store             

pear   A       0.99  2017

       B       1.99  2017

peach  A       2.99  2017

       B       3.49  2017

banana A       0.39  2017

       B       0.49  2017

steak  A       5.99  2017

       B       6.99  2017

13. The .join method only aligns with the index of the passed DataFrame but can use 
the index or the columns of the calling DataFrame. To use columns for alignment 
on the calling DataFrame, you will need to pass them to the on parameter:

>>> food_transactions.join(food_prices_join, on=['item', 'store'])

   custid     item store  quantity  price    Date

0       1     pear     A         5   0.99  2017.0

1       1   banana     A        10   0.39  2017.0

2       2    steak     B         3   6.99  2017.0

3       2     pear     B         1   1.99  2017.0

4       2    peach     B         2   3.49  2017.0

5       2    steak     B         1   6.99  2017.0

6       2  coconut     B         4    NaN     NaN

The output matches the result from step 11. To replicate this with the concat 
function, you would need to put the item and store columns into the index of 
both DataFrames. However, in this particular case, an error would be produced as 
a duplicate index value occurs in at least one of the DataFrames (with item steak 
and store B):
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>>> pd.concat([food_transactions.set_index(['item', 'store']),

...            food_prices.set_index(['item', 'store'])],

...           axis='columns')

Traceback (most recent call last):

  ...

ValueError: cannot handle a non-unique multi-index!

How it works…
It can be tedious to repeatedly write the read_csv function when importing many 
DataFrames at the same time. One way to automate this process is to put all the 
filenames in a list and iterate through them with a for loop. This was done in step 1 with 
a list comprehension.

At the end of step 1, we unpack the list of DataFrames into their own appropriately named 
variables so that each table may be easily and clearly referenced. The nice thing about having 
a list of DataFrames is that it is the exact requirement for the concat function, as seen in 
step 2. Notice how step 2 uses the keys parameter to name each chunk of data. This can 
be also be accomplished by passing a dictionary to concat, as done in step 3.

In step 4, we must change the type of .join to outer to include all of the rows in the passed 
DataFrame that do not have an index present in the calling DataFrame. In step 5, the passed 
list of DataFrames cannot have any columns in common. Although there is an rsuffix 
parameter, it only works when passing a single DataFrame and not a list of them. To work 
around this limitation, we change the names of the columns beforehand with the .add_
suffix method, and then call the .join method.

In step 7, we use .merge, which defaults to aligning on all column names that are the 
same in both DataFrames. To change this default behavior, and align on the index of either 
one or both, set the left_index or right_index parameters to True. Step 8 finishes 
the replication with two calls to .merge. As you can see, when you are aligning multiple 
DataFrames on their index, concat is usually going to be a far better choice than .merge.

In step 9, we switch gears to focus on a situation where the .merge method has the 
advantage. The .merge method is the only one capable of aligning both the calling and 
passed DataFrame by column values. Step 10 shows you how easy it is to merge two 
DataFrames. The on parameter is not necessary but provided for clarity.

Unfortunately, it is very easy to duplicate or drop data when combining DataFrames, as shown 
in step 10. It is vital to take some time to do some sanity checks after combining data. In 
this instance, the food_prices dataset had a duplicate price for steak in store B, so we 
eliminated this row by querying for only the current year in step 11. We also change to a left 
join to ensure that each transaction is kept regardless if a price is present or not.
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It is possible to use .join in these instances, but all the columns in the passed DataFrame 
must be moved into the index first. Finally, concat is going to be a poor choice whenever 
you intend to align data by values in their columns.

In summary, I find myself using .merge unless I know that the indexes align.

There's more…
It is possible to read all files from a particular directory into DataFrames without knowing their 
names. Python provides a few ways to iterate through directories, with the glob module being 
a popular choice. The gas prices directory contains five different CSV files, each having 
weekly prices of a particular grade of gas beginning from 2007. Each file has just two columns 
– the date for the week and the price. This is a perfect situation to iterate through all the files, 
read them into DataFrames, and combine them all together with the concat function.

The glob module has the glob function, which takes a single parameter – the location of the 
directory you would like to iterate through as a string. To get all the files in the directory, use 
the string *. In this example, ''*.csv' returns only files that end in .csv. The result from 
the glob function is a list of string filenames, which can be passed to the read_csv function:

>>> import glob

>>> df_list = []

>>> for filename in glob.glob('data/gas prices/*.csv'):

...     df_list.append(pd.read_csv(filename, index_col='Week',

...     parse_dates=['Week']))

>>> gas = pd.concat(df_list, axis='columns')

>>> gas

            Midgrade  Premium  Diesel  All Grades  Regular

Week

2017-09-25     2.859    3.105   2.788       2.701    2.583

2017-09-18     2.906    3.151   2.791       2.750    2.634

2017-09-11     2.953    3.197   2.802       2.800    2.685

2017-09-04     2.946    3.191   2.758       2.794    2.679

2017-08-28     2.668    2.901   2.605       2.513    2.399

...              ...      ...     ...         ...      ...

2007-01-29     2.277    2.381   2.413       2.213    2.165

2007-01-22     2.285    2.391   2.430       2.216    2.165

2007-01-15     2.347    2.453   2.463       2.280    2.229

2007-01-08     2.418    2.523   2.537       2.354    2.306

2007-01-01     2.442    2.547   2.580       2.382    2.334
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Connecting to SQL databases
Learning SQL is a useful skill. Much of the world's data is stored in databases that accept SQL 
statements. There are many dozens of relational database management systems, with SQLite 
being one of the most popular and easy to use.

We will be exploring the chinook sample database provided by SQLite that contains 11 tables 
of data for a music store. One of the best things to do when first diving into a proper relational 
database is to study a database diagram (sometimes called an entity relationship diagram) 
to understand how tables are related. The following diagram will be immensely helpful when 
navigating through this recipe:

SQL relationships

In order for this recipe to work, you will need to have the sqlalchemy Python package 
installed. If you installed the Anaconda distribution, then it should already be available to 
you. SQLAlchemy is the preferred pandas tool when making connections to databases. In 
this recipe, you will learn how to connect to a SQLite database. You will then ask two different 
queries, and answer them by joining together tables with the .merge method.

How to do it…
1. Before we can begin reading tables from the chinook database, we need to set up our 

SQLAlchemy engine:
>>> from sqlalchemy import create_engine

>>> engine = create_engine('sqlite:///data/chinook.db')
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2. We can now step back into the world of pandas and remain there for the rest of 
the recipe. Let's complete a command and read in the tracks table with the 
read_sql_table function. The name of the table is the first argument and the 
SQLAlchemy engine is the second:
>>> tracks = pd.read_sql_table('tracks', engine)

>>> tracks

      TrackId  ... UnitPrice

0           1  ...      0.99

1           2  ...      0.99

2           3  ...      0.99

3           4  ...      0.99

4           5  ...      0.99

...       ...  ...       ...

3498     3499  ...      0.99

3499     3500  ...      0.99

3500     3501  ...      0.99

3501     3502  ...      0.99

3502     3503  ...      0.99

3. For the rest of the recipe, we will answer a couple of different specific queries with 
help from the database diagram. To begin, let's find the average length of song per 
genre:
>>> (pd.read_sql_table('genres', engine)

...      .merge(tracks[['GenreId', 'Milliseconds']],

...             on='GenreId', how='left') 

...      .drop('GenreId', axis='columns')

... )

           Name  Milliseconds

0          Rock        343719

1          Rock        342562

2          Rock        230619

3          Rock        252051

4          Rock        375418

...         ...           ...

3498  Classical        286741

3499  Classical        139200

3500  Classical         66639

3501  Classical        221331

3502      Opera        174813
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4. Now we can easily find the average length of each song per genre. To help ease 
interpretation, we convert the Milliseconds column to the timedelta data type:
>>> (pd.read_sql_table('genres', engine)

...      .merge(tracks[['GenreId', 'Milliseconds']],

...             on='GenreId', how='left') 

...      .drop('GenreId', axis='columns')

...      .groupby('Name')

...      ['Milliseconds']

...      .mean()

...      .pipe(lambda s_: pd.to_timedelta(s_, unit='ms')

...                         .rename('Length'))

...      .dt.floor('s')

...      .sort_values()

... )

Name

Rock And Roll      00:02:14

Opera              00:02:54

Hip Hop/Rap        00:02:58

Easy Listening     00:03:09

Bossa Nova         00:03:39

                     ...

Comedy             00:26:25

TV Shows           00:35:45

Drama              00:42:55

Science Fiction    00:43:45

Sci Fi & Fantasy   00:48:31

Name: Length, Length: 25, dtype: timedelta64[ns]

5. Now let's find the total amount spent per customer. We will need the customers, 
invoices, and invoice_items tables all connected to each other:
>>> cust = pd.read_sql_table('customers', engine,

...     columns=['CustomerId','FirstName',

...     'LastName'])

>>> invoice = pd.read_sql_table('invoices', engine,

...     columns=['InvoiceId','CustomerId'])

>>> invoice_items = pd.read_sql_table('invoice_items', engine,

...     columns=['InvoiceId', 'UnitPrice', 'Quantity'])
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>>> (cust

...     .merge(invoice, on='CustomerId') 

...     .merge(invoice_items, on='InvoiceId')

... )

      CustomerId FirstName  ... UnitPrice  Quantity

0              1      Luís  ...      1.99         1

1              1      Luís  ...      1.99         1

2              1      Luís  ...      0.99         1

3              1      Luís  ...      0.99         1

4              1      Luís  ...      0.99         1

...          ...       ...  ...       ...       ...

2235          59      Puja  ...      0.99         1

2236          59      Puja  ...      0.99         1

2237          59      Puja  ...      0.99         1

2238          59      Puja  ...      0.99         1

2239          59      Puja  ...      0.99         1

6. We can now multiply the quantity by the unit price and then find the total amount 
spent per customer:

>>> (cust

...     .merge(invoice, on='CustomerId') 

...     .merge(invoice_items, on='InvoiceId')

...     .assign(Total=lambda df_:df_.Quantity * df_.UnitPrice)

...     .groupby(['CustomerId', 'FirstName', 'LastName'])

...     ['Total']

...     .sum()

...     .sort_values(ascending=False) 

... )

CustomerId  FirstName  LastName

6           Helena     Holý          49.62

26          Richard    Cunningham    47.62

57          Luis       Rojas         46.62

46          Hugh       O'Reilly      45.62

45          Ladislav   Kovács        45.62

                                     ...

32          Aaron      Mitchell      37.62

31          Martha     Silk          37.62
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29          Robert     Brown         37.62

27          Patrick    Gray          37.62

59          Puja       Srivastava    36.64

Name: Total, Length: 59, dtype: float64

How it works…
The create_engine function requires a connection string to work properly. The connection 
string for SQLite is the location of the database, which is located in the data directory. Other 
relational database management systems have more complex connection strings. You will 
need to provide a username, password, hostname, port, and optionally, a database. You will 
also need to supply the SQL dialect and the driver. The general form for the connection string 
is as follows: dialect+driver://username:password@host:port/database. The 
driver for your particular relational database might need to be installed separately.

Once we have created the engine, selecting entire tables into DataFrames is very easy with 
the read_sql_table function in step 2. Each of the tables in the database has a primary 
key identifying each row. It is identified graphically with a key symbol in the diagram. In step 3, 
we link genres to tracks through GenreId. As we only care about the track length, we trim 
the tracks DataFrame down to just the columns we need before performing the merge. Once 
the tables have merged, we can answer the query with a basic .groupby operation.

We go one step further and convert the integer milliseconds into a Timedelta object that 
is far easier to read. The key is passing in the correct unit of measurement as a string. Now 
that we have a Timedelta Series, we can use the .dt attribute to access the .floor method, 
which rounds the time down to the nearest second.

The query required to answer step 5 involves three tables. We can trim the tables down 
significantly to only the columns we need by passing them to the columns parameter. When 
using .merge, the joining columns are not kept when they have the same name. In step 6, 
we could have assigned a column for the price times quantity with the following:

cust_inv['Total'] = cust_inv['Quantity'] * cust_inv['UnitPrice']

As has been emphasized through this book, we prefer chaining operations when possible, 
and hence you see .assign used frequently.

There's more…
If you are adept with SQL, you can write a SQL query as a string and pass it to the read_sql_
query function. For example, the following will reproduce the output from step 4:

>>> sql_string1 = '''

... SELECT
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...     Name,

...     time(avg(Milliseconds) / 1000, 'unixepoch') as avg_time

... FROM (

...       SELECT

...           g.Name,

...           t.Milliseconds

...       FROM

...           genres as g

...       JOIN

...           tracks as t on

...           g.genreid == t.genreid

...      )

... GROUP BY Name

... ORDER BY avg_time'''

>>> pd.read_sql_query(sql_string1, engine)

                Name  avg_time

0      Rock And Roll  00:02:14

1              Opera  00:02:54

2        Hip Hop/Rap  00:02:58

3     Easy Listening  00:03:09

4         Bossa Nova  00:03:39

..               ...       ...

20            Comedy  00:26:25

21          TV Shows  00:35:45

22             Drama  00:42:55

23   Science Fiction  00:43:45

24  Sci Fi & Fantasy  00:48:31

To reproduce the answer from step 6, use the following SQL query:

>>> sql_string2 = '''

...    SELECT

...          c.customerid,

...          c.FirstName,

...          c.LastName,

...          sum(ii.quantity * ii.unitprice) as Total

...    FROM
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...         customers as c

...    JOIN

...         invoices as i

...         on c.customerid = i.customerid

...    JOIN

...        invoice_items as ii

...        on i.invoiceid = ii.invoiceid

...    GROUP BY

...        c.customerid, c.FirstName, c.LastName

...    ORDER BY

...        Total desc'''

>>> pd.read_sql_query(sql_string2, engine)

    CustomerId FirstName    LastName  Total

0            6    Helena        Holý  49.62

1           26   Richard  Cunningham  47.62

2           57      Luis       Rojas  46.62

3           45  Ladislav      Kovács  45.62

4           46      Hugh    O'Reilly  45.62

..         ...       ...         ...    ...

54          53      Phil      Hughes  37.62

55          54     Steve      Murray  37.62

56          55      Mark      Taylor  37.62

57          56     Diego   Gutiérrez  37.62

58          59      Puja  Srivastava  36.64





429

12 
Time Series Analysis

Introduction
The roots of pandas lay in analyzing financial time series data. Time series are points of data 
gathered over time. Generally, the time is evenly spaced between each data point. However, 
there may be gaps in the observations. pandas includes functionality to manipulate dates, 
aggregate over different time periods, sample different periods of time, and more.

Understanding the difference between 
Python and pandas date tools

Before we get to pandas, it can help to be aware of and understand core Python's date 
and time functionality. The datetime module provides three data types: date, time, and 
datetime. Formally, a date is a moment in time consisting of just the year, month, and day. 
For instance, June 7, 2013 would be a date. A time consists of hours, minutes, seconds, 
and microseconds (one-millionth of a second) and is unattached to any date. An example 
of time would be 12 hours and 30 minutes. A datetime consists of both the elements 
of a date and time together.

On the other hand, pandas has a single object to encapsulate date and time called a 
Timestamp. It has nanosecond (one-billionth of a second) precision and is derived from 
NumPy's datetime64 data type. Both Python and pandas each have a timedelta object 
that is useful when doing date addition and subtraction.

In this recipe, we will first explore Python's datetime module and then turn to the 
corresponding date tools in pandas.
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How to do it…
1. Let's begin by importing the datetime module into our namespace and creating 

a date, time, and datetime object:
>>> import pandas as pd

>>> import numpy as np

>>> import datetime

>>> date = datetime.date(year=2013, month=6, day=7)

>>> time = datetime.time(hour=12, minute=30,

...     second=19, microsecond=463198)

>>> dt = datetime.datetime(year=2013, month=6, day=7,

...     hour=12, minute=30, second=19,

...     microsecond=463198)

>>> print(f"date is {date}")

date is 2013-06-07

>>> print(f"time is {time}")

time is 12:30:19.463198

>>> print(f"datetime is {dt}")

datetime is 2013-06-07 12:30:19.463198

2. Let's construct and print out a timedelta object, the other major data type from 
the datetime module:
>>> td = datetime.timedelta(weeks=2, days=5, hours=10,

...     minutes=20, seconds=6.73,

...     milliseconds=99, microseconds=8)

>>> td

datetime.timedelta(days=19, seconds=37206, microseconds=829008)

3. Add this td to the date and dt objects from step 1:
>>> print(f'new date is {date+td}')

new date is 2013-06-26

>>> print(f'new datetime is {dt+td}')

new datetime is 2013-06-26 22:50:26.292206
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4. Attempting to add a timedelta to a time object is not possible:
>>> time + td

Traceback (most recent call last):

  ...

TypeError: unsupported operand type(s) for +: 'datetime.time' and 
'datetime.timedelta'

5. Let's turn to pandas and its Timestamp object, which is a moment in time with 
nanosecond precision. The Timestamp constructor is very flexible, and handles 
a wide variety of inputs:
>>> pd.Timestamp(year=2012, month=12, day=21, hour=5,

...    minute=10, second=8, microsecond=99)

Timestamp('2012-12-21 05:10:08.000099')

>>> pd.Timestamp('2016/1/10')

Timestamp('2016-01-10 00:00:00')

>>> pd.Timestamp('2014-5/10')

Timestamp('2014-05-10 00:00:00')

>>> pd.Timestamp('Jan 3, 2019 20:45.56')

Timestamp('2019-01-03 20:45:33')

>>> pd.Timestamp('2016-01-05T05:34:43.123456789')

Timestamp('2016-01-05 05:34:43.123456789')

6. It's also possible to pass in a single integer or float to the Timestamp constructor, 
which returns a date equivalent to the number of nanoseconds after the Unix epoch 
(January 1, 1970):
>>> pd.Timestamp(500)

Timestamp('1970-01-01 00:00:00.000000500')

>>> pd.Timestamp(5000, unit='D')

Timestamp('1983-09-10 00:00:00')

7. pandas provides the to_datetime function that works similarly to the Timestamp 
constructor, but comes with a few different parameters for special situations. This 
comes in useful for converting string columns in DataFrames to dates. 
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But it also works on scalar dates; see the following examples:
>>> pd.to_datetime('2015-5-13')

Timestamp('2015-05-13 00:00:00')

>>> pd.to_datetime('2015-13-5', dayfirst=True)

Timestamp('2015-05-13 00:00:00')

>>> pd.to_datetime('Start Date: Sep 30, 2017 Start Time: 1:30 pm',

...     format='Start Date: %b %d, %Y Start Time: %I:%M %p')

Timestamp('2017-09-30 13:30:00')

>>> pd.to_datetime(100, unit='D', origin='2013-1-1')

Timestamp('2013-04-11 00:00:00')

8. The to_datetime function comes equipped with even more functionality. It is 
capable of converting entire lists or Series of strings or integers to Timestamp 
objects. Since we are far more likely to interact with Series or DataFrames and not 
single scalar values, you are far more likely to use to_datetime than Timestamp:
>>> s = pd.Series([10, 100, 1000, 10000])

>>> pd.to_datetime(s, unit='D')

0   1970-01-11

1   1970-04-11

2   1972-09-27

3   1997-05-19

dtype: datetime64[ns]

>>> s = pd.Series(['12-5-2015', '14-1-2013',

...    '20/12/2017', '40/23/2017'])

>>> pd.to_datetime(s, dayfirst=True, errors='coerce')

0   2015-05-12

1   2013-01-14

2   2017-12-20

3          NaT

dtype: datetime64[ns]

>>> pd.to_datetime(['Aug 3 1999 3:45:56', '10/31/2017'])

DatetimeIndex(['1999-08-03 03:45:56', '2017-10-31 00:00:00'], 
dtype='datetime64[ns]', freq=None)
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9. Like the Timestamp constructor and the to_datetime function, pandas 
has Timedelta and to_timedelta to represent an amount of time. Both 
the Timedelta constructor and the to_timedelta function can create a 
single Timedelta object. Like to_datetime, to_timedelta has a bit more 
functionality and can convert entire lists or Series into Timedelta objects:
>>> pd.Timedelta('12 days 5 hours 3 minutes 123456789 
nanoseconds')

Timedelta('12 days 05:03:00.123456')

>>> pd.Timedelta(days=5, minutes=7.34)

Timedelta('5 days 00:07:20.400000')

>>> pd.Timedelta(100, unit='W')

Timedelta('700 days 00:00:00')

>>> pd.to_timedelta('67:15:45.454')

Timedelta('2 days 19:15:45.454000')

>>> s = pd.Series([10, 100])

>>> pd.to_timedelta(s, unit='s')

0   00:00:10

1   00:01:40

dtype: timedelta64[ns]

>>> time_strings = ['2 days 24 minutes 89.67 seconds',

...     '00:45:23.6']

>>> pd.to_timedelta(time_strings)

TimedeltaIndex(['2 days 00:25:29.670000', '0 days 
00:45:23.600000'], dtype='timedelta64[ns]', freq=None)

10. A Timedelta may be added or subtracted from another Timestamp. They may even 
be divided from each other to return a float:
>>> pd.Timedelta('12 days 5 hours 3 minutes') * 2

Timedelta('24 days 10:06:00')

>>> (pd.Timestamp('1/1/2017') + 

...    pd.Timedelta('12 days 5 hours 3 minutes') * 2)

Timestamp('2017-01-25 10:06:00')
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>>> td1 = pd.to_timedelta([10, 100], unit='s')

>>> td2 = pd.to_timedelta(['3 hours', '4 hours'])

>>> td1 + td2

TimedeltaIndex(['03:00:10', '04:01:40'], dtype='timedelta64[ns]', 
freq=None)

>>> pd.Timedelta('12 days') / pd.Timedelta('3 days')

4.0

11. Both Timestamp and Timedelta have a large number of features available as 
attributes and methods. Let's sample a few of them:

>>> ts = pd.Timestamp('2016-10-1 4:23:23.9')

>>> ts.ceil('h')

Timestamp('2016-10-01 05:00:00')

>>> ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second

(2016, 10, 1, 4, 23, 23)

>>> ts.dayofweek, ts.dayofyear, ts.daysinmonth

(5, 275, 31)

>>> ts.to_pydatetime()

datetime.datetime(2016, 10, 1, 4, 23, 23, 900000)

>>> td = pd.Timedelta(125.8723, unit='h')

>>> td

Timedelta('5 days 05:52:20.280000')

>>> td.round('min')

Timedelta('5 days 05:52:00')

>>> td.components

Components(days=5, hours=5, minutes=52, seconds=20, 
milliseconds=280, microseconds=0, nanoseconds=0)

>>> td.total_seconds()

453140.28
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How it works…
The datetime module is part of the Python standard library. It is a good idea to have some 
familiarity with it, as you will likely cross paths with it. The datetime module has only six types 
of objects: date, time, datetime, timedelta, timezone, and tzinfo. The pandas Timestamp and 
Timedelta objects have all the functionality of their datetime module counterparts and more. It 
will be possible to remain completely in pandas when working with time series.

Steps 1 and 2 show how to create datetimes, dates, times, and timedeltas with the datetime 
module. Only integers may be used as parameters of the date or time. Compare this to step 
5, where the pandas Timestamp constructor can accept the same parameters, as well as 
a wide variety of date strings. In addition to integer components and strings, step 6 shows 
how a single numeric scalar can be used as a date. The units of this scalar are defaulted to 
nanoseconds (ns) but are changed to days (D) in the second statement with the other options 
being hours (h), minutes (m), seconds (s), milliseconds (ms), and microseconds (μs).

Step 2 details the construction of the datetime module's timedelta object with all of its 
parameters. Again, compare this to the pandas Timedelta constructor shown in step 9, 
which accepts these same parameters along with strings and scalar numerics.

In addition to the Timestamp and Timedelta constructors, which are only capable of 
creating a single object, the to_datetime and to_timedelta functions can convert entire 
sequences of integers or strings to the desired type. These functions also provide several 
more parameters not available with the constructors. One of these parameters is errors, 
which is defaulted to the string value raise but can also be set to ignore or coerce.

Whenever a string date is unable to be converted, the errors parameter determines what 
action to take. When set to raise, an exception is raised, and program execution stops. When 
set to ignore, the original sequence gets returned as it was prior to entering the function. 
When set to coerce, the NaT (not a time) object is used to represent the new value. The 
second call to to_datetime in step 8 converts all values to a Timestamp correctly, except 
for the last one, which is forced to become NaT.

Another one of these parameters available only to to_datetime is format, which 
is particularly useful whenever a string contains a particular date pattern that is not 
automatically recognized by pandas. In the third statement of step 7, we have a datetime 
enmeshed inside some other characters. We substitute the date and time pieces of the string 
with their respective formatting directives.

A date formatting directive appears as a single percent sign (%), followed by a single character. 
Each directive specifies some part of a date or time. See the official Python documentation for 
a table of all the directives (http://bit.ly/2kePoRe).

http://bit.ly/2kePoRe
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Slicing time series intelligently
DataFrame selection and slicing was covered previously. When the DataFrame has 
a DatetimeIndex, even more opportunities arise for selection and slicing.

In this recipe, we will use partial date matching to select and slice a DataFrame with 
a DatetimeIndex.

How to do it…
1. Read in the Denver crimes dataset from the hdf5 file crimes.h5, and output the 

column data types and the first few rows. The hdf5 file format allows efficient storage 
of large amounts of data and is different from a CSV text file:
>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.dtypes

OFFENSE_TYPE_ID              category

OFFENSE_CATEGORY_ID          category

REPORTED_DATE          datetime64[ns]

GEO_LON                       float64

GEO_LAT                       float64

NEIGHBORHOOD_ID              category

IS_CRIME                        int64

IS_TRAFFIC                      int64

dtype: object

2. Notice that there are three categorical columns and a Timestamp (denoted by 
NumPy's datetime64 object). These data types were stored whenever the data file 
was created, unlike a CSV file, which only stores raw text. Set the REPORTED_DATE 
column as the index to make intelligent Timestamp slicing possible:
>>> crime = crime.set_index('REPORTED_DATE')

>>> crime

                                  OFFENSE_TYPE_ID  ...

REPORTED_DATE                                      ...

2014-06-29 02:01:00     traffic-accident-dui-duid  ...

2014-06-29 01:54:00    vehicular-eluding-no-chase  ...

2014-06-29 02:00:00          disturbing-the-peace  ...

2014-06-29 02:18:00                        curfew  ...

2014-06-29 04:17:00            aggravated-assault  ...
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...                                           ...  ...

2017-09-13 05:48:00    burglary-business-by-force  ...

2017-09-12 20:37:00  weapon-unlawful-discharge-of  ...

2017-09-12 16:32:00        traf-habitual-offender  ...

2017-09-12 13:04:00       criminal-mischief-other  ...

2017-09-12 09:30:00                   theft-other  ...

3. As usual, it is possible to select all the rows equal to a single index by passing that 
value to the .loc attribute:
>>> crime.loc['2016-05-12 16:45:00']

          OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID   GEO_LON 

                          OFFENSE_TYPE_ID  ... IS_TRAFFIC

REPORTED_DATE                              ...

2016-05-12 16:45:00      traffic-accident  ...          1

2016-05-12 16:45:00      traffic-accident  ...          1

2016-05-12 16:45:00  fraud-identity-theft  ...          0

4. With a Timestamp in the index, it is possible to select all rows that partially match 
an index value. For instance, if we wanted all the crimes from May 5, 2016, we would 
select it as follows:
>>> crime.loc['2016-05-12']

                             OFFENSE_TYPE_ID  ... IS_TRAFFIC

REPORTED_DATE                                 ...

2016-05-12 23:51:00  criminal-mischief-other  ...          0

2016-05-12 18:40:00        liquor-possession  ...          0

2016-05-12 22:26:00         traffic-accident  ...          1

2016-05-12 20:35:00            theft-bicycle  ...          0

2016-05-12 09:39:00   theft-of-motor-vehicle  ...          0

...                                      ...  ...        ...

2016-05-12 17:55:00       public-peace-other  ...          0

2016-05-12 19:24:00        threats-to-injure  ...          0

2016-05-12 22:28:00            sex-aslt-rape  ...          0

2016-05-12 15:59:00   menacing-felony-w-weap  ...          0

2016-05-12 16:39:00               assault-dv  ...          0

5. Not only can you select a single date inexactly, but you can do so for an entire month, 
year, or even hour of the day:
>>> crime.loc['2016-05'].shape

(8012, 7)
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>>> crime.loc['2016'].shape

(91076, 7)

>>> crime.loc['2016-05-12 03'].shape

(4, 7)

6. The selection strings may also contain the name of the month:
>>> crime.loc['Dec 2015'].sort_index()

                                   OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2015-12-01 00:48:00            drug-cocaine-possess  ...

2015-12-01 00:48:00          theft-of-motor-vehicle  ...

2015-12-01 01:00:00         criminal-mischief-other  ...

2015-12-01 01:10:00                      traf-other  ...

2015-12-01 01:10:00          traf-habitual-offender  ...

...                                             ...  ...

2015-12-31 23:35:00            drug-cocaine-possess  ...

2015-12-31 23:40:00                traffic-accident  ...

2015-12-31 23:44:00            drug-cocaine-possess  ...

2015-12-31 23:45:00  violation-of-restraining-order  ...

2015-12-31 23:50:00   weapon-poss-illegal-dangerous  ...

7. Many other string patterns with month name included also work:
>>> crime.loc['2016 Sep, 15'].shape

(252, 7)

>>> crime.loc['21st October 2014 05'].shape

(4, 7)

8. In addition to selection, you may use the slice notation to select a precise range of 
data. This example will include all values starting from March 4, 2015 through the 
end of January 1, 2016:
>>> crime.loc['2015-3-4':'2016-1-1'].sort_index()

                                  OFFENSE_TYPE_ID  ...

REPORTED_DATE                                      ...

2015-03-04 00:11:00                    assault-dv  ...

2015-03-04 00:19:00                    assault-dv  ...

2015-03-04 00:27:00             theft-of-services  ...

2015-03-04 00:49:00  traffic-accident-hit-and-run  ...

2015-03-04 01:07:00    burglary-business-no-force  ...
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...                                           ...  ...

2016-01-01 23:15:00  traffic-accident-hit-and-run  ...

2016-01-01 23:16:00              traffic-accident  ...

2016-01-01 23:40:00              robbery-business  ...

2016-01-01 23:45:00          drug-cocaine-possess  ...

2016-01-01 23:48:00       drug-poss-paraphernalia  ...

9. Notice that all crimes committed on the end date regardless of the time are included 
in the returned result. This is true for any result using the label-based .loc attribute. 
You can provide as much precision (or lack thereof) to any start or end portion of the 
slice:
>>> crime.loc['2015-3-4 22':'2016-1-1 11:22:00'].sort_index()

                                  OFFENSE_TYPE_ID  ...

REPORTED_DATE                                      ...

2015-03-04 22:25:00  traffic-accident-hit-and-run  ...

2015-03-04 22:30:00              traffic-accident  ...

2015-03-04 22:32:00  traffic-accident-hit-and-run  ...

2015-03-04 22:33:00  traffic-accident-hit-and-run  ...

2015-03-04 22:36:00       theft-unauth-use-of-ftd  ...

...                                           ...  ...

2016-01-01 11:10:00        theft-of-motor-vehicle  ...

2016-01-01 11:11:00              traffic-accident  ...

2016-01-01 11:11:00  traffic-accident-hit-and-run  ...

2016-01-01 11:16:00                    traf-other  ...

2016-01-01 11:22:00              traffic-accident  ...

How it works…
One of the features of hdf5 files is their ability to preserve the data types of each column, 
which reduces the memory required. In this case, three of these columns are stored as a 
pandas category instead of as an object. Storing them as objects will lead to a four times 
increase in memory usage:

>>> mem_cat = crime.memory_usage().sum()

>>> mem_obj = (crime

...    .astype({'OFFENSE_TYPE_ID':'object',

...             'OFFENSE_CATEGORY_ID':'object',

...            'NEIGHBORHOOD_ID':'object'}) 
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...    .memory_usage(deep=True)

...    .sum()

... )

>>> mb = 2 ** 20

>>> round(mem_cat / mb, 1), round(mem_obj / mb, 1)

(29.4, 122.7)

To select and slice rows by date using the indexing operator, the index must contain date 
values. In step 2, we move the REPORTED_DATE column into the index and to create 
a DatetimeIndex as the new index:

>>> crime.index[:2]

DatetimeIndex(['2014-06-29 02:01:00', '2014-06-29 01:54:00'], 
dtype='datetime64[ns]', name='REPORTED_DATE', freq=None)

With a DatetimeIndex, a huge variety of strings may be used to select rows with the .loc 
attribute. In fact, all strings that can be sent to the pandas Timestamp constructor will work 
here. Surprisingly, it is not necessary to use the .loc attribute for any of the selections or 
slices in this recipe. The index operator by itself will work in the same manner. For instance, 
the second statement of step 7 may be written as crime['21st October 2014 05'].

Personally, I prefer using the .loc attribute when selecting rows and would always use it over 
the index operator on a DataFrame. The .loc indexer is explicit, and it is unambiguous that 
the first value passed to it is always used to select rows.

Steps 8 and 9 show how slicing works with timestamps. Any date that partially matches either 
the start or end value of the slice is included in the result.

There's more…
Our original crimes DataFrame was not sorted and slicing still worked as expected. Sorting the 
index will lead to large gains in performance. Let's see the difference with slicing done from 
step 8:

>>> %timeit crime.loc['2015-3-4':'2016-1-1']

12.2 ms ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> crime_sort = crime.sort_index()

>>> %timeit crime_sort.loc['2015-3-4':'2016-1-1']

1.44 ms ± 41.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

The sorted DataFrame provides an eight times performance improvement over the original.
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Filtering columns with time data
The last section showed how to filter data that has a DatetimeIndex. Often, you will have 
columns with dates in them, and it does not make sense to have that column be the index. 
In this section, we will reproduce the slicing of the preceding section with columns. Sadly, 
the slicing constructs do not work on columns, so we will have to take a different tack.

How to do it…
1. Read in the Denver crimes dataset from the hdf5 file crimes.h5 and inspect the 

column types:
>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.dtypes

OFFENSE_TYPE_ID              category

OFFENSE_CATEGORY_ID          category

REPORTED_DATE          datetime64[ns]

GEO_LON                       float64

GEO_LAT                       float64

NEIGHBORHOOD_ID              category

IS_CRIME                        int64

IS_TRAFFIC                      int64

dtype: object

2. Select all the rows where the REPORTED_DATE column has a certain value. We will 
use a Boolean array to filter. Note, that we can compare the a datetime column to 
a string:
>>> (crime

...     [crime.REPORTED_DATE == '2016-05-12 16:45:00']

... )

                 OFFEN/PE_ID  ... IS_TRAFFIC

300905      traffic-accident  ...          1

302354      traffic-accident  ...          1

302373  fraud-identity-theft  ...          0

3. Select all rows with a partial date match. If we try this with the equality operator, 
it fails. We do not get an error, but there are no rows returned:
>>> (crime

...     [crime.REPORTED_DATE == '2016-05-12']
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... )

Empty DataFrame

Columns: [OFFENSE_TYPE_ID, OFFENSE_CATEGORY_ID, REPORTED_DATE, 
GEO_LON, GEO_LAT, NEIGHBORHOOD_ID, IS_CRIME, IS_TRAFFIC]

Index: []

This also fails if we try and compare to the .dt.date attribute. That is because 
this is a series of Python datetime.date objects, and they do not support that 
comparison:
>>> (crime

...     [crime.REPORTED_DATE.dt.date == '2016-05-12']

... )

Empty DataFrame

Columns: [OFFENSE_TYPE_ID, OFFENSE_CATEGORY_ID, REPORTED_DATE, 
GEO_LON, GEO_LAT, NEIGHBORHOOD_ID, IS_CRIME, IS_TRAFFIC]

Index: []

4. If we want a partial date match, we can use the .between method, which supports 
partial date strings. Note that the start and end dates (the parameter names are 
left and right respectively) are inclusive by default. If there were a row with  
a date on midnight May 13, 2016, it would be included here:
>>> (crime

...     [crime.REPORTED_DATE.between(

...          '2016-05-12', '2016-05-13')]

... )

                    OFFEN/PE_ID  ... IS_TRAFFIC

295715  criminal-mischief-other  ...          0

296474        liquor-possession  ...          0

297204         traffic-accident  ...          1

299383            theft-bicycle  ...          0

299389   theft-of-motor-vehicle  ...          0

...                         ...  ...        ...

358208       public-peace-other  ...          0

358448        threats-to-injure  ...          0

363134            sex-aslt-rape  ...          0

365959   menacing-felony-w-weap  ...          0

378711               assault-dv  ...          0
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5. Because .between supports partial date strings, we can replicate most of the slicing 
functionality of the previous section with it. We can match just a month, year, or hour 
of the day:
>>> (crime

...     [crime.REPORTED_DATE.between(

...          '2016-05', '2016-06')]

...     .shape

... )

(8012, 8)

>>> (crime

...     [crime.REPORTED_DATE.between(

...          '2016', '2017')]

...     .shape

... )

(91076, 8)

>>> (crime

...     [crime.REPORTED_DATE.between(

...          '2016-05-12 03', '2016-05-12 04')]

...     .shape

... )

(4, 8)

6. We can use other string patterns:
>>> (crime

...     [crime.REPORTED_DATE.between(

...          '2016 Sep, 15', '2016 Sep, 16')]

...     .shape

... )

(252, 8)

>>> (crime

...     [crime.REPORTED_DATE.between(

...          '21st October 2014 05', '21st October 2014 06')]

...     .shape

... )

(4, 8)



Time Series Analysis

444

7. Because .loc is closed and includes both start and end, the functionality of 
.between mimics that. However, in a partial date string there is a slight difference. 
Ending a slice on 2016-1-1 will include all values for January 1, 2016. Using that 
value as the end value will include values up to the start of that day. To replicate the 
slice ['2015-3-4':'2016-1-1'], we need to add the last time of the end day:
>>> (crime

...     [crime.REPORTED_DATE.between(

...          '2015-3-4','2016-1-1 23:59:59')]

...     .shape

... )

(75403, 8)

8. We can tweak this dates as needed. Below replicates the behavior of the last step 
of the previous recipe:

>>> (crime

...     [crime.REPORTED_DATE.between(

...          '2015-3-4 22','2016-1-1 11:22:00')]

...     .shape

... )

(75071, 8)

How it works…
The pandas library can slice index values, but not columns. To replicate DatetimeIndex 
slicing on a column, we need to use the .between method. The body of this method is just 
seven lines of code:

def between(self, left, right, inclusive=True):

if inclusive:

lmask = self >= left

rmask = self <= right

else:

lmask = self > left

rmask = self < right

return lmask & rmask

This gives us insight that we can build up mask and combine them as needed. For example, 
we can replicate step 7 using two masks:



Chapter 12

445

>>> lmask = crime.REPORTED_DATE >= '2015-3-4 22'

>>> rmask = crime.REPORTED_DATE <= '2016-1-1 11:22:00'

>>> crime[lmask & rmask].shape

(75071, 8)

    

There's more…
Let's compare timing of .loc on the index and .between on a column:

>>> ctseries = crime.set_index('REPORTED_DATE')

>>> %timeit ctseries.loc['2015-3-4':'2016-1-1']

11 ms ± 3.1 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit crime[crime.REPORTED_DATE.between('2015-3-4','2016-1-1')]

20.1 ms ± 525 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Having the date information in the index provides a slight speed improvement. If you need 
to perform date slicing on a single column, it might make sense to set the index to a date 
column. Note that there is also overhead for setting the index to a column, and if you are only 
slicing a single time, the overhead makes the time for these two operations about the same.

Using methods that only work with a 
DatetimeIndex

There are a number of DataFrame and Series methods that only work with 
a DatetimeIndex. If the index is of any other type, these methods will fail.

In this recipe, we will first use methods to select rows of data by their time component.  
We will then learn about the powerful DateOffset objects and their aliases.

How to do it…
1. Read in the crime hdf5 dataset, set the index as REPORTED_DATE, and ensure that 

we have a DatetimeIndex:
>>> crime = (pd.read_hdf('data/crime.h5', 'crime') 

...     .set_index('REPORTED_DATE')

... )



Time Series Analysis

446

>>> type(crime.index)

<class 'pandas.core.indexes.datetimes.DatetimeIndex'>

2. Use the .between_time method to select all crimes that occurred between 2 A.M. 
and 5 A.M., regardless of the date:
>>> crime.between_time('2:00', '5:00', include_end=False)

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2014-06-29 02:01:00       traffic-accident-dui-duid  ...

2014-06-29 02:00:00            disturbing-the-peace  ...

2014-06-29 02:18:00                          curfew  ...

2014-06-29 04:17:00              aggravated-assault  ...

2014-06-29 04:22:00  violation-of-restraining-order  ...

...                                             ...  ...

2017-08-25 04:41:00        theft-items-from-vehicle  ...

2017-09-13 04:17:00          theft-of-motor-vehicle  ...

2017-09-13 02:21:00                  assault-simple  ...

2017-09-13 03:21:00       traffic-accident-dui-duid  ...

2017-09-13 02:15:00    traffic-accident-hit-and-run  ...

3. Select all dates at a specific time with .at_time:
>>> crime.at_time('5:47')

                                  OFFENSE_TYPE_ID  ...

REPORTED_DATE                                      ...

2013-11-26 05:47:00       criminal-mischief-other  ...

2017-04-09 05:47:00     criminal-mischief-mtr-veh  ...

2017-02-19 05:47:00       criminal-mischief-other  ...

2017-02-16 05:47:00            aggravated-assault  ...

2017-02-12 05:47:00           police-interference  ...

...                                           ...  ...

2013-09-10 05:47:00              traffic-accident  ...

2013-03-14 05:47:00                   theft-other  ...

2012-10-08 05:47:00      theft-items-from-vehicle  ...

2013-08-21 05:47:00      theft-items-from-vehicle  ...

2017-08-23 05:47:00  traffic-accident-hit-and-run  ...
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4. The .first methods provide an elegant way of selecting the first n segments of 
time, where n is an integer. These segments of time are represented by DateOffset 
objects that can be in the pd.offsets module. The DataFrame must be sorted on 
its index to guarantee that this method will work. Let's select the first six months of 
crime data:
>>> crime_sort = crime.sort_index()

>>> crime_sort.first(pd.offsets.MonthBegin(6))

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-06-30 23:40:00       traffic-accident-dui-duid  ...

2012-06-30 23:44:00                traffic-accident  ...

2012-06-30 23:50:00       criminal-mischief-mtr-veh  ...

2012-06-30 23:54:00    traffic-accident-hit-and-run  ...

2012-07-01 00:01:00                  robbery-street  ...

5. This captured the data from January through June but also, surprisingly, selected a 
single row in July. The reason for this is that pandas uses the time component of the 
first element in the index, which, in this example, is 6 minutes. Let's use MonthEnd, a 
slightly different offset:
>>> crime_sort.first(pd.offsets.MonthEnd(6))

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-06-29 23:01:00              aggravated-assault  ...

2012-06-29 23:11:00                traffic-accident  ...

2012-06-29 23:41:00                  robbery-street  ...

2012-06-29 23:57:00                  assault-simple  ...

2012-06-30 00:04:00                traffic-accident  ...
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6. This captured nearly the same amount of data but if you look closely, only a single 
row from June 30th was captured. Again, this is because the time component of 
the first index was preserved. The exact search went to 2012-06-30 00:06:00. 
So, how do we get exactly six months of data? There are a couple of ways. All 
DateOffset objects have a normalize parameter that, when set to True, sets all 
the time components to zero. The following should get us very close to what we want:
>>> crime_sort.first(pd.offsets.MonthBegin(6, normalize=True))

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-06-30 23:40:00    traffic-accident-hit-and-run  ...

2012-06-30 23:40:00       traffic-accident-dui-duid  ...

2012-06-30 23:44:00                traffic-accident  ...

2012-06-30 23:50:00       criminal-mischief-mtr-veh  ...

2012-06-30 23:54:00    traffic-accident-hit-and-run  ...

7. This method has successfully captured all the data for the first six months of the year. 
With normalize set to True, the search went to 2012-07-01 00:00:00, which 
would include any crimes reported exactly on this date and time. There is no possible 
way to use the .first method to ensure that only data from January to June is 
captured. The following slice would yield the exact result:
>>> crime_sort.loc[:'2012-06']

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-06-30 23:40:00    traffic-accident-hit-and-run  ...

2012-06-30 23:40:00       traffic-accident-dui-duid  ...

2012-06-30 23:44:00                traffic-accident  ...

2012-06-30 23:50:00       criminal-mischief-mtr-veh  ...

2012-06-30 23:54:00    traffic-accident-hit-and-run  ...
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8. There are a dozen DateOffset objects for moving forward or backward to the next 
nearest offset. Instead of hunting down the DateOffset objects in pd.offsets, 
you can use a string called an offset alias instead. For instance, the string for 
MonthEnd is M and for MonthBegin is MS. To denote the number of these offset 
aliases, place an integer in front of it. Use this table to find all the aliases (https://
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.
html#timeseries-offset-aliases). Let's see some examples of offset 
aliases with the description of what is being selected in the comments:

>>> crime_sort.first('5D') # 5 days

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-01-06 23:11:00        theft-items-from-vehicle  ...

2012-01-06 23:23:00  violation-of-restraining-order  ...

2012-01-06 23:30:00                      assault-dv  ...

2012-01-06 23:44:00          theft-of-motor-vehicle  ...

2012-01-06 23:55:00               threats-to-injure  ...

>>> crime_sort.first('5B') # 5 business days

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-01-08 23:46:00        theft-items-from-vehicle  ...

2012-01-08 23:51:00     burglary-residence-no-force  ...

2012-01-08 23:52:00                     theft-other  ...

2012-01-09 00:04:00    traffic-accident-hit-and-run  ...

2012-01-09 00:05:00    fraud-criminal-impersonation  ...

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
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>>> crime_sort.first('7W') # 7 weeks, with weeks ending on Sunday

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-02-18 21:57:00                traffic-accident  ...

2012-02-18 22:19:00      criminal-mischief-graffiti  ...

2012-02-18 22:20:00       traffic-accident-dui-duid  ...

2012-02-18 22:44:00       criminal-mischief-mtr-veh  ...

2012-02-18 23:27:00        theft-items-from-vehicle  ...

>>> crime_sort.first('3QS') # 3rd quarter start

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...

2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-09-30 23:17:00       drug-hallucinogen-possess  ...

2012-09-30 23:29:00                  robbery-street  ...

2012-09-30 23:29:00          theft-of-motor-vehicle  ...

2012-09-30 23:41:00    traffic-accident-hit-and-run  ...

2012-09-30 23:43:00                robbery-business  ...

>>> crime_sort.first('A') # one year end

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2012-01-02 00:06:00              aggravated-assault  ...

2012-01-02 00:06:00  violation-of-restraining-order  ...
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2012-01-02 00:16:00       traffic-accident-dui-duid  ...

2012-01-02 00:47:00                traffic-accident  ...

2012-01-02 01:35:00              aggravated-assault  ...

...                                             ...  ...

2012-12-30 23:13:00                traffic-accident  ...

2012-12-30 23:14:00     burglary-residence-no-force  ...

2012-12-30 23:39:00          theft-of-motor-vehicle  ...

2012-12-30 23:41:00                traffic-accident  ...

2012-12-31 00:05:00                  assault-simple  ...

How it works…
Once we ensure that our index is a DatetimeIndex, we can take advantage of all the 
methods in this recipe. It is impossible to do selection or slicing based on just the time 
component of a Timestamp with the .loc attribute. To select all dates by a range of time, 
you must use the .between_time method, or to select an exact time, use .at_time. Make 
sure that the passed string for start and end times consists of at least the hour and minute. It 
is also possible to use time objects from the datetime module. For instance, the following 
command would yield the same result as in step 2:

>>> import datetime

>>> crime.between_time(datetime.time(2,0), datetime.time(5,0),

...                    include_end=False)

                                    OFFENSE_TYPE_ID  ...

REPORTED_DATE                                        ...

2014-06-29 02:01:00       traffic-accident-dui-duid  ...

2014-06-29 02:00:00            disturbing-the-peace  ...

2014-06-29 02:18:00                          curfew  ...

2014-06-29 04:17:00              aggravated-assault  ...

2014-06-29 04:22:00  violation-of-restraining-order  ...

...                                             ...  ...

2017-08-25 04:41:00        theft-items-from-vehicle  ...

2017-09-13 04:17:00          theft-of-motor-vehicle  ...

2017-09-13 02:21:00                  assault-simple  ...

2017-09-13 03:21:00       traffic-accident-dui-duid  ...

2017-09-13 02:15:00    traffic-accident-hit-and-run  ...
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In step 4, we begin using the .first method, but with a complicated parameter offset. It 
must be a DateOffset object or an offset alias as a string. To help understand DateOffset 
objects, it's best to see what they do to a single Timestamp. For example, let's take the first 
element of the index and add six months to it in two different ways:

>>> first_date = crime_sort.index[0]

>>> first_date

Timestamp('2012-01-02 00:06:00')

>>> first_date + pd.offsets.MonthBegin(6)

Timestamp('2012-07-01 00:06:00')

>>> first_date + pd.offsets.MonthEnd(6)

Timestamp('2012-06-30 00:06:00')

Neither the MonthBegin not the MonthEnd offsets add or subtract an exact amount of time 
but effectively round up to the next beginning or end of the month regardless of what day it is. 
Internally, the .first method uses the very first index element of the DataFrame and adds 
the DateOffset passed to it. It then slices up until this new date. For instance, step 4 is 
equivalent to the following:

>>> step4 = crime_sort.first(pd.offsets.MonthEnd(6))

>>> end_dt = crime_sort.index[0] + pd.offsets.MonthEnd(6)

>>> step4_internal = crime_sort[:end_dt]

>>> step4.equals(step4_internal)

True

In step 8, offset aliases make for a much more compact method of referencing 
DateOffsets.

There's more…
It is possible to build a custom DateOffset when those available do not suit your needs:

>>> dt = pd.Timestamp('2012-1-16 13:40')

>>> dt + pd.DateOffset(months=1)

Timestamp('2012-02-16 13:40:00')

Notice that this custom DateOffset increased the Timestamp by exactly one month. Let's 
look at one more example using many more date and time components:

>>> do = pd.DateOffset(years=2, months=5, days=3,
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...     hours=8, seconds=10)

>>> pd.Timestamp('2012-1-22 03:22') + do

Timestamp('2014-06-25 11:22:10')

Counting the number of weekly crimes
The Denver crime dataset is huge, with over 460,000 rows each marked with a reported 
date. Counting the number of weekly crimes is one of many queries that can be answered 
by grouping according to some period of time. The .resample method provides an easy 
interface to grouping by any possible span of time.

In this recipe, we will use both the .resample and .groupby methods to count the number 
of weekly crimes.

How to do it…
1. Read in the crime hdf5 dataset, set the index as the REPORTED_DATE, and then sort 

it to increase performance for the rest of the recipe:
>>> crime_sort = (pd.read_hdf('data/crime.h5', 'crime') 

...     .set_index('REPORTED_DATE') 

...     .sort_index()

... )

2. To count the number of crimes per week, we need to form a group for each week. The 
.resample method takes a DateOffset object or alias and returns an object ready 
to perform an action on all groups. The object returned from the .resample method 
is very similar to the object produced after calling the .groupby method:
>>> crime_sort.resample('W')

<pandas.core.resample.DatetimeIndexResampler object at 
0x10f07acf8>

3. The offset alias, W, was used to inform pandas that we want to group by each week. 
There isn't much that happened in the preceding step. pandas has validated our 
offset and returned an object that is ready to perform an action on each week as 
a group. There are several methods that we can chain after calling .resample to 
return some data. Let's chain the .size method to count the number of weekly 
crimes:
>>> (crime_sort

...     .resample('W')

...     .size()
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... )

REPORTED_DATE

2012-01-08     877

2012-01-15    1071

2012-01-22     991

2012-01-29     988

2012-02-05     888

              ... 

2017-09-03    1956

2017-09-10    1733

2017-09-17    1976

2017-09-24    1839

2017-10-01    1059

Freq: W-SUN, Length: 300, dtype: int64

4. We now have the weekly crime count as a Series with the new index incrementing 
one week at a time. There are a few things that happen by default that are very 
important to understand. Sunday is chosen as the last day of the week and is also 
the date used to label each element in the resulting Series. For instance, the first 
index value January 8, 2012 is a Sunday. There were 877 crimes committed during 
that week ending on the 8th. The week of Monday, January 9th to Sunday, January 
15th recorded 1,071 crimes. Let's do some sanity checks and ensure that our 
resampling is doing this:
>>> len(crime_sort.loc[:'2012-1-8'])

877

>>> len(crime_sort.loc['2012-1-9':'2012-1-15'])

1071

5. Let's choose a different day to end the week besides Sunday with an anchored offset:
>>> (crime_sort

...     .resample('W-THU')

...     .size()

... )

REPORTED_DATE

2012-01-05     462

2012-01-12    1116

2012-01-19     924

2012-01-26    1061

2012-02-02     926
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              ... 

2017-09-07    1803

2017-09-14    1866

2017-09-21    1926

2017-09-28    1720

2017-10-05      28

Freq: W-THU, Length: 301, dtype: int64

6. Nearly all the functionality of .resample may be reproduced by the .groupby 
method. The only difference is that you must pass the offset into a pd.Grouper 
object:

>>> weekly_crimes = (crime_sort

...     .groupby(pd.Grouper(freq='W')) 

...     .size()

... )

>>> weekly_crimes

REPORTED_DATE

2012-01-08     877

2012-01-15    1071

2012-01-22     991

2012-01-29     988

2012-02-05     888

              ... 

2017-09-03    1956

2017-09-10    1733

2017-09-17    1976

2017-09-24    1839

2017-10-01    1059

Freq: W-SUN, Length: 300, dtype: int64

How it works…
The .resample method, by default, works implicitly with a DatetimeIndex, which is why we 
set it to REPORTED_DATE in step 1. In step 2, we created an intermediate object that helps us 
understand how to form groups within the data. The first parameter to .resample is the rule 
determining how the Timestamps in the index will be grouped. In this instance, we use the 
offset alias W to form groups one week in length ending on Sunday. The default ending day is 
Sunday, but may be changed with an anchored offset by appending a dash and the first three 
letters of a day of the week.
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Once we have formed groups with .resample, we must chain a method to take action on 
each of them. In step 3, we use the .size method to count the number of crimes per week. 
You might be wondering what are all the possible attributes and methods available to use 
after calling .resample. The following examines the .resample object and outputs them:

>>> r = crime_sort.resample('W')

>>> [attr for attr in dir(r) if attr[0].islower()]

['agg', 'aggregate', 'apply', 'asfreq', 'ax', 'backfill', 'bfill', 
'count',

'ffill', 'fillna', 'first', 'get_group', 'groups', 'indices',

'interpolate', 'last', 'max', 'mean', 'median', 'min', 'ndim', 'ngroups',

'nunique', 'obj', 'ohlc', 'pad', 'plot', 'prod', 'sem', 'size', 'std',

'sum', 'transform', 'var']

Step 4 verifies the accuracy of the count from step 3 by slicing the data by week and counting 
the number of rows. The .resample method is not necessary to group by Timestamp as 
the functionality is available from the .groupby method itself. However, you must pass an 
instance of pd.Grouper to the groupby method using the freq parameter for the offset, 
as done in step 6.

There's more…
It is possible to use .resample even when the index does not contain a Timestamp. You can 
use the on parameter to select the column with Timestamps that will be used to form groups:

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> weekly_crimes2 = crime.resample('W', on='REPORTED_DATE').size()

>>> weekly_crimes2.equals(weekly_crimes)

True

This is also possible using groupby with pd.Grouper by selecting the Timestamp column with 
the key parameter:

>>> weekly_crimes_gby2 = (crime

...     .groupby(pd.Grouper(key='REPORTED_DATE', freq='W'))

...     .size()

... )

>>> weekly_crimes2.equals(weekly_crimes)

True

We can also produce a line plot of all the crimes in Denver (including traffic accidents) by 
calling the .plot method on our Series of weekly crimes:
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>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(16, 4))

>>> weekly_crimes.plot(title='All Denver Crimes', ax=ax)

>>> fig.savefig('c12-crimes.png', dpi=300)

Weekly crime plot

Aggregating weekly crime and traffic 
accidents separately

The Denver crime dataset has all crime and traffic accidents together in one table, and 
separates them through the binary columns: IS_CRIME and IS_TRAFFIC. The .resample 
method allows you to group by a period of time and aggregate specific columns separately.

In this recipe, we will use the .resample method to group by each quarter of the year and 
then sum up the number of crimes and traffic accidents separately.

How to do it…
1. Read in the crime hdf5 dataset, set the index as REPORTED_DATE, and then sort  

it to increase performance for the rest of the recipe:
>>> crime = (pd.read_hdf('data/crime.h5', 'crime') 

...     .set_index('REPORTED_DATE') 

...     .sort_index()

... )

2. Use the .resample method to group by each quarter of the year and then sum the 
IS_CRIME and IS_TRAFFIC columns for each group:
>>> (crime
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...     .resample('Q')

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

... )

               IS_CRIME  IS_TRAFFIC

REPORTED_DATE

2012-03-31         7882        4726

2012-06-30         9641        5255

2012-09-30        10566        5003

2012-12-31         9197        4802

2013-03-31         8730        4442

...                 ...         ...

2016-09-30        17427        6199

2016-12-31        15984        6094

2017-03-31        16426        5587

2017-06-30        17486        6148

2017-09-30        17990        6101

3. Notice that the dates all appear as the last day of the quarter. This is because the 
offset alias, Q, represents the end of the quarter. Let's use the offset alias QS to 
represent the start of the quarter:
>>> (crime

...     .resample('QS')

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

... )

               IS_CRIME  IS_TRAFFIC

REPORTED_DATE

2012-01-01         7882        4726

2012-04-01         9641        5255

2012-07-01        10566        5003

2012-10-01         9197        4802

2013-01-01         8730        4442

...                 ...         ...

2016-07-01        17427        6199

2016-10-01        15984        6094

2017-01-01        16426        5587



Chapter 12

459

2017-04-01        17486        6148

2017-07-01        17990        6101

4. Let's verify these results by checking whether the second quarter of data is correct:
>>> (crime

...    .loc['2012-4-1':'2012-6-30', ['IS_CRIME', 'IS_TRAFFIC']]

...    .sum()

... )

IS_CRIME      9641

IS_TRAFFIC    5255

dtype: int64

5. It is possible to replicate this operation using the .groupby method:
>>> (crime

...     .groupby(pd.Grouper(freq='Q')) 

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

... )

               IS_CRIME  IS_TRAFFIC

REPORTED_DATE

2012-03-31         7882        4726

2012-06-30         9641        5255

2012-09-30        10566        5003

2012-12-31         9197        4802

2013-03-31         8730        4442

...                 ...         ...

2016-09-30        17427        6199

2016-12-31        15984        6094

2017-03-31        16426        5587

2017-06-30        17486        6148

2017-09-30        17990        6101

6. Let's make a plot to visualize the trends in crime and traffic accidents over time:

>>> fig, ax = plt.subplots(figsize=(16, 4))

>>> (crime

...     .groupby(pd.Grouper(freq='Q')) 

...     [['IS_CRIME', 'IS_TRAFFIC']]



Time Series Analysis

460

...     .sum()

...     .plot(color=['black', 'lightgrey'], ax=ax,

...           title='Denver Crimes and Traffic Accidents')

... )

>>> fig.savefig('c12-crimes2.png', dpi=300)

Quarterly crime plot

How it works…
After reading in and preparing our data in step 1, we begin grouping and aggregating in step 
2. Immediately after calling the .resample method, we can continue either by chaining a 
method or by selecting a group of columns to aggregate. We choose to select the IS_CRIME 
and IS_TRAFFIC columns to aggregate. If we didn't select just these two, then all of the 
numeric columns would have been summed with the following outcome:

>>> (crime

...     .resample('Q')

...     .sum()

... )

                    GEO_LON  ...  IS_TRAFFIC

REPORTED_DATE                ...

2012-03-31    -1.313006e+06  ...        4726

2012-06-30    -1.547274e+06  ...        5255

2012-09-30    -1.615835e+06  ...        5003

2012-12-31    -1.458177e+06  ...        4802

2013-03-31    -1.368931e+06  ...        4442

...                     ...  ...         ...

2016-09-30    -2.459343e+06  ...        6199
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2016-12-31    -2.293628e+06  ...        6094

2017-03-31    -2.288383e+06  ...        5587

2017-06-30    -2.453857e+06  ...        6148

2017-09-30    -2.508001e+06  ...        6101

By default, the offset alias Q technically uses December 31st as the last day of the year. The 
span of dates that represent a single quarter are all calculated using this ending date. The 
aggregated result uses the last day of the quarter as its label. Step 3 uses the offset alias 
QS, which, by default, calculates quarters using January 1st as the first day of the year.

Most public businesses report quarterly earnings but they do not all have the same calendar 
year beginning in January. For instance, if we wanted our quarters to begin March 1st, then 
we could use QS-MAR to anchor our offset alias:

>>> (crime_sort

...     .resample('QS-MAR')

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

... )

               IS_CRIME  IS_TRAFFIC

REPORTED_DATE

2011-12-01         5013        3198

2012-03-01         9260        4954

2012-06-01        10524        5190

2012-09-01         9450        4777

2012-12-01         9003        4652

...                 ...         ...

2016-09-01        16932        6202

2016-12-01        15615        5731

2017-03-01        17287        5940

2017-06-01        18545        6246

2017-09-01         5417        1931

As in the preceding recipe, we verify our results via manual slicing in step 4. In step 5 we 
replicate the result of step 3 with the .groupby method using pd.Grouper to set our group 
length. In step 6, we call the DataFrame .plot method. By default, a line is plotted for each 
column of data. The plot clearly shows a sharp increase in reported crimes during the first 
three quarters of the year. There also appears to be a seasonal component to both crime 
and traffic, with numbers lower in the cooler months and higher in the warmer months.
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There's more…
To get a different visual perspective, we can plot the percentage increase in crime and traffic, 
instead of the raw count. Let's divide all the data by the first row and plot again:

>>> crime_begin = (crime

...     .resample('Q')

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

...     .iloc[0]

... )

>>> fig, ax = plt.subplots(figsize=(16, 4))

>>> (crime

...     .resample('Q')

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

...     .div(crime_begin)

...     .sub(1)

...     .round(2)

...     .mul(100)

...     .plot.bar(color=['black', 'lightgrey'], ax=ax,

...           title='Denver Crimes and Traffic Accidents % Increase')

... )

>>> fig.autofmt_xdate()

>>> fig.savefig('c12-crimes3.png', dpi=300, bbox_inches='tight')

Quarterly crime plot
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Measuring crime by weekday and year
Measuring crimes by weekday and by year simultaneously requires the functionality to pull 
this information from a Timestamp. Thankfully, this functionality is built into any Timestamp 
column with the .dt attribute.

In this recipe, we will use the .dt attribute to provide us with both the weekday name and 
year of each crime as a Series. We count all of the crimes by forming groups using both of 
these Series. Finally, we adjust the data to consider partial years and population before 
creating a heatmap of the total amount of crime.

How to do it…
1. Read in the Denver crime hdf5 dataset leaving the REPORTED_DATE as a column:

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime

                         OFFEN/PE_ID  ... IS_TRAFFIC

0          traffic-accident-dui-duid  ...          1

1         vehicular-eluding-no-chase  ...          0

2               disturbing-the-peace  ...          0

3                             curfew  ...          0

4                 aggravated-assault  ...          0

...                              ...  ...        ...

460906    burglary-business-by-force  ...          0

460907  weapon-unlawful-discharge-of  ...          0

460908        traf-habitual-offender  ...          0

460909       criminal-mischief-other  ...          0

460910                   theft-other  ...          0

2. All Timestamp columns have a special attribute, .dt, which gives access to a variety 
of extra attributes and methods specifically designed for dates. Let's find the day 
name of each REPORTED_DATE and then count these values:
>>> (crime

...    ['REPORTED_DATE']

...    .dt.day_name() 

...    .value_counts()

... )

Monday       70024
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Friday       69621

Wednesday    69538

Thursday     69287

Tuesday      68394

Saturday     58834

Sunday       55213

Name: REPORTED_DATE, dtype: int64

3. The weekends appear to have substantially less crime and traffic accidents. Let's put 
this data in correct weekday order and make a horizontal bar plot:
>>> days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

...         'Friday', 'Saturday', 'Sunday']

>>> title = 'Denver Crimes and Traffic Accidents per Weekday'

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> (crime

...    ['REPORTED_DATE']

...    .dt.day_name() 

...    .value_counts()

...    .reindex(days)

...    .plot.barh(title=title, ax=ax)

... )

>>> fig.savefig('c12-crimes4.png', dpi=300, bbox_inches='tight')                 

Weekday crime plot
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4. We can do a very similar procedure to plot the count by year:
>>> title = 'Denver Crimes and Traffic Accidents per Year'

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> (crime

...    ['REPORTED_DATE']

...    .dt.year 

...    .value_counts()

...    .sort_index()

...    .plot.barh(title=title, ax=ax)

... )

>>> fig.savefig('c12-crimes5.png', dpi=300, bbox_inches='tight')                 

Yearly crime plot

5. We need to group by both weekday and year. One way of doing this is to use these 
attributes in the .groupby method:
>>> (crime

...     .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

...               crime['REPORTED_DATE'].dt.day_name().
rename('day')])

...     .size()

... )

year  day

2012  Friday        8549

      Monday        8786

      Saturday      7442
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      Sunday        7189

      Thursday      8440

                   ...

2017  Saturday      8514

      Sunday        8124

      Thursday     10545

      Tuesday      10628

      Wednesday    10576

Length: 42, dtype: int64

6. We have aggregated the data correctly, but the structure is not conducive to make 
comparisons easily. Let's use the .unstack method to get a more readable table:
>>> (crime

...     .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

...               crime['REPORTED_DATE'].dt.day_name().
rename('day')])

...     .size()

...     .unstack('day')

... )

day   Friday  Monday  Saturday  Sunday  Thursday  Tuesday  

year

2012    8549    8786      7442    7189      8440     8191

2013   10380   10627      8875    8444     10431    10416

2014   12683   12813     10950   10278     12309    12440

2015   13273   13452     11586   10624     13512    13381

2016   14059   13708     11467   10554     14050    13338

2017   10677   10638      8514    8124     10545    10628

7. We now have a nicer representation that is easier to read but noticeably, the 2017 
numbers are incomplete. To help make a fairer comparison, we can make a linear 
extrapolation to estimate the final number of crimes. Let's first find the last day that 
we have data for in 2017:
>>> criteria = crime['REPORTED_DATE'].dt.year == 2017

>>> crime.loc[criteria, 'REPORTED_DATE'].dt.dayofyear.max()

272

8. A naive estimate would be to assume a constant rate of crime throughout the year 
and multiply all values in the 2017 table by 365/272. However, we can do a little 
better and look at our historical data and calculate the average percentage of crimes 
that have taken place through the first 272 days of the year:
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>>> round(272 / 365, 3)

0.745

>>> crime_pct = (crime

...    ['REPORTED_DATE']

...    .dt.dayofyear.le(272) 

...    .groupby(crime.REPORTED_DATE.dt.year) 

...    .mean()

...    .mul(100)

...    .round(2)

... )

>>> crime_pct

REPORTED_DATE

2012     74.84

2013     72.54

2014     75.06

2015     74.81

2016     75.15

2017    100.00

Name: REPORTED_DATE, dtype: float64

>>> crime_pct.loc[2012:2016].median()

74.84

9. It turns out (perhaps coincidentally) that the percentage of crimes that happen during 
the first 272 days of the year is almost exactly proportional to the percentage of days 
passed in the year. Let's now update the row for 2017 and change the column order 
to match the weekday order:
>>> def update_2017(df_):

...     df_.loc[2017] = (df_

...         .loc[2017]

...         .div(.748) 

...         .astype('int')

...     )

...     return df_

>>> (crime

...     .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),
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...               crime['REPORTED_DATE'].dt.day_name().
rename('day')])

...     .size()

...     .unstack('day')

...     .pipe(update_2017)

...     .reindex(columns=days)

... )

day   Monday  Tuesday  Wednesday  ...  Friday  Saturday  Sunday

year                              ...

2012    8786     8191       8440  ...    8549      7442    7189

2013   10627    10416      10354  ...   10380      8875    8444

2014   12813    12440      12948  ...   12683     10950   10278

2015   13452    13381      13320  ...   13273     11586   10624

2016   13708    13338      13900  ...   14059     11467   10554

2017   14221    14208      14139  ...   14274     11382   10860

10. We could make a bar or line plot, but this is also a good situation for a heatmap, 
which is in the seaborn library:
>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> table = (crime

...     .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

...               crime['REPORTED_DATE'].dt.day_name().
rename('day')])

...     .size()

...     .unstack('day')

...     .pipe(update_2017)

...     .reindex(columns=days)

... )

>>> sns.heatmap(table, cmap='Greys', ax=ax)

>>> fig.savefig('c12-crimes6.png', dpi=300, bbox_inches='tight')                 
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Yearly crime heatmap

11. Crime seems to be rising every year but this data does not account for rising 
population. Let's read in a table for the Denver population for each year that we 
have data:
>>> denver_pop = pd.read_csv('data/denver_pop.csv',

...     index_col='Year')

>>> denver_pop

      Population

Year

2017    705000

2016    693000

2015    680000

2014    662000

2013    647000

2012    634000
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12. Many crime metrics are reported as rates per 100,000 residents. Let's divide the 
population by 100,000 and then divide the raw crime counts by this number to get 
the crime rate per 100,000 residents:
>>> den_100k = denver_pop.div(100_000).squeeze()

>>> normalized = (crime

...     .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

...               crime['REPORTED_DATE'].dt.day_name().
rename('day')])

...     .size()

...     .unstack('day')

...     .pipe(update_2017)

...     .reindex(columns=days)

...     .div(den_100k, axis='index')

...     .astype(int)

... )

>>> normalized

day   Monday  Tuesday  Wednesday  ...  Friday  Saturday  Sunday

2012    1385     1291       1331  ...    1348      1173    1133

2013    1642     1609       1600  ...    1604      1371    1305

2014    1935     1879       1955  ...    1915      1654    1552

2015    1978     1967       1958  ...    1951      1703    1562

2016    1978     1924       2005  ...    2028      1654    1522

2017    2017     2015       2005  ...    2024      1614    1540

13. Once again, we can make a heatmap that, even after adjusting for population 
increase, looks nearly identical to the first one:

>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> sns.heatmap(normalized, cmap='Greys', ax=ax)

>>> fig.savefig('c12-crimes7.png', dpi=300, bbox_inches='tight')                 
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Normalized yearly crime heatmap

How it works…
All DataFrame columns containing Timestamps have access to numerous other attributes and 
methods with the .dt attribute. In fact, all of these methods and attributes available from the 
.dt attribute are also available on a Timestamp object.

In step 2, we use the .dt attribute (which only works on a Series) to extract the day name and 
count the occurrences. Before making a plot in step 3, we manually rearrange the order of the 
index with the .reindex method, which, in its most basic use case, accepts a list containing 
the desired order. This task could have also been accomplished with the .loc indexer like 
this:

>>> (crime

...    ['REPORTED_DATE']

...    .dt.day_name() 

...    .value_counts()

...    .loc[days]

... )

Monday       70024

Tuesday      68394

Wednesday    69538

Thursday     69287
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Friday       69621

Saturday     58834

Sunday       55213

Name: REPORTED_DATE, dtype: int64

The .reindex method is more performant and has many parameters for more diverse 
situations than .loc.

In step 4, we do a very similar procedure and retrieve the year using the .dt attribute again, 
and then count the occurrences with the .value_counts method. In this instance, we use 
.sort_index over .reindex, as years will naturally sort in the desired order.

The goal of the recipe is to group by both weekday and year together, which we do in step 5. 
The .groupby method is flexible and can form groups in multiple ways. In this recipe, we 
pass it two Series derived from the year and weekday columns. We then chain the .size 
method to it, which returns a single value, the length of each group.

After step 5, our Series is long with only a single column of data, which makes it difficult to 
make comparisons by year and weekday.

To ease the readability, we pivot the weekday level into horizontal column names with .unstack 
in step 6. Step 6 is doing a cross tabulation. Here is another way to do this in pandas:

>>> (crime

...     .assign(year=crime.REPORTED_DATE.dt.year,

...             day=crime.REPORTED_DATE.dt.day_name())

...     .pipe(lambda df_: pd.crosstab(df_.year, df_.day))

... )

day   Friday  Monday  ...  Tuesday  Wednesday

year                  ...

2012    8549    8786  ...     8191       8440

2013   10380   10627  ...    10416      10354

2014   12683   12813  ...    12440      12948

2015   13273   13452  ...    13381      13320

2016   14059   13708  ...    13338      13900

2017   10677   10638  ...    10628      10576

In step 7, we use Boolean indexing to select only the crimes in 2017 and then use 
.dayofyear from the .dt attribute to find the total elapsed days from the beginning of 
the year. The maximum of this Series should tell us how many days we have data for in 2017.
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Step 8 is quite complex. We first create a Boolean Series by testing whether each crime 
was committed on or before the 272nd day of the year with crime['REPORTED_DATE'].
dt.dayofyear.le(272). From here, we again use the .groupby method to form 
groups by the previously calculated year Series and then use the .mean method to find the 
percentage of crimes committed on or before the 272nd day for each year.

The .loc attribute selects the entire 2017 row of data in step 9. We adjust this row by 
dividing by the median percentage found in step 8.

Lots of crime visualizations are done with heatmaps, and one is done here in step 10 with 
the help of the seaborn library. The cmap parameter takes a string name of the several dozen 
available matplotlib colormaps.

In step 12, we create a crime rate per 100k residents by dividing by the population of that 
year. This is another fairly tricky operation. Normally, when you divide one DataFrame by 
another, they align on their columns and index. However, in this step, there are no columns in 
common with denver_pop so no values will align if we try and divide them. To work around 
this, we create the den_100k Series with the squeeze method. We still can't divide these two 
objects as, by default, division between a DataFrame and a Series aligns the columns of the 
DataFrame with the index of the Series, like this:

>>> (crime

...     .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

...               crime['REPORTED_DATE'].dt.day_name().rename('day')])

...     .size()

...     .unstack('day')

...     .pipe(update_2017)

...     .reindex(columns=days)

... ) / den_100k

      2012  2013  2014  ...  Thursday  Tuesday  Wednesday

year                    ...

2012   NaN   NaN   NaN  ...       NaN      NaN       NaN

2013   NaN   NaN   NaN  ...       NaN      NaN       NaN

2014   NaN   NaN   NaN  ...       NaN      NaN       NaN

2015   NaN   NaN   NaN  ...       NaN      NaN       NaN

2016   NaN   NaN   NaN  ...       NaN      NaN       NaN

2017   NaN   NaN   NaN  ...       NaN      NaN       NaN

We need the index of the DataFrame to align with the index of Series, and to do this, we 
use the .div method, which allows us to change the direction of alignment with the axis 
parameter. A heatmap of the adjusted crime rate is plotted in step 13.
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There's more…
If we wanted to look at specific types of crimes we could do the following:

>>> days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

...         'Friday', 'Saturday', 'Sunday']

>>> crime_type = 'auto-theft'

>>> normalized = (crime

...     .query('OFFENSE_CATEGORY_ID == @crime_type')

...     .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

...               crime['REPORTED_DATE'].dt.day_name().rename('day')])

...     .size()

...     .unstack('day')

...     .pipe(update_2017)

...     .reindex(columns=days)

...     .div(den_100k, axis='index')

...     .astype(int)

... )

>>> normalized

day   Monday  Tuesday  Wednesday  ...  Friday  Saturday  Sunday

2012      95       72         72  ...      71        78      76

2013      85       74         74  ...      65        68      67

2014      94       76         72  ...      76        67      67

2015     108      102         89  ...      92        85      78

2016     119      102        100  ...      97        86      85

2017     114      118        111  ...     111        91     102

Grouping with anonymous functions with 
a DatetimeIndex

Using DataFrames with a DatetimeIndex opens the door to many new and different 
operations as seen with several recipes in this chapter.

In this recipe, we will show the versatility of using the .groupby method for DataFrames that 
have a DatetimeIndex.
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How to do it…
1. Read in the Denver crime hdf5 file, place the REPORTED_DATE column in the index, 

and sort it:
>>> crime = (pd.read_hdf('data/crime.h5', 'crime') 

...    .set_index('REPORTED_DATE') 

...    .sort_index()

... )

2. The DatetimeIndex has many of the same attributes and methods as a pandas 
Timestamp. Let's take a look at some that they have in common:
>>> common_attrs = (set(dir(crime.index)) & 

...     set(dir(pd.Timestamp)))

>>> [attr for attr in common_attrs if attr[0] != '_']

['tz_convert', 'is_month_start', 'nanosecond', 'day_name', 
'microsecond', 'quarter', 'time', 'tzinfo', 'week', 'year', 
'to_period', 'freqstr', 'dayofyear', 'is_year_end', 'weekday_
name', 'month_name', 'minute', 'hour', 'dayofweek', 'second', 
'max', 'min', 'to_numpy', 'tz_localize', 'is_quarter_end', 'to_
julian_date', 'strftime', 'day', 'days_in_month', 'weekofyear', 
'date', 'daysinmonth', 'month', 'weekday', 'is_year_start', 'is_
month_end', 'ceil', 'timetz', 'freq', 'tz', 'is_quarter_start', 
'floor', 'normalize', 'resolution', 'is_leap_year', 'round', 'to_
pydatetime']

3. We can then use the .index to find weekday names, similarly to what was done in 
step 2 of the preceding recipe:
>>> crime.index.day_name().value_counts()

Monday       70024

Friday       69621

Wednesday    69538

Thursday     69287

Tuesday      68394

Saturday     58834

Sunday       55213

Name: REPORTED_DATE, dtype: int64

4. The .groupby method can accept a function as an argument. This function will be 
passed the .index and the return value is used to form groups. Let's see this in 
action by grouping with a function that turns the .index into a weekday name and 
then counts the number of crimes and traffic accidents separately:
>>> (crime
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...    .groupby(lambda idx: idx.day_name()) 

...    [['IS_CRIME', 'IS_TRAFFIC']]

...    .sum()    

... )

         IS_CRIME  IS_TRAFFIC

Friday        48833     20814

Monday        52158     17895

Saturday      43363     15516

Sunday        42315     12968

Thursday      49470     19845

Tuesday       49658     18755

Wednesday     50054     19508

5. You can use a list of functions to group by both the hour of day and year, and then 
reshape the table to make it more readable:
>>> funcs = [lambda idx: idx.round('2h').hour, lambda idx: idx.
year]

>>> (crime

...     .groupby(funcs) 

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

...     .unstack()

... )

   IS_CRIME              ... IS_TRAFFIC

       2012  2013  2014  ...      2015   2016  2017

0      2422  4040  5649  ...      1136    980   782

2      1888  3214  4245  ...       773    718   537

4      1472  2181  2956  ...       471    464   313

6      1067  1365  1750  ...       494    593   462

8      2998  3445  3727  ...      2331   2372  1828

..      ...   ...   ...  ...       ...    ...   ...

14     4266  5698  6708  ...      2840   2763  1990

16     4113  5889  7351  ...      3160   3527  2784

18     3660  5094  6586  ...      3412   3608  2718

20     3521  4895  6130  ...      2071   2184  1491

22     3078  4318  5496  ...      1671   1472  1072
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6. If you are using Jupyter, you can add .style.highlight_
max(color='lightgrey') to bring attention to the largest value in each column:
>>> funcs = [lambda idx: idx.round('2h').hour, lambda idx: idx.
year]

>>> (crime

...     .groupby(funcs) 

...     [['IS_CRIME', 'IS_TRAFFIC']]

...     .sum()

...     .unstack()

...     .style.highlight_max(color='lightgrey')

... )

Popular crime hours

How it works…
In step 1, we read in our data and placed a Timestamp column into the index to create 
a DatetimeIndex. In step 2, we see that a DatetimeIndex has lots of the same 
functionality that a single Timestamp object has. In step 3, we use these extra features  
of the DatetimeIndex to extract the day name.
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In step 4, we take advantage of the .groupby method to accept a function that is passed 
the DatetimeIndex. The idx in the anonymous function is the DatetimeIndex, and we use 
it to retrieve the day name. It is possible to pass .groupby a list of any number of custom 
functions, as done in step 5. Here, the first function uses the .round DatetimeIndex 
method to round each value to the nearest second hour. The second function returns the 
.year attribute. After the grouping and aggregating, we .unstack the years as columns. 
We then highlight the maximum value of each column. Crime is reported most often between 
3 and 5 P.M. Most traffic accidents occur between 5 P.M. and 7 P.M.

Grouping by a Timestamp and another 
column

The .resample method is unable to group by anything other than periods of time. The 
.groupby method, however, has the ability to group by both periods of time and other 
columns.

In this recipe, we will show two very similar but different approaches to group by Timestamps 
and another column.

How to do it…
1. Read in the employee dataset, and create a DatetimeIndex with the HIRE_DATE 

column:
>>> employee = pd.read_csv('data/employee.csv',

...     parse_dates=['JOB_DATE', 'HIRE_DATE'],

...     index_col='HIRE_DATE')

>>> employee

            UNIQUE_ID  ...   JOB_DATE

HIRE_DATE              ...

2006-06-12          0  ... 2012-10-13

2000-07-19          1  ... 2010-09-18

2015-02-03          2  ... 2015-02-03

1982-02-08          3  ... 1991-05-25

1989-06-19          4  ... 1994-10-22

...               ...  ...        ...

2014-06-09       1995  ... 2015-06-09

2003-09-02       1996  ... 2013-10-06

2014-10-13       1997  ... 2015-10-13

2009-01-20       1998  ... 2011-07-02

2009-01-12       1999  ... 2010-07-12
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2. Let's first do a grouping by just gender, and find the average salary for each:
>>> (employee

...     .groupby('GENDER')

...     ['BASE_SALARY']

...     .mean()

...     .round(-2)

... )

GENDER

Female    52200.0

Male      57400.0

Name: BASE_SALARY, dtype: float64

3. Let's find the average salary based on hire date, and group everyone into 10-year 
buckets:
>>> (employee

...     .resample('10AS')

...     ['BASE_SALARY']

...     .mean()

...     .round(-2)    

... )

HIRE_DATE

1958-01-01     81200.0

1968-01-01    106500.0

1978-01-01     69600.0

1988-01-01     62300.0

1998-01-01     58200.0

2008-01-01     47200.0

Freq: 10AS-JAN, Name: BASE_SALARY, dtype: float64

4. If we wanted to group by both gender and a ten-year time span, we can call 
.resample after calling .groupby:
>>> (employee

...    .groupby('GENDER')

...    .resample('10AS')

...    ['BASE_SALARY'] 

...    .mean()

...    .round(-2)
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... )

GENDER  HIRE_DATE

Female  1975-01-01     51600.0

        1985-01-01     57600.0

        1995-01-01     55500.0

        2005-01-01     51700.0

        2015-01-01     38600.0

                        ...

Male    1968-01-01    106500.0

        1978-01-01     72300.0

        1988-01-01     64600.0

        1998-01-01     59700.0

        2008-01-01     47200.0

Name: BASE_SALARY, Length: 11, dtype: float64

5. Now, this does what we set out to do, but we run into a slight issue whenever we want 
to compare female to male salaries. Let's .unstack the gender level and see what 
happens:
>>> (employee

...    .groupby('GENDER')

...    .resample('10AS')

...    ['BASE_SALARY'] 

...    .mean()

...    .round(-2)

...    .unstack('GENDER')

... )

GENDER      Female      Male

HIRE_DATE

1958-0...      NaN   81200.0

1968-0...      NaN  106500.0

1975-0...  51600.0       NaN

1978-0...      NaN   72300.0

1985-0...  57600.0       NaN

...            ...       ...

1995-0...  55500.0       NaN

1998-0...      NaN   59700.0

2005-0...  51700.0       NaN
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2008-0...      NaN   47200.0

2015-0...  38600.0       NaN

6. The 10-year periods for males and females do not begin on the same date. This 
happened because the data was first grouped by gender and then, within each 
gender, more groups were formed based on hire dates. Let's verify that the first hired 
male was in 1958 and the first hired female was in 1975:
>>> employee[employee['GENDER'] == 'Male'].index.min()

Timestamp('1958-12-29 00:00:00')

>>> employee[employee['GENDER'] == 'Female'].index.min()

Timestamp('1975-06-09 00:00:00')

7. To resolve this issue, we must group the date together with the gender, and this is 
only possible with the .groupby method:
>>> (employee

...    .groupby(['GENDER', pd.Grouper(freq='10AS')]) 

...    ['BASE_SALARY']

...    .mean()

...    .round(-2)

... )

GENDER  HIRE_DATE

Female  1968-01-01         NaN

        1978-01-01     57100.0

        1988-01-01     57100.0

        1998-01-01     54700.0

        2008-01-01     47300.0

                        ...

Male    1968-01-01    106500.0

        1978-01-01     72300.0

        1988-01-01     64600.0

        1998-01-01     59700.0

        2008-01-01     47200.0

Name: BASE_SALARY, Length: 11, dtype: float64

8. Now we can .unstack the gender and get our rows aligned perfectly:
>>> (employee

...    .groupby(['GENDER', pd.Grouper(freq='10AS')]) 

...    ['BASE_SALARY']

...    .mean()
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...    .round(-2)

...    .unstack('GENDER')

... )

GENDER      Female      Male

HIRE_DATE

1958-0...      NaN   81200.0

1968-0...      NaN  106500.0

1978-0...  57100.0   72300.0

1988-0...  57100.0   64600.0

1998-0...  54700.0   59700.0

2008-0...  47300.0   47200.0

How it works…
The read_csv function in step 1 allows to both convert columns into Timestamps and put 
them in the index at the same time creating a DatetimeIndex. Step 2 does a .groupby 
operation with a single grouping column, gender. Step 3 uses the .resample method with 
the offset alias 10AS to form groups in 10-year increments of time. The A is the alias for year, 
and the S informs us that the beginning of the period is used as the label. For instance, the 
data for the label 1988-01-01 spans that date until December 31, 1997.

In step 4, for each gender, male and female, completely different starting dates for the  
10-year periods are calculated based on the earliest hired employee. Step 5 shows how this 
causes misalignment when we try to compare salaries of females to males. They don't have 
the same 10-year periods. Step 6 verifies that the year of the earliest hired employee for each 
gender matches the output from step 4.

To alleviate this issue, we must group both the gender and Timestamp together. The 
.resample method is only capable of grouping by a single column of Timestamps. We can 
only complete this operation with the .groupby method. With pd.Grouper, we can replicate 
the functionality of .resample. We pass the offset alias to the freq parameter and then 
place the object in a list with all the other columns that we wish to group, as done in step 7.

As both males and females now have the same starting dates for the 10-year period, the 
reshaped data in step 8 will align for each gender making comparisons much easier. It 
appears that male salaries tend to be higher given a longer length of employment, though 
both genders have the same average salary with under ten years of employment.
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There's more…
From an outsider's perspective, it would not be obvious that the rows from the output in step 
8 represented 10-year intervals. One way to improve the index labels would be to show the 
beginning and end of each time interval. We can achieve this by concatenating the current 
index year with 9 added to itself:

>>> sal_final = (employee

...    .groupby(['GENDER', pd.Grouper(freq='10AS')]) 

...    ['BASE_SALARY']

...    .mean()

...    .round(-2)

...    .unstack('GENDER')

... )

>>> years = sal_final.index.year

>>> years_right = years + 9

>>> sal_final.index = years.astype(str) + '-' + years_right.astype(str)

>>> sal_final

GENDER      Female      Male

HIRE_DATE

1958-1967      NaN   81200.0

1968-1977      NaN  106500.0

1978-1987  57100.0   72300.0

1988-1997  57100.0   64600.0

1998-2007  54700.0   59700.0

2008-2017  47300.0   47200.0

There is a completely different way to do this recipe. We can use the cut function to 
create equal-width intervals based on the year that each employee was hired and form 
groups from it:

>>> cuts = pd.cut(employee.index.year, bins=5, precision=0)

>>> cuts.categories.values

IntervalArray([(1958.0, 1970.0], (1970.0, 1981.0], (1981.0, 1993.0], 
(1993.0, 2004.0], (2004.0, 2016.0]],

closed='right',

dtype='interval[float64]')    

>>> (employee
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...     .groupby([cuts, 'GENDER'])

...     ['BASE_SALARY']

...     .mean()

...     .unstack('GENDER')

...     .round(-2)

... )

GENDER             Female     Male

(1958.0, 1970.0]      NaN  85400.0

(1970.0, 1981.0]  54400.0  72700.0

(1981.0, 1993.0]  55700.0  69300.0

(1993.0, 2004.0]  56500.0  62300.0

(2004.0, 2016.0]  49100.0  49800.0
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13
Visualization with 

Matplotlib, Pandas, 
and Seaborn

Introduction
Visualization is a critical component in exploratory data analysis, as well as presentations 
and applications. During exploratory data analysis, you are usually working alone or in small 
groups and need to create plots quickly to help you better understand your data. It can help 
you identify outliers and missing data, or it can spark other questions of interest that will lead 
to further analysis and more visualizations. This type of visualization is usually not done with 
the end user in mind. It is strictly to help you better your current understanding. The plots do 
not have to be perfect.

When preparing visualizations for a report or application, a different approach must be 
used. You should pay attention to small details. Also, you usually will have to narrow down 
all possible visualizations to only the select few that best represent your data. Good data 
visualizations have the viewer enjoying the experience of extracting information. Almost like 
movies that make viewers get lost in them, good visualizations will have lots of information 
that really sparks interest.

The primary data visualization library in Python is matplotlib, a project begun in the early 
2000s, that was built to mimic the plotting capabilities from Matlab. Matplotlib is enormously 
capable of plotting most things you can imagine, and it gives its users tremendous power to 
control every aspect of the plotting surface. 
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That said, it is not the friendliest library for beginners to grasp. Thankfully, pandas makes 
visualizing data very easy for us and usually plots what we want with a single call to the plot 
method. pandas does no plotting on its own. It internally calls matplotlib functions to create 
the plots.

Seaborn is also a visualization library that wraps matplotlib and does not do any actual 
plotting itself. Seaborn makes beautiful plots and has many types of plots that are not 
available from matplotlib or pandas. Seaborn works with tidy (long) data, while pandas works 
best with aggregated (wide) data. Seaborn also accepts pandas DataFrame objects in its 
plotting functions.

Although it is possible to create plots without ever running any matplotlib code, from time to 
time, it will be necessary to use it to tweak finer plot details manually. For this reason, the first 
two recipes will cover some basics of matplotlib that will come in handy if you need to use it. 
Other than the first two recipes, all plotting examples will use pandas or seaborn.

Visualization in Python does not have to rely on matplotlib. Bokeh is quickly becoming a very 
popular interactive visualization library targeted for the web. It is completely independent of 
matplotlib, and it's capable of producing entire applications. There are other plotting libraries 
as well and future versions of pandas will probably have the capability to use plotting engines 
other than matplotlib.

Getting started with matplotlib
For many data scientists, the vast majority of their plotting commands will use pandas or 
seaborn, both rely on matplotlib to do the plotting. However, neither pandas nor seaborn 
offers a complete replacement for matplotlib, and occasionally you will need to use 
matplotlib. For this reason, this recipe will offer a short introduction to the most crucial 
aspects of matplotlib.

One thing to be aware if you are a Jupyter user. You will want to include the:

>>> %matplotlib inline

directive in your notebook. This tells matplotlib to render plots in the notebook.

Let's begin our introduction with a look at the anatomy of a matplotlib plot in the following 
figure:
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Matplotlib hierarchy

Matplotlib uses a hierarchy of objects to display all of its plotting items in the output. This 
hierarchy is key to understanding everything about matplotlib. Note that these terms are 
referring to matplotlib and not pandas objects with the same (perhaps confusing) name. 
The Figure and Axes objects are the two main components of the hierarchy. The Figure object 
is at the top of the hierarchy. It is the container for everything that will be plotted. Contained 
within the Figure is one or more Axes object(s). The Axes is the primary object that you will 
interact with when using matplotlib and can be thought of as the plotting surface. The Axes 
contains an x-axis, a y-axis, points, lines, markers, labels, legends, and any other useful item 
that is plotted.

A distinction needs to be made between an Axes and an axis. They are completely separate 
objects. An Axes object, using matplotlib terminology, is not the plural of axis but instead, as 
mentioned earlier, the object that creates and controls most of the useful plotting elements. 
An axis refers to the x or y (or even z) axis of a plot.

All of these useful plotting elements created by an Axes object are called artists. Even the 
Figure and the Axes objects themselves are artists. This distinction for artists won't be critical 
to this recipe but will be useful when doing more advanced matplotlib plotting and especially 
when reading through the documentation.
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Object-oriented guide to matplotlib
Matplotlib provides two distinct interfaces for users. The stateful interface makes all of its 
calls with the pyplot module. This interface is called stateful because matplotlib keeps 
track internally of the current state of the plotting environment. Whenever a plot is created 
in the stateful interface, matplotlib finds the current figure or current axes and makes 
changes to it. This approach is fine to plot a few things quickly but can become unwieldy 
when dealing with multiple figures and axes.

Matplotlib also offers a stateless, or object-oriented, interface in which you explicitly use 
variables that reference specific plotting objects. Each variable can then be used to change 
some property of the plot. The object-oriented approach is explicit, and you are always 
aware of exactly what object is being modified.

Unfortunately, having both options can lead to lots of confusion, and matplotlib has 
a reputation for being difficult to learn. The documentation has examples using both 
approaches. In practice, I find it most useful to combine them. I use the subplots function 
from pyplot to create a figure and axes, and then use the methods on those objects.

If you are new to matplotlib, you might not know how to recognize the difference between 
each approach. With the stateful interface, all commands are functions called on the pyplot 
module, which is usually aliased plt. Making a line plot and adding some labels to each 
axis would look like this:

>>> import matplotlib.pyplot as plt

>>> x = [-3, 5, 7]

>>> y = [10, 2, 5]

>>> fig = plt.figure(figsize=(15,3))

>>> plt.plot(x, y)

>>> plt.xlim(0, 10)

>>> plt.ylim(-3, 8)

>>> plt.xlabel('X Axis')

>>> plt.ylabel('Y axis')

>>> plt.title('Line Plot')

>>> plt.suptitle('Figure Title', size=20, y=1.03)

>>> fig.savefig('c13-fig1.png', dpi=300, bbox_inches='tight')
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Basic plot using Matlab-like interface

The object-oriented approach is shown as follows:

>>> from matplotlib.figure import Figure

>>> from matplotlib.backends.backend_agg import FigureCanvasAgg as 
FigureCanvas

>>> from IPython.core.display import display

>>> fig = Figure(figsize=(15, 3))

>>> FigureCanvas(fig)  

>>> ax = fig.add_subplot(111)

>>> ax.plot(x, y)

>>> ax.set_xlim(0, 10)

>>> ax.set_ylim(-3, 8)

>>> ax.set_xlabel('X axis')

>>> ax.set_ylabel('Y axis')

>>> ax.set_title('Line Plot')

>>> fig.suptitle('Figure Title', size=20, y=1.03)

>>> display(fig)

>>> fig.savefig('c13-fig2.png', dpi=300, bbox_inches='tight')

Basic plot created with object oriented interface
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In practice, I combine the two approaches and my code would look like this:

>>> fig, ax = plt.subplots(figsize=(15,3))

>>> ax.plot(x, y)

>>> ax.set(xlim=(0, 10), ylim=(-3, 8),

...     xlabel='X axis', ylabel='Y axis',

...     title='Line Plot')

>>> fig.suptitle('Figure Title', size=20, y=1.03)

>>> fig.savefig('c13-fig3.png', dpi=300, bbox_inches='tight')

Basic plot created using call to Matlab interface to create figure and axes, then using method calls

In this example, we use only two objects, the Figure, and Axes, but in general, plots can 
have many hundreds of objects; each one can be used to make modifications in an extremely 
finely-tuned manner, not easily doable with the stateful interface. In this chapter, we build 
an empty plot and modify several of its basic properties using the object-oriented interface.

How to do it…
1. To get started with matplotlib using the object-oriented approach, you will need to 

import the pyplot module and alias plt:
>>> import matplotlib.pyplot as plt

2. Typically, when using the object-oriented approach, we will create a Figure and one or 
more Axes objects. Let's use the subplots function to create a figure with a single 
axes:
>>> fig, ax = plt.subplots(nrows=1, ncols=1)

>>> fig.savefig('c13-step2.png', dpi=300)         
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Plot of a figure

3. The subplots function returns a two-item tuple object containing the Figure and one 
or more Axes objects (here it is just one), which is unpacked into the variables fig 
and ax. From here on out, we will use these objects by calling methods in a normal 
object-oriented approach:
>>> type(fig)

matplotlib.figure.Figure

>>> type(ax)

matplotlib.axes._subplots.AxesSubplot

4. Although you will be calling more axes than figure methods, you might still need to 
interact with the figure. Let's find the size of the figure and then enlarge it:
>>> fig.get_size_inches()

array([ 6.,  4.])

>>> fig.set_size_inches(14, 4)

>>> fig.savefig('c13-step4.png', dpi=300)         

>>> fig



Visualization with Matplotlib, Pandas, and Seaborn

492

Changing figure size

5. Before we start plotting, let's examine the matplotlib hierarchy. You can collect all 
the axes of the figure with the .axes attribute:
>>> fig.axes

[<matplotlib.axes._subplots.AxesSubplot at 0x112705ba8>]    

6. The previous command returns a list of all the Axes objects. However, we already 
have our Axes object stored in the ax variable. Let's verify that they are the same 
object:
>>> fig.axes[0] is ax

True

7. To help differentiate the Figure from the Axes, we can give each one a unique 
facecolor. Matplotlib accepts a variety of different input types for color. Approximately 
140 HTML colors are supported by their string name (see this list: http://bit.
ly/2y52UtO). You may also use a string containing a float from zero to one to 
represent shades of gray:
>>> fig.set_facecolor('.7')

>>> ax.set_facecolor('.5')

>>> fig.savefig('c13-step7.png', dpi=300, facecolor='.7')  

>>> fig

http://bit.ly/2y52UtO
http://bit.ly/2y52UtO
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Setting the face color

8. Now that we have differentiated between the Figure and the Axes, let's take a look at 
all of the immediate children of the Axes with the .get_children method:
>>> ax_children = ax.get_children()

>>> ax_children

[<matplotlib.spines.Spine at 0x11145b358>,

 <matplotlib.spines.Spine at 0x11145b0f0>,

 <matplotlib.spines.Spine at 0x11145ae80>,

 <matplotlib.spines.Spine at 0x11145ac50>,

 <matplotlib.axis.XAxis at 0x11145aa90>,

 <matplotlib.axis.YAxis at 0x110fa8d30>,

 ...]    

9. Most plots have four spines and two axis objects. The spines represent the data 
boundaries and are the four physical lines that you see bordering the darker gray 
rectangle (the axes). The x and y axis objects contain more plotting objects such as 
the ticks and their labels and the label of the entire axis. We can select the spines 
from the result of the .get_children method, but it is easier to access them with 
the .spines attribute:
>>> spines = ax.spines

>>> spines

OrderedDict([('left', <matplotlib.spines.Spine at 0x11279e320>),

             ('right', <matplotlib.spines.Spine at 0x11279e0b8>),

             ('bottom', <matplotlib.spines.Spine at 0x11279e048>),

             ('top', <matplotlib.spines.Spine at 0x1127eb5c0>)])
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10. The spines are contained in an ordered dictionary. Let's select the left spine and 
change its position and width so that it is more prominent and also make the bottom 
spine invisible:
>>> spine_left = spines['left']

>>> spine_left.set_position(('outward', -100))

>>> spine_left.set_linewidth(5)

>>> spine_bottom = spines['bottom']

>>> spine_bottom.set_visible(False)

>>> fig.savefig('c13-step10.png', dpi=300, facecolor='.7')

>>> fig

Plot with spines moved or removed

11. Now, let's focus on the axis objects. We can access each axis through the .xaxis 
and .yaxis attributes. Some axis properties are also available with the Axes object. 
In this step, we change some properties of each axis in both manners:

>>> ax.xaxis.grid(True, which='major', linewidth=2,

...     color='black', linestyle='--')

>>> ax.xaxis.set_ticks([.2, .4, .55, .93])

>>> ax.xaxis.set_label_text('X Axis', family='Verdana',

...     fontsize=15)

>>> ax.set_ylabel('Y Axis', family='Gotham', fontsize=20)

>>> ax.set_yticks([.1, .9])

>>> ax.set_yticklabels(['point 1', 'point 9'], rotation=45)

>>> fig.savefig('c13-step11.png', dpi=300, facecolor='.7')         
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Plot with labels

How it works…
One of the crucial ideas to grasp with the object-oriented approach is that each plotting 
element has both getter and setter methods. The getter methods all begin with get_. For 
instance, ax.get_yscale() retrieves the type of scale that the y-axis is plotted with as a 
string (default is linear), while ax.get_xticklabels() retrieves a list of matplotlib text 
objects that each have their own getter and setter methods. Setter methods modify a specific 
property or an entire group of objects. A lot of matplotlib boils down to latching onto a specific 
plotting element and then examining and modifying it via the getter and setter methods.

The easiest way to start using matplotlib is with the pyplot module, which is commonly 
aliased plt, as done in step 1. Step 2 shows one method to initiate the object-oriented 
approach. The plt.subplots function creates a single Figure, along with a grid of Axes 
objects. The first two parameters, nrows and ncols, define a uniform grid of Axes objects. 
For example, plt.subplots(2,4) creates eight total Axes objects of the same size inside 
one Figure.

The plt.subplots returns a tuple. The first element is the Figure, and the second element 
is the Axes object. This tuple gets unpacked as two variables, fig and ax. If you are not 
accustomed to tuple unpacking, it may help to see step 2 written like this:

>>> plot_objects = plt.subplots(nrows=1, ncols=1)

>>> type(plot_objects)

tuple

>>> fig = plot_objects[0]

>>> ax = plot_objects[1]

>>> fig.savefig('c13-1-works1.png', dpi=300)         
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Blot with a single axes

If you create more than one Axes with plt.subplots, then the second item in the tuple is a 
NumPy array containing all the Axes. Let's demonstrate that here:

>>> fig, axs = plt.subplots(2, 4)

>>> fig.savefig('c13-1-works2.png', dpi=300)         

Plot with a grid of axes
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The axs variable is a NumPy array containing a Figure as its first element and a NumPy array 
as its second:

>>> axs

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x126820668>,

        <matplotlib.axes._subplots.AxesSubplot object at 0x126844ba8>,

        <matplotlib.axes._subplots.AxesSubplot object at 0x126ad1160>,

        <matplotlib.axes._subplots.AxesSubplot object at 0x126afa6d8>],

       [<matplotlib.axes._subplots.AxesSubplot object at 0x126b21c50>,

        <matplotlib.axes._subplots.AxesSubplot object at 0x126b52208>,

        <matplotlib.axes._subplots.AxesSubplot object at 0x11f695588>,

        <matplotlib.axes._subplots.AxesSubplot object at 0x11f6b3b38>]],

      dtype=object)

Step 3 verifies that we indeed have Figure and Axes objects referenced by the appropriate 
variables. In step 4, we come across the first example of getter and setter methods. Matplotlib 
defaults all figures to 6 inches in width by 4 inches in height, which is not the actual size of it 
on the screen, but would be the exact size if you saved the Figure to a file (with a dpi of 100 
pixels per inch).

Step 5 shows that, in addition to the getter method, you can sometimes access another 
plotting object by its attribute. Often, there exist both an attribute and a getter method to 
retrieve the same object. For instance, look at these examples:

>>> ax = axs[0][0]

>>> fig.axes == fig.get_axes()

True

>>> ax.xaxis == ax.get_xaxis()

True

>>> ax.yaxis == ax.get_yaxis()

True

Many artists have a .facecolor property that can be set to cover the entire surface one 
particular color, as in step 7. In step 8, the .get_children method can be used to get a 
better understanding of the object hierarchy. A list of all the objects directly below the axes 
is returned. It is possible to select all of the objects from this list and start using the setter 
methods to modify properties, but this isn't customary. We usually collect our objects from 
the attributes or getter methods.

Often, when retrieving a plotting object, they will be returned in a container like a list or a 
dictionary. This is what happens when collecting the spines in step 9. You will have to select 
the individual objects from their respective containers to use the getter or setter methods on 
them, as done in step 10. It is also common to use a for loop to iterate through each of them 
one at a time.
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Step 11 adds grid lines in a peculiar way. We would expect there to be a .get_grid and 
.set_grid method, but instead, there is just a .grid method, which accepts a Boolean 
as the first argument to turn on and off the grid lines. Each axis has both major and minor 
ticks, though by default the minor ticks are turned off. The which parameter is used to 
select which type of tick has a grid line.

Notice that the first three lines of step 11 select the .xaxis attribute and call methods 
from it, while the last three lines call equivalent methods from the Axes object itself. This 
second set of methods is a convenience provided by matplotlib to save a few keystrokes. 
Normally, most objects can only set their own properties, not those of their children. Many 
of the axis-level properties are not able to be set from the Axes, but in this step, some are. 
Either method is acceptable.

When adding the grid lines with the first line in step 11, we set the properties .linewidth, 
.color, and .linestyle. These are all properties of a matplotlib line, formally a Line2D 
object. The .set_ticks method accepts a sequence of floats and draws tick marks for only 
those locations. Using an empty list will completely remove all ticks.

Each axis may be labeled with some text, for which matplotlib uses a Text object. Only 
a few of all the available text properties are changed. The .set_yticklabels Axes 
method takes in a list of strings to use as the labels for each of the ticks. You may set any 
number of text properties along with it.

There's more…
To help find all the possible properties of each of your plotting objects, make a call to the 
.properties method, which displays all of them as a dictionary. Let's see a curated list 
of the properties of an axis object:

>>> ax.xaxis.properties()

{'alpha': None,

'gridlines': <a list of 4 Line2D gridline objects>,

'label': Text(0.5,22.2,'X Axis'),

'label_position': 'bottom',

'label_text': 'X Axis',

'tick_padding': 3.5,

'tick_space': 26,

'ticklabels': <a list of 4 Text major ticklabel objects>,

'ticklocs': array([ 0.2 , 0.4 , 0.55, 0.93]),

'ticks_position': 'bottom',

'visible': True}
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Visualizing data with matplotlib
Matplotlib has a few dozen plotting methods that make nearly any kind of plot imaginable. 
Line, bar, histogram, scatter, box, violin, contour, pie, and many more plots are available as 
methods on the Axes object. It was only in version 1.5 (released in 2015) that matplotlib 
began accepting data from pandas DataFrames. Before this, data had to be passed to it 
from NumPy arrays or Python lists.

In this section, we will plot the annual snow levels for the Alta ski resort. The plots in this 
example were inspired by Trud Antzee (@Antzee_) who created similar plots of snow levels 
in Norway.

How to do it…
1. Now that we know how to create axes and change their attributes, let's start 

visualizing data. We will read snowfall data from the Alta ski resort in Utah and 
visualize how much snow fell in each season:
>>> import pandas as pd

>>> import numpy as np

>>> alta = pd.read_csv('data/alta-noaa-1980-2019.csv')

>>> alta

           STATION         NAME  LATITUDE  ...  WT05  WT06 WT11

0      USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

1      USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

2      USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

3      USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

4      USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

...            ...          ...       ...  ...   ...   ...  ...

14155  USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

14156  USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

14157  USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

14158  USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

14159  USC00420072  ALTA, UT US   40.5905  ...   NaN   NaN  NaN

2. Get the data for the 2018-2019 season:
>>> data = (alta

...     .assign(DATE=pd.to_datetime(alta.DATE))

...     .set_index('DATE')

...     .loc['2018-09':'2019-08']
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...     .SNWD

... )

>>> data

DATE

2018-09-01    0.0

2018-09-02    0.0

2018-09-03    0.0

2018-09-04    0.0

2018-09-05    0.0

             ...

2019-08-27    0.0

2019-08-28    0.0

2019-08-29    0.0

2019-08-30    0.0

2019-08-31    0.0

Name: SNWD, Length: 364, dtype: float64

3. Use matplotlib to visualize this data. We could use the default plot, but we will 
adjust the look of this plot. (Note that we need to specify facecolor when calling 
.savefig or the exported image will have a white facecolor):
>>> blue = '#99ddee'

>>> white = '#ffffff'

>>> fig, ax = plt.subplots(figsize=(12,4), 

...      linewidth=5, facecolor=blue)

>>> ax.set_facecolor(blue)

>>> ax.spines['top'].set_visible(False)

>>> ax.spines['right'].set_visible(False)

>>> ax.spines['bottom'].set_visible(False)

>>> ax.spines['left'].set_visible(False)

>>> ax.tick_params(axis='x', colors=white)

>>> ax.tick_params(axis='y', colors=white)

>>> ax.set_ylabel('Snow Depth (in)', color=white)

>>> ax.set_title('2009-2010', color=white, fontweight='bold')

>>> ax.fill_between(data.index, data, color=white)

>>> fig.savefig('c13-alta1.png', dpi=300, facecolor=blue)  
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Alta snow level plot for 2009-2010 season

4. Any number of plots may be put on a single figure. Let's refactor to a plot_year 
function and plot many years:

>>> import matplotlib.dates as mdt

>>> blue = '#99ddee'

>>> white = '#ffffff'

>>> def plot_year(ax, data, years):

...     ax.set_facecolor(blue)

...     ax.spines['top'].set_visible(False)

...     ax.spines['right'].set_visible(False)

...     ax.spines['bottom'].set_visible(False)

...     ax.spines['left'].set_visible(False)

...     ax.tick_params(axis='x', colors=white)

...     ax.tick_params(axis='y', colors=white)

...     ax.set_ylabel('Snow Depth (in)', color=white)

...     ax.set_title(years, color=white, fontweight='bold')

...     ax.fill_between(data.index, data, color=white)

>>> years = range(2009, 2019)

>>> fig, axs = plt.subplots(ncols=2, nrows=int(len(years)/2), 

...     figsize=(16, 10), linewidth=5, facecolor=blue)

>>> axs = axs.flatten()

>>> max_val = None

>>> max_data = None

>>> max_ax = None

>>> for i,y in enumerate(years):
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...     ax = axs[i]

...     data = (alta

...        .assign(DATE=pd.to_datetime(alta.DATE))

...        .set_index('DATE')

...        .loc[f'{y}-09':f'{y+1}-08']

...        .SNWD

...     )

...     if max_val is None or max_val < data.max():

...         max_val = data.max()

...         max_data = data

...         max_ax = ax

...     ax.set_ylim(0, 180)

...     years = f'{y}-{y+1}'

...     plot_year(ax, data, years)

>>> max_ax.annotate(f'Max Snow {max_val}', 

...    xy=(mdt.date2num(max_data.idxmax()), max_val), 

...    color=white)

>>> fig.suptitle('Alta Snowfall', color=white, fontweight='bold')

>>> fig.tight_layout(rect=[0, 0.03, 1, 0.95])

>>> fig.savefig('c13-alta2.png', dpi=300, facecolor=blue)  

Alta snow level plot for many seasons
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How it works…
We load the NOAA data in step 1. In step 2, we use various pandas tricks to convert the DATE 
column from a string into a date. Then we set the index to the DATE column so we can slice 
off a year-long period starting from September. Finally, we pull out the SNWD (the snow depth) 
column to get a pandas Series.

In step 3, we pull out all of the stops. We use the subplots function to create a figure and 
an axes. We set the facecolor of both the axes and the figure to a light blue color. We also 
remove the spines and set the label colors to white. Finally, we use the .fill_between 
plot function to create a plot that is filled in. This plot (inspired by Trud) shows something that 
I like to emphasize with matplotlib. In matplotlib, you can change almost any aspect of the 
plot. Using Jupyter in combination with matplotlib allows you to try out tweaks to plots.

In step 4, we refactor step 3 into a function and then plot a decade of plots in a grid. While 
we are looping over the year data, we also keep track of the maximum value. This allows us 
to annotate the axis that had the maximum show depth with the .annotate method.

There's more…
When I'm teaching visualization, I always mention that our brains are not optimized for 
looking at tables of data. However, visualizing said data can give us insights into the data. 
In this case, it is clear that there is data that is missing, hence the gaps in the plots. In this 
case, I'm going to clean up the gaps using the .interpolate method:

>>> years = range(2009, 2019)

>>> fig, axs = plt.subplots(ncols=2, nrows=int(len(years)/2), 

...     figsize=(16, 10), linewidth=5, facecolor=blue)

>>> axs = axs.flatten()

>>> max_val = None

>>> max_data = None

>>> max_ax = None

>>> for i,y in enumerate(years):

...     ax = axs[i]

...     data = (alta.assign(DATE=pd.to_datetime(alta.DATE))

...        .set_index('DATE')

...        .loc[f'{y}-09':f'{y+1}-08']

...        .SNWD

...        .interpolate()

...     )

...     if max_val is None or max_val < data.max():
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...         max_val = data.max()

...         max_data = data

...         max_ax = ax

...     ax.set_ylim(0, 180)

...     years = f'{y}-{y+1}'

...     plot_year(ax, data, years)

>>> max_ax.annotate(f'Max Snow {max_val}', 

...    xy=(mdt.date2num(max_data.idxmax()), max_val), 

...    color=white)

>>> fig.suptitle('Alta Snowfall', color=white, fontweight='bold')

>>> fig.tight_layout(rect=[0, 0.03, 1, 0.95])

>>> fig.savefig('c13-alta3.png', dpi=300, facecolor=blue)  

Alta plot plot

Even this plot still has issues. Let's dig in a little more. It looks like there are points during the 
winter season when the snow level drops off too much. Let's use some pandas to find where 
the absolute differences between subsequent entries is greater than some value, say 50:

>>> (alta

...     .assign(DATE=pd.to_datetime(alta.DATE))

...     .set_index('DATE')
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...     .SNWD

...     .to_frame()

...     .assign(next=lambda df_:df_.SNWD.shift(-1),

...             snwd_diff=lambda df_:df_.next-df_.SNWD)

...     .pipe(lambda df_: df_[df_.snwd_diff.abs() > 50])

... )

            SNWD   next  snwd_diff

DATE

1989-11-27  60.0    0.0      -60.0

2007-02-28  87.0    9.0      -78.0

2008-05-22  62.0    0.0      -62.0

2008-05-23   0.0   66.0       66.0

2009-01-16  76.0    0.0      -76.0

...          ...    ...        ...

2011-05-18   0.0  136.0      136.0

2012-02-09  58.0    0.0      -58.0

2012-02-10   0.0   56.0       56.0

2013-03-01  75.0    0.0      -75.0

2013-03-02   0.0   78.0       78.0

It looks like the data has some issues. There are spots when the data goes to zero (actually 0 
and not np.nan) during the middle of the season. Let's make a fix_gaps function that we 
can use with the .pipe method to clean them up:

>>> def fix_gaps(ser, threshold=50):

...     'Replace values where the shift is > threshold with nan'

...     mask = (ser

...        .to_frame()

...        .assign(next=lambda df_:df_.SNWD.shift(-1),

...                snwd_diff=lambda df_:df_.next-df_.SNWD)

...        .pipe(lambda df_: df_.snwd_diff.abs() > threshold)

...     )

...     return ser.where(~mask, np.nan)

>>> years = range(2009, 2019)

>>> fig, axs = plt.subplots(ncols=2, nrows=int(len(years)/2), 

...     figsize=(16, 10), linewidth=5, facecolor=blue)

>>> axs = axs.flatten()
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>>> max_val = None

>>> max_data = None

>>> max_ax = None

>>> for i,y in enumerate(years):

...     ax = axs[i]

...     data = (alta.assign(DATE=pd.to_datetime(alta.DATE))

...        .set_index('DATE')

...        .loc[f'{y}-09':f'{y+1}-08']

...        .SNWD

...        .pipe(fix_gaps)

...        .interpolate()

...     )

...     if max_val is None or max_val < data.max():

...         max_val = data.max()

...         max_data = data

...         max_ax = ax

...     ax.set_ylim(0, 180)

...     years = f'{y}-{y+1}'

...     plot_year(ax, data, years)

>>> max_ax.annotate(f'Max Snow {max_val}', 

...    xy=(mdt.date2num(max_data.idxmax()), max_val), 

...    color=white)

>>> fig.suptitle('Alta Snowfall', color=white, fontweight='bold')

>>> fig.tight_layout(rect=[0, 0.03, 1, 0.95])

>>> fig.savefig('c13-alta4.png', dpi=300, facecolor=blue)  
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Alta plot

Plotting basics with pandas
pandas makes plotting quite easy by automating much of the procedure for you. Plotting is 
handled internally by matplotlib and is publicly accessed through the DataFrame or Series 
.plot attribute (which also acts as a method, but we will use the attribute for plotting). When 
you create a plot in pandas, you will be returned a matplotlib Axes or Figure. You can then use 
the full power of matplotlib to tweak this plot to your heart's delight.

pandas is only able to produce a small subset of the plots available with matplotlib, such as 
line, bar, box, and scatter plots, along with kernel density estimates (KDEs), and histograms. 
I find that pandas makes it so easy to plot, that I generally prefer the pandas interface, as it is 
usually just a single line of code.
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One of the keys to understanding plotting in pandas is to know where the x and y-axis 
come from. The default plot, a line plot, will plot the index in the x-axis and each column in 
the y-axis. For a scatter plot, we need to specify the columns to use for the x and y-axis. A 
histogram, boxplot, and KDE plot ignore the index and plot the distribution for each column.

This section will show various examples of plotting with pandas.

How to do it…
1. Create a small DataFrame with a meaningful index:

>>> df = pd.DataFrame(index=['Atiya', 'Abbas', 'Cornelia',

...     'Stephanie', 'Monte'],

...     data={'Apples':[20, 10, 40, 20, 50],

...           'Oranges':[35, 40, 25, 19, 33]})

>>> df

           Apples  Oranges

Atiya          20       35

Abbas          10       40

Cornelia       40       25

Stephanie      20       19

Monte          50       33

2. Bar plots use the index as the labels for the x-axis and the column values as the bar 
heights. Use the .plot attribute with the .bar method:
>>> color = ['.2', '.7']

>>> ax = df.plot.bar(color=color, figsize=(16,4))

>>> ax.get_figure().savefig('c13-pdemo-bar1.png')

pandas bar plot
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3. A KDE plot ignores the index and uses the column names along the x-axis and uses 
the column values to calculate a probability density along the y values:
>>> ax = df.plot.kde(color=color, figsize=(16,4))

>>> ax.get_figure().savefig('c13-pdemo-kde1.png')

pandas KDE plot

4. Let's plot a line plot, scatter plot, and a bar plot in a single figure. The scatter plot is 
the only one that requires you to specify columns for the x and y values. If you wish 
to use the index for a scatter plot, you will have to use the .reset_index method 
to make it a column. The other two plots use the index for the x-axis and make a 
new set of lines or bars for every single numeric column:
>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('Two Variable Plots', size=20, y=1.02)

>>> df.plot.line(ax=ax1, title='Line plot')

>>> df.plot.scatter(x='Apples', y='Oranges', 

...     ax=ax2, title='Scatterplot')

>>> df.plot.bar(color=color, ax=ax3, title='Bar plot')

>>> fig.savefig('c13-pdemo-scat.png')

Using pandas to plot multiple charts on a single figure
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5. Let's put a KDE, boxplot, and histogram in the same figure as well. These plots are 
used to visualize the distribution of a column:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('One Variable Plots', size=20, y=1.02)

>>> df.plot.kde(color=color, ax=ax1, title='KDE plot')

>>> df.plot.box(ax=ax2, title='Boxplot')

>>> df.plot.hist(color=color, ax=ax3, title='Histogram')

>>> fig.savefig('c13-pdemo-kde2.png')

Using pandas to plot a KDE, boxplot, and histogram

How it works…
Step 1 creates a small sample DataFrame that will help us illustrate the differences between 
two and one-variable plotting with pandas. By default, pandas will use each numeric column 
of the DataFrame to make a new set of bars, lines, KDEs, boxplots, or histograms and use 
the index as the x values when it is a two-variable plot. One of the exceptions is the scatter 
plot, which must be explicitly given a single column for the x and y values.

The pandas .plot attribute has various plotting methods with a large number of parameters 
that allow you to customize the result to your liking. For instance, you can set the figure size, 
turn the gridlines on and off, set the range of the x and y-axis, color the plot, rotate the tick 
marks, and much more.

You can also use any of the arguments available to the specific matplotlib plotting method. 
The extra arguments will be collected by the **kwds parameter from the plot method and 
correctly passed to the underlying matplotlib function. For example, in step 2, we create a 
bar plot. This means that we can use all of the parameters available in the matplotlib bar 
function as well as the ones available in the pandas plotting method.

In step 3, we create a single-variable KDE plot, which creates a density estimate for each 
numeric column in the DataFrame. Step 4 places all the two-variable plots in the same figure. 
Likewise, step 5 places all the one-variable plots together. 
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Each of steps 4 and 5 creates a figure with three Axes objects. The code plt.subplots(1, 
3) creates a figure with three Axes spread over a single row and three columns. It returns a 
two-item tuple consisting of the figure and a one-dimensional NumPy array containing the 
Axes. The first item of the tuple is unpacked into the variable fig. The second item of the 
tuple is unpacked into three more variables, one for each Axes. The pandas plotting methods 
come with an ax parameter, allowing us to place the result of the plot into a specific Axes in 
the figure.

There's more…
With the exception of the scatter plot, none of the plots specified the columns to be used. 
pandas defaulted to plotting every numeric column, as well as the index in the case of two-
variable plots. You can, of course, specify the exact columns that you would like to use for 
each x or y value:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> df.sort_values('Apples').plot.line(x='Apples', y='Oranges',

...       ax=ax1)

>>> df.plot.bar(x='Apples', y='Oranges', ax=ax2)

>>> df.plot.kde(x='Apples', ax=ax3)

>>> fig.savefig('c13-pdemo-kde3.png')

pandas KDE plot

Visualizing the flights dataset
Exploratory data analysis can be guided by visualizations, and pandas provides a great 
interface for quickly and effortlessly creating them. One strategy when looking at a new 
dataset is to create some univariate plots. These include bar charts for categorical data 
(usually strings) and histograms, boxplots, or KDEs for continuous data (always numeric).

In this recipe, we do some basic exploratory data analysis on the flights dataset by creating 
univariate and multivariate plots with pandas.
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How to do it…
1. Read in the flights dataset:

>>> flights = pd.read_csv('data/flights.csv')

>>> flights

       MONTH  DAY  WEEKDAY  ... ARR_DELAY DIVERTED CANCELLED

0          1    1        4  ...      65.0        0         0

1          1    1        4  ...     -13.0        0         0

2          1    1        4  ...      35.0        0         0

3          1    1        4  ...      -7.0        0         0

4          1    1        4  ...      39.0        0         0

...      ...  ...      ...  ...       ...      ...       ...

58487     12   31        4  ...     -19.0        0         0

58488     12   31        4  ...       4.0        0         0

58489     12   31        4  ...      -5.0        0         0

58490     12   31        4  ...      34.0        0         0

58491     12   31        4  ...      -1.0        0         0

2. Before we start plotting, let's calculate the number of diverted, canceled, delayed, 
and ontime flights. We already have binary columns for DIVERTED and CANCELLED. 
Flights are considered delayed whenever they arrive 15 minutes or more later than 
scheduled. Let's create two new binary columns to track delayed and on-time arrivals:
>>> cols = ['DIVERTED', 'CANCELLED', 'DELAYED']

>>> (flights

...     .assign(DELAYED=flights['ARR_DELAY'].ge(15).astype(int),

...             ON_TIME=lambda df_:1 - df_[cols].any(axis=1))

...     .select_dtypes(int)

...     .sum()

... )

MONTH          363858

DAY            918447

WEEKDAY        229690

SCHED_DEP    81186009

DIST         51057671

SCHED_ARR    90627495

DIVERTED          137

CANCELLED         881
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DELAYED         11685

ON_TIME         45789

dtype: int64

3. Let's now make several plots on the same figure for both categorical and continuous 
columns:
>>> fig, ax_array = plt.subplots(2, 3, figsize=(18,8))

>>> (ax1, ax2, ax3), (ax4, ax5, ax6) = ax_array

>>> fig.suptitle('2015 US Flights - Univariate Summary', size=20)

>>> ac = flights['AIRLINE'].value_counts()

>>> ac.plot.barh(ax=ax1, title='Airline')

>>> (flights

...     ['ORG_AIR']

...     .value_counts()

...     .plot.bar(ax=ax2, rot=0, title='Origin City')

... )

>>> (flights

...     ['DEST_AIR']

...     .value_counts()

...     .head(10)

...     .plot.bar(ax=ax3, rot=0, title='Destination City')

... )

>>> (flights

...     .assign(DELAYED=flights['ARR_DELAY'].ge(15).astype(int),

...             ON_TIME=lambda df_:1 - df_[cols].any(axis=1))

...     [['DIVERTED', 'CANCELLED', 'DELAYED', 'ON_TIME']]

...     .sum()

...     .plot.bar(ax=ax4, rot=0,

...          log=True, title='Flight Status')

... )

>>> flights['DIST'].plot.kde(ax=ax5, xlim=(0, 3000),

...     title='Distance KDE')

>>> flights['ARR_DELAY'].plot.hist(ax=ax6,

...     title='Arrival Delay',

...     range=(0,200)

... )

>>> fig.savefig('c13-uni1.png')
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pandas univariate plots

4. This is not an exhaustive look at all the univariate statistics but gives us a good 
amount of detail on some of the variables. Before we move on to multivariate plots, 
let's plot the number of flights per week. This is the right situation to use a time series 
plot with the dates on the x-axis. Unfortunately, we don't have pandas Timestamps in 
any of the columns, but we do have the month and day. The to_datetime function 
has a nifty trick that identifies column names that match Timestamp components. 
For instance, if you have a DataFrame with exactly three columns titled year, month, 
and day, then passing this DataFrame to the to_datetime function will return 
a sequence of Timestamps. To prepare our current DataFrame, we need to add 
a column for the year and use the scheduled departure time to get the hour and 
minute:
>>> df_date = (flights

...     [['MONTH', 'DAY']]

...     .assign(YEAR=2015,

...             HOUR=flights['SCHED_DEP'] // 100,

...             MINUTE=flights['SCHED_DEP'] % 100)

... )

>>> df_date

       MONTH  DAY  YEAR  HOUR  MINUTE

0          1    1  2015    16      25
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1          1    1  2015     8      23

2          1    1  2015    13       5

3          1    1  2015    15      55

4          1    1  2015    17      20

...      ...  ...   ...   ...     ...

58487     12   31  2015     5      15

58488     12   31  2015    19      10

58489     12   31  2015    18      46

58490     12   31  2015     5      25

58491     12   31  2015     8      59

5. Then, almost by magic, we can turn this DataFrame into a proper Series of 
Timestamps with the to_datetime function:
>>> flight_dep = pd.to_datetime(df_date)

>>> flight_dep

0       2015-01-01 16:25:00

1       2015-01-01 08:23:00

2       2015-01-01 13:05:00

3       2015-01-01 15:55:00

4       2015-01-01 17:20:00

                ...

58487   2015-12-31 05:15:00

58488   2015-12-31 19:10:00

58489   2015-12-31 18:46:00

58490   2015-12-31 05:25:00

58491   2015-12-31 08:59:00

Length: 58492, dtype: datetime64[ns]

6. Let's use this result as our new index and then find the count of flights per week with 
the .resample method:
>>> flights.index = flight_dep

>>> fc = flights.resample('W').size()

>>> fc.plot.line(figsize=(12,3), title='Flights per Week', 
grid=True)

>>> fig.savefig('c13-ts1.png')
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pandas timeseries plot

7. This plot is quite revealing. It appears that we have no data for the month of October. 
Due to this missing data, it's quite difficult to analyze any trend visually, if one exists. 
The first and last weeks are also lower than normal, likely because there isn't a full 
week of data for them. Let's make any week of data with fewer than 600 flights 
missing. Then, we can use the interpolate method to fill in this missing data:
>>> def interp_lt_n(df_, n=600):

...     return (df_

...         .where(df_ > n)

...         .interpolate(limit_direction='both')

... )

>>> fig, ax = plt.subplots(figsize=(16,4))

>>> data = (flights

...     .resample('W')

...     .size()

... )

>>> (data

...     .pipe(interp_lt_n)

...     .iloc[1:-1]

...     .plot.line(color='black', ax=ax)

... )
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>>> mask = data<600

>>> (data

...      .pipe(interp_lt_n)

...      [mask]

...      .plot.line(color='.8', linewidth=10)

... ) 

>>> ax.annotate(xy=(.8, .55), xytext=(.8, .77),

...             xycoords='axes fraction', s='missing data',

...             ha='center', size=20, arrowprops=dict())

>>> ax.set_title('Flights per Week (Interpolated Missing Data)')

>>> fig.savefig('c13-ts2.png')

pandas timeseries plot

8. Let's change directions and focus on multivariable plotting. Let's find the 10 airports 
that:

 � Have the longest average distance traveled for inbound flights

 � Have a minimum of 100 total flights

>>> fig, ax = plt.subplots(figsize=(16,4))

>>> (flights

...     .groupby('DEST_AIR')

...     ['DIST'] 

...     .agg(['mean', 'count']) 

...     .query('count > 100') 

...     .sort_values('mean') 

...     .tail(10) 

...     .plot.bar(y='mean', rot=0, legend=False, ax=ax,

...         title='Average Distance per Destination')

... )

>>> fig.savefig('c13-bar1.png')
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pandas bar plot

9. It's no surprise that the top two destination airports are in Hawaii. Now let's analyze 
two variables at the same time by making a scatter plot between distance and 
airtime for all flights under 2,000 miles:
>>> fig, ax = plt.subplots(figsize=(8,6))

>>> (flights

...     .reset_index(drop=True)

...     [['DIST', 'AIR_TIME']] 

...     .query('DIST <= 2000')

...     .dropna()

...     .plot.scatter(x='DIST', y='AIR_TIME', ax=ax, alpha=.1, 
s=1)

... )

>>> fig.savefig('c13-scat1.png')

pandas scatter plot
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10. As expected, a tight linear relationship exists between distance and airtime, though 
the variance seems to increase as the number of miles increases. Let's look at the 
correlation:
flights[['DIST', 'AIR_TIME']].corr()

11. Back to the plot. There are a few flights that are quite far outside the trendline. Let's 
try and identify them. A linear regression model may be used to formally identify 
them, but as pandas doesn't support linear regression, we will take a more manual 
approach. Let's use the cut function to place the flight distances into one of eight 
groups:
>>> (flights

...     .reset_index(drop=True)

...     [['DIST', 'AIR_TIME']] 

...     .query('DIST <= 2000')

...     .dropna()

...     .pipe(lambda df_:pd.cut(df_.DIST,

...           bins=range(0, 2001, 250)))

...     .value_counts()

...     .sort_index()

... )

(0, 250]         6529

(250, 500]      12631

(500, 750]      11506

(750, 1000]      8832

(1000, 1250]     5071

(1250, 1500]     3198

(1500, 1750]     3885

(1750, 2000]     1815

Name: DIST, dtype: int64

12. We will assume that all flights within each group should have similar flight times, 
and thus calculate for each flight the number of standard deviations that the flight 
time deviates from the mean of that group:
>>> zscore = lambda x: (x - x.mean()) / x.std()

>>> short = (flights

...     [['DIST', 'AIR_TIME']] 

...     .query('DIST <= 2000')

...     .dropna()

...     .reset_index(drop=True)    
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...     .assign(BIN=lambda df_:pd.cut(df_.DIST,

...         bins=range(0, 2001, 250)))

... )

>>> scores = (short

...     .groupby('BIN')

...     ['AIR_TIME']

...     .transform(zscore)

... )  

>>> (short.assign(SCORE=scores))

       DIST  AIR_TIME           BIN     SCORE

0       590      94.0    (500, 750]  0.490966

1      1452     154.0  (1250, 1500] -1.267551

2       641      85.0    (500, 750] -0.296749

3      1192     126.0  (1000, 1250] -1.211020

4      1363     166.0  (1250, 1500] -0.521999

...     ...       ...           ...       ...

53462  1464     166.0  (1250, 1500] -0.521999

53463   414      71.0    (250, 500]  1.376879

53464   262      46.0    (250, 500] -1.255719

53465   907     124.0   (750, 1000]  0.495005

53466   522      73.0    (500, 750] -1.347036

13. We now need a way to discover the outliers. A box plot provides a visual for detecting 
outliers (beyond 1.5 times the inner quartile range). To create a boxplot for each bin, 
we need the bin names in the column names. We can use the .pivot method to do 
this:
>>> fig, ax = plt.subplots(figsize=(10,6))    

>>> (short.assign(SCORE=scores)

...     .pivot(columns='BIN')

...     ['SCORE']

...     .plot.box(ax=ax)

... )

>>> ax.set_title('Z-Scores for Distance Groups')

>>> fig.savefig('c13-box2.png')
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pandas box plot

14. Let's examine the points that are greater than six standard deviations away from the 
mean. Because we reset the index in the flights DataFrame in step 9, we can use it to 
identify each unique row in the flights DataFrame. Let's create a separate DataFrame 
with just the outliers:
>>> mask = (short

...     .assign(SCORE=scores)

...     .pipe(lambda df_:df_.SCORE.abs() >6)

... )

>>> outliers = (flights

...     [['DIST', 'AIR_TIME']] 

...     .query('DIST <= 2000')

...     .dropna()

...     .reset_index(drop=True)

...     [mask]

...     .assign(PLOT_NUM=lambda df_:range(1, len(df_)+1))

... )
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>>> outliers

       DIST  AIR_TIME  PLOT_NUM

14972   373     121.0         1

22507   907     199.0         2

40768   643     176.0         3

50141   651     164.0         4

52699   802     210.0         5

15. We can use this table to identify the outliers on the plot from step 9. pandas also 
provides a way to attach tables to the bottom of the graph if we use the tables 
parameter:

>>> fig, ax = plt.subplots(figsize=(8,6))

>>> (short

...     .assign(SCORE=scores)

...     .plot.scatter(x='DIST', y='AIR_TIME',

...                   alpha=.1, s=1, ax=ax,

...                   table=outliers)

... )

>>> outliers.plot.scatter(x='DIST', y='AIR_TIME',

...     s=25, ax=ax, grid=True)

>>> outs = outliers[['AIR_TIME', 'DIST', 'PLOT_NUM']]

>>> for t, d, n in outs.itertuples(index=False):

...     ax.text(d + 5, t + 5, str(n))

>>> plt.setp(ax.get_xticklabels(), y=.1)

>>> plt.setp(ax.get_xticklines(), visible=False)

>>> ax.set_xlabel('')

>>> ax.set_title('Flight Time vs Distance with Outliers')

>>> fig.savefig('c13-scat3.png', dpi=300, bbox_inches='tight')
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pandas scatter plot

How it works…
After reading in our data in step 1 and calculating columns for delayed and on-time flights, 
we are ready to begin making univariate plots. The call to the subplots function in step 
3 creates a 2 x 3 grid of equal-sized Axes. We unpack each Axes into its own variable to 
reference it. Each of the calls to the plotting methods references the specific Axes in the figure 
with the ax parameter. The .value_counts method is used to create the three Series that 
form the plots in the top row. The rot parameter rotates the tick labels to the given angle.
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The plot in the bottom left-hand corner uses a logarithmic scale for the y-axis, as the number 
of on-time flights is about two orders of magnitude greater than the number of canceled 
flights. Without the log scale, the left two bars would be difficult to see. By default, KDE plots 
may result in positive areas for impossible values, such as negative miles in the plot on the 
bottom row. For this reason, we limit the range of the x values with the xlim parameter.

The histogram created in the bottom right-hand corner on arrival delays was passed the 
range parameter. This is not part of the method signature of the pandas .plot.hist 
method. Instead, this parameter gets collected by the **kwds argument and then passed 
along to the matplotlib hist function. Using xlim as done in the previous plot would not work 
in this case. The plot would be cropped without recalculating the new bin widths for just that 
portion of the graph. The range parameter, however, both limits the x-axis and calculates the 
bin widths for just that range.

Step 4 creates a special extra DataFrame to hold columns with only datetime components 
so that we can instantly turn each row into a Timestamp with the to_datetime function 
in step 5.

In step 6 we use the .resample method. This method uses the index to form groups based 
on the date offset alias passed. We return the number of flights per week (W) as a Series and 
then call the .plot.line method on it, which formats the index as the x-axis. A glaring hole 
for the month of October appears.

To fill this hole, we use the .where method to set only values less than 600 to missing 
in step 7. We then fill in the missing data through linear interpolation. By default, the 
.interpolate method only interpolates in a forward direction, so any missing values 
at the start of the DataFrame will remain. By setting the limit_direction parameter to 
both, we ensure that there are no missing values.

The new data is plotted. To show the missing data more clearly, we select the points that 
were missing from the original and make a line plot on the same Axes on top of the previous 
line. Typically, when we annotate the plot, we can use the data coordinates, but in this 
instance, it isn't obvious what the coordinates of the x-axis are. To use the Axes coordinate 
system (the one that ranges from (0,0), to (1,1)), the xycoords parameter is set to axes 
fraction. This new plot now excludes the erroneous data and it makes it is much easier 
to spot a trend. The summer months have much more air traffic than any other time of the 
year.

In step 8, we use a long chain of methods to group by each destination airport and apply 
two functions, mean and count, to the DIST column. The .query method works well in 
a method for simple filtering. We have two columns in our DataFrame when we get to the 
.plot.bar method, which, by default, would make a bar plot for each column. We are not 
interested in the count column and therefore select only the mean column to form the bars. 
Also, when plotting with a DataFrame, each column name appears in the legend. This would 
put the word mean in the legend, which would not be useful, so we remove it by setting the 
legend parameter to False.
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Step 9 starts to look at the relationship between distance traveled and flight airtime. Due to 
the huge number of points, we shrink their size with the s parameter. We also use the alpha 
parameter to reveal overlapping points.

We see a correlation and quantify that value in step 10.

To find the flights that took much longer on average to reach their destination, we group each 
flight into 250-mile chunks in step 11 and find the number of standard deviations from their 
group mean in step 12.

In step 13, a new box plot is created in the same Axes for every unique value of the BIN.

In step 14, the current DataFrame, short, contains the information we need to find 
the slowest flights, but it does not possess all of the original data that we might want to 
investigate further. Because we reset the index of short in step 12, we can use it to identify 
the same row from the original. We also give each of the outlier rows a unique integer, PLOT_
NUM, to identify it later on when plotting.

In step 15, we begin with the same scatter plot as in step 9 but use the table parameter 
to append the outlier table to the bottom of the plot. We then plot our outliers as a scatter 
plot on top and ensure that their points are larger to identify them easily. The .itertuples 
method loops through each DataFrame row and returns its values as a tuple. We unpack the 
corresponding x and y values for our plot and label it with the number we assigned to it.

As the table is placed underneath of the plot, it interferes with the plotting objects on the 
x-axis. We move the tick labels to the inside of the axis and remove the tick lines and axis 
label. This table provides information about outlying events.

Stacking area charts to discover emerging 
trends

Stacked area charts are great visualizations to discover emerging trends, especially in the 
marketplace. It is a common choice to show the percentage of the market share for things 
such as internet browsers, cell phones, or vehicles.

In this recipe, we will use data gathered from the popular website meetup.com. Using a 
stacked area chart, we will show membership distribution between five data science-related 
meetup groups.

How to do it…
1. Read in the meetup dataset, convert the join_date column into a Timestamp, and 

set it as the index:
>>> meetup = pd.read_csv('data/meetup_groups.csv',
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...     parse_dates=['join_date'],

...     index_col='join_date')

>>> meetup

                                           group  ... country

join_date                                         ...

2016-11-18 02:41:29     houston machine learning  ...      us

2017-05-09 14:16:37     houston machine learning  ...      us

2016-12-30 02:34:16     houston machine learning  ...      us

2016-07-18 00:48:17     houston machine learning  ...      us

2017-05-25 12:58:16     houston machine learning  ...      us

...                                          ...  ...     ...

2017-10-07 18:05:24  houston data visualization   ...      us

2017-06-24 14:06:26  houston data visualization   ...      us

2015-10-05 17:08:40  houston data visualization   ...      us

2016-11-04 22:36:24  houston data visualization   ...      us

2016-08-02 17:47:29  houston data visualization   ...      us

2. Let's get the number of people who joined each group each week:
>>> (meetup

...     .groupby([pd.Grouper(freq='W'), 'group']) 

...     .size()

... )

join_date   group

2010-11-07  houstonr                         5

2010-11-14  houstonr                        11

2010-11-21  houstonr                         2

2010-12-05  houstonr                         1

2011-01-16  houstonr                         2

                                            ..

2017-10-15  houston data science            14

            houston data visualization      13

            houston energy data science      9

            houston machine learning        11

            houstonr                         2

Length: 763, dtype: int64
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3. Unstack the group level so that each meetup group has its own column of data:
>>> (meetup

...     .groupby([pd.Grouper(freq='W'), 'group']) 

...     .size()

...     .unstack('group', fill_value=0)

... )

group       houston data science  ...  houstonr

join_date                         ...

2010-11-07                     0  ...         5

2010-11-14                     0  ...        11

2010-11-21                     0  ...         2

2010-12-05                     0  ...         1

2011-01-16                     0  ...         2

...                          ...  ...       ...

2017-09-17                    16  ...         0

2017-09-24                    19  ...         7

2017-10-01                    20  ...         1

2017-10-08                    22  ...         2

2017-10-15                    14  ...         2

4. This data represents the number of members who joined that particular week. Let's 
take the cumulative sum of each column to get the grand total number of members:
>>> (meetup

...     .groupby([pd.Grouper(freq='W'), 'group']) 

...     .size()

...     .unstack('group', fill_value=0)

...     .cumsum()

... )

group       houston data science  ...  houstonr

join_date                         ...

2010-11-07                     0  ...         5

2010-11-14                     0  ...        16

2010-11-21                     0  ...        18

2010-12-05                     0  ...        19

2011-01-16                     0  ...        21

...                          ...  ...       ...

2017-09-17                  2105  ...      1056
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2017-09-24                  2124  ...      1063

2017-10-01                  2144  ...      1064

2017-10-08                  2166  ...      1066

2017-10-15                  2180  ...      1068

5. Many stacked area charts use the percentage of the total so that each row always 
adds up to 1. Let's divide each row by the row total to find the relative number:
>>> (meetup

...     .groupby([pd.Grouper(freq='W'), 'group']) 

...     .size()

...     .unstack('group', fill_value=0)

...     .cumsum()

...     .pipe(lambda df_: df_.div(

...           df_.sum(axis='columns'), axis='index'))

... )

group       houston data science  ...  houstonr

join_date                         ...

2010-11-07              0.000000  ...  1.000000

2010-11-14              0.000000  ...  1.000000

2010-11-21              0.000000  ...  1.000000

2010-12-05              0.000000  ...  1.000000

2011-01-16              0.000000  ...  1.000000

...                          ...  ...       ...

2017-09-17              0.282058  ...  0.141498

2017-09-24              0.282409  ...  0.141338

2017-10-01              0.283074  ...  0.140481

2017-10-08              0.284177  ...  0.139858

2017-10-15              0.284187  ...  0.139226

6. We can now create our stacked area plot, which will continually accumulate the 
columns, one on top of the other:

>>> fig, ax = plt.subplots(figsize=(18,6))    

>>> (meetup

...     .groupby([pd.Grouper(freq='W'), 'group']) 

...     .size()

...     .unstack('group', fill_value=0)

...     .cumsum()
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...     .pipe(lambda df_: df_.div(

...           df_.sum(axis='columns'), axis='index'))

...     .plot.area(ax=ax,

...           cmap='Greys', xlim=('2013-6', None),

...           ylim=(0, 1), legend=False)

... )

 >>> ax.figure.suptitle('Houston Meetup Groups', size=25)

 >>> ax.set_xlabel('')

 >>> ax.yaxis.tick_right()

 >>> kwargs = {'xycoords':'axes fraction', 'size':15}

 >>> ax.annotate(xy=(.1, .7), s='R Users',

 ...     color='w', **kwargs)

 >>> ax.annotate(xy=(.25, .16), s='Data Visualization',

 ...     color='k', **kwargs)

 >>> ax.annotate(xy=(.5, .55), s='Energy Data Science',

 ...     color='k', **kwargs)

 >>> ax.annotate(xy=(.83, .07), s='Data Science',

 ...     color='k', **kwargs)

 >>> ax.annotate(xy=(.86, .78), s='Machine Learning',

 ...     color='w', **kwargs)

 >>> fig.savefig('c13-stacked1.png')

Stacked plot of meetup group distribution
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How it works…
Our goal is to determine the distribution of members among the five largest data science 
meetup groups in Houston over time. To do this, we need to find the total membership at 
every point in time since each group began.

In step 2, we group by each week (offset alias W) and meetup group and return the number 
of sign-ups for that week with the .size method.

The resulting Series is not suitable to make plots with pandas. Each meetup group needs 
its own column, so we reshape the group index level as columns. We set the option fill_
value to zero so that groups with no memberships during a particular week will not have 
missing values.

We are in need of the total number of members each week. The .cumsum method in step 
4 provides this for us. We could create our stacked area plot after this step, which would 
be a nice way to visualize the raw total membership.

In step 5, we find the distribution of each group as a fraction of the total members in all 
groups by dividing each value by its row total. By default, pandas automatically aligns objects 
by their columns, so we cannot use the division operator. Instead, we must use the .div 
method and use the axis parameter with a value of index.

The data is now ready for a stacked area plot, which we create in step 6. Notice that pandas 
allows you to set the axis limits with a datetime string. This will not work if done in matplotlib 
using the ax.set_xlim method. The starting date for the plot is moved up a couple years 
because the Houston R Users group began much earlier than any of the other groups.

Understanding the differences between 
seaborn and pandas

The seaborn library is a popular Python library for creating visualizations. Like pandas, it 
does not do any actual plotting itself and is a wrapper around matplotlib. Seaborn plotting 
functions work with pandas DataFrames to create aesthetically pleasing visualizations.

While seaborn and pandas both reduce the overhead of matplotlib, the way they approach 
data is completely different. Nearly all of the seaborn plotting functions require tidy (or long) 
data.
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Processing tidy data during data analysis often creates aggregated or wide data. This data, 
in wide format, is what pandas uses to make its plots.

In this recipe, we will build similar plots with both seaborn and pandas to show the types of 
data (tidy versus wide) that they accept.

How to do it…
1. Read in the employee dataset:

>>> employee = pd.read_csv('data/employee.csv',

...     parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> employee

      UNIQUE_ID POSITION_TITLE   DEPARTMENT  ...  \

0             0  ASSISTAN...    Municipa...  ...

1             1  LIBRARY ...        Library  ...

2             2  POLICE O...    Houston ...  ...

3             3  ENGINEER...    Houston ...  ...

4             4  ELECTRICIAN    General ...  ...

...         ...          ...            ...  ...

1995       1995  POLICE O...    Houston ...  ...

1996       1996  COMMUNIC...    Houston ...  ...

1997       1997  POLICE O...    Houston ...  ...

1998       1998  POLICE O...    Houston ...  ...

1999       1999  FIRE FIG...    Houston ...  ...

[2000 rows x 10 columns]

2. Import the seaborn library, and alias it as sns:
>>> import seaborn as sns

3. Let's make a bar chart of the count of each department with seaborn:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> sns.countplot(y='DEPARTMENT', data=employee, ax=ax)     

>>> fig.savefig('c13-sns1.png', dpi=300, bbox_inches='tight')
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Seaborn bar plot

4. To reproduce this plot with pandas, we will need to aggregate the data beforehand:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> (employee

...     ['DEPARTMENT']

...     .value_counts()

...     .plot.barh(ax=ax)

... )

>>> fig.savefig('c13-sns2.png', dpi=300, bbox_inches='tight')
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pandas bar plot

5. Now, let's find the average salary for each race with seaborn:
>>> fig, ax = plt.subplots(figsize=(8, 6))    

>>> sns.barplot(y='RACE', x='BASE_SALARY', data=employee, ax=ax)

>>> fig.savefig('c13-sns3.png', dpi=300, bbox_inches='tight')

Seaborn bar plot
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6. To replicate this with pandas, we will need to group by RACE first:
>>> fig, ax = plt.subplots(figsize=(8, 6))    

>>> (employee

...     .groupby('RACE', sort=False) 

...     ['BASE_SALARY']

...     .mean()

...     .plot.barh(rot=0, width=.8, ax=ax)

... )

>>> ax.set_xlabel('Mean Salary')

>>> fig.savefig('c13-sns4.png', dpi=300, bbox_inches='tight')

pandas bar plot

7. Seaborn also has the ability to distinguish groups within the data through a third 
variable, hue, in most of its plotting functions. Let's find the mean salary by RACE and 
GENDER:
>>> fig, ax = plt.subplots(figsize=(18, 6))        

>>> sns.barplot(x='RACE', y='BASE_SALARY', hue='GENDER',

...     ax=ax, data=employee, palette='Greys',

...     order=['Hispanic/Latino', 

...            'Black or African American',

...            'American Indian or Alaskan Native',

...            'Asian/Pacific Islander', 'Others',



Chapter 13

535

...            'White'])

>>> fig.savefig('c13-sns5.png', dpi=300, bbox_inches='tight')

Seaborn bar plot

8. With pandas, we will have to group by both RACE and GENDER and then unstack the 
genders as column names:
>>> fig, ax = plt.subplots(figsize=(18, 6))            

>>> (employee

...     .groupby(['RACE', 'GENDER'], sort=False) 

...     ['BASE_SALARY']

...     .mean()

...     .unstack('GENDER')

...     .sort_values('Female')

...     .plot.bar(rot=0, ax=ax,

...         width=.8, cmap='viridis')

... )

>>> fig.savefig('c13-sns6.png', dpi=300, bbox_inches='tight')

pandas bar plot
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9. A box plot is another plot that both seaborn and pandas have in common. Let's 
create a box plot of salary by RACE and GENDER with seaborn:
>>> fig, ax = plt.subplots(figsize=(8, 6))            

>>> sns.boxplot(x='GENDER', y='BASE_SALARY', data=employee,

...             hue='RACE', palette='Greys', ax=ax)

>>> fig.savefig('c13-sns7.png', dpi=300, bbox_inches='tight')

Seaborn box plot

10. pandas is not easily able to produce an exact replication for this box plot. It can 
create two separate Axes for gender and then make box plots of salaries by race:

>>> fig, axs = plt.subplots(1, 2, figsize=(12, 6), sharey=True)

>>> for g, ax in zip(['Female', 'Male'], axs):

...     (employee

...         .query('GENDER == @g')

...         .assign(RACE=lambda df_:df_.RACE.fillna('NA'))

...         .pivot(columns='RACE')
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...         ['BASE_SALARY']

...         .plot.box(ax=ax, rot=30)

...     )

...     ax.set_title(g + ' Salary')

...     ax.set_xlabel('')

>>> fig.savefig('c13-sns8.png', bbox_inches='tight')

pandas box plot

How it works…
Importing seaborn in step 2 changes many of the default properties of matplotlib. There are 
about 300 default plotting parameters that can be accessed within the dictionary-like object 
plt.rcParams. To restore the matplotlib defaults, call the plt.rcdefaults function with 
no arguments.

The style of pandas plots will also be affected when importing seaborn. Our employee dataset 
meets the requirements for tidy data and thus makes it perfect to use for nearly all seaborn's 
plotting functions.
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Seaborn will do all the aggregation; you just need to supply your DataFrame to the data 
parameter and refer to the columns with their string names. For instance, in step 3, the 
countplot function effortlessly counts each occurrence of a DEPARTMENT to create a 
bar chart. Most seaborn plotting functions have x and y parameters. We could have made 
a vertical bar plot by switching the values for x and y. pandas forces you to do a bit more 
work to get the same plot. In step 4, we must precalculate the height of the bins using the 
.value_counts method.

Seaborn is able to do more complex aggregations, as seen in steps 5 and 7, with the 
barplot function. The hue parameter further splits each of the groups on the x-axis. 
pandas is capable of nearly replicating these plots by grouping by the x and hue variables 
in steps 6 and 8.

Box plots are available in both seaborn and pandas and can be plotted with tidy data 
without any aggregation. Even though no aggregation is necessary, seaborn still has the 
upper hand, as it can split data neatly into separate groups using the hue parameter. 
pandas cannot easily replicate this function from seaborn, as seen in step 10. Each group 
needs to be split with the .query method and plotted on its own Axes.

Multivariate analysis with seaborn Grids
Seaborn has the ability to facet multiple plots in a grid. Certain functions in seaborn do 
not work at the matplotlib axis level, but rather at the figure level. These include catplot, 
lmplot, pairplot, jointplot, and clustermap.

The figure or grid functions, for the most part, use the axes functions to build the grid. 
The final objects returned from the grid functions are of grid type, of which there are four 
different kinds. Advanced use cases necessitate the use of grid types, but the vast majority 
of the time, you will call the underlying grid functions to produce the actual Grid and not the 
constructor itself.

In this recipe, we will examine the relationship between years of experience and salary by 
gender and race. We will begin by creating a regression plot with a seaborn Axes function 
and then add more dimensions to the plot with grid functions.
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How to do it…
1. Read in the employee dataset, and create a column for years of experience:

>>> emp = pd.read_csv('data/employee.csv',

...     parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> def yrs_exp(df_):

...     days_hired = pd.to_datetime('12-1-2016') - df_.HIRE_DATE

...     return days_hired.dt.days / 365.25

>>> emp = (emp

...     .assign(YEARS_EXPERIENCE=yrs_exp)

... )

>>> emp[['HIRE_DATE', 'YEARS_EXPERIENCE']]

      HIRE_DATE  YEARS_EXPERIENCE

0    2006-06-12    10.472494

1    2000-07-19    16.369946

2    2015-02-03     1.826184

3    1982-02-08    34.812488

4    1989-06-19    27.452994

...         ...          ...

1995 2014-06-09     2.480544

1996 2003-09-02    13.248732

1997 2014-10-13     2.135567

1998 2009-01-20     7.863269

1999 2009-01-12     7.885172
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2. Let's create a scatter plot with a fitted regression line to represent the relationship 
between years of experience and salary:
>>> fig, ax = plt.subplots(figsize=(8, 6))        

>>> sns.regplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

...     data=emp, ax=ax)

>>> fig.savefig('c13-scat4.png', dpi=300, bbox_inches='tight')

Seaborn scatter plot

3. The regplot function cannot plot multiple regression lines for different columns. 
Let's use the lmplot function to plot a seaborn grid that adds regression lines for 
males and females:
>>> grid = sns.lmplot(x='YEARS_EXPERIENCE', y='BASE_SALARY', 

...     hue='GENDER', palette='Greys',

...     scatter_kws={'s':10}, data=emp)

>>> grid.fig.set_size_inches(8, 6) 

>>> grid.fig.savefig('c13-scat5.png', dpi=300, bbox_
inches='tight')
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Seaborn scatter plot

4. The real power of the seaborn grid functions is their ability to add more Axes 
based on another variable. The lmplot function has the col and row parameters 
available to divide the data further into different groups. For instance, we can create 
a separate plot for each unique race in the dataset and still fit the regression lines 
by gender:

>>> grid = sns.lmplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

...                   hue='GENDER', col='RACE', col_wrap=3,

...                   palette='Greys', sharex=False,

...                   line_kws = {'linewidth':5},

...                   data=emp)

>>> grid.set(ylim=(20000, 120000))     

>>> grid.fig.savefig('c13-scat6.png', dpi=300, bbox_
inches='tight')
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Seaborn scatter plot

How it works…
In step 1, we create another continuous variable by using pandas date functionality. This data 
was collected from the city of Houston on December 1, 2016. We use this date to determine 
how long each employee has worked for the city. When we subtract dates, as done in the 
second line of code, we are returned a Timedelta object whose largest unit is days. We 
divided the days of this result by 365.25 to calculate the years of experience.

Step 2 uses the regplot function to create a scatter plot with the estimated regression line. 
It returns a matplotlib Axes, which we use to change the size of the figure. To create two 
separate regression lines for each gender, we must use the lmplot function, which returns 
a seaborn FacetGrid. This function has a hue parameter, which overlays a new regression 
line of distinct color for each unique value of that column.

The seaborn FacetGrid is essentially a wrapper around the matplotlib Figure, with a few 
convenience methods to alter its elements. You can access the underlying matplotlib Figure 
with their.fig attribute. Step 4 shows a common use-case for seaborn functions that return 
FacetGrids, which is to create multiple plots based on a third or even fourth variable. We 
set the col parameter to RACE. Six regression plots are created for each of the six unique 
races in the RACE column. Normally, this would return a grid consisting of one row and six 
columns, but we use the col_wrap parameter to wrap the row after three columns.
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There are other parameters to control aspects of the Grid. It is possible to use parameters 
from the underlying line and scatter plot functions from matplotlib. To do so, set 
the scatter_kws or the line_kws parameters to a dictionary that has the matplotlib 
parameter as a key paired with the value.

There's more…
We can do a similar type of analysis when we have categorical features. First, let's reduce 
the number of levels in the categorical variables RACE and DEPARTMENT to the top two and 
three most common, respectively:

>>> deps = emp['DEPARTMENT'].value_counts().index[:2]

>>> races = emp['RACE'].value_counts().index[:3]

>>> is_dep = emp['DEPARTMENT'].isin(deps)

>>> is_race = emp['RACE'].isin(races)    

>>> emp2 = (emp

...     [is_dep & is_race]

...     .assign(DEPARTMENT=lambda df_:

...             df_['DEPARTMENT'].str.extract('(HPD|HFD)',

...                                     expand=True))

... )

>>> emp2.shape

(968, 11)

>>> emp2['DEPARTMENT'].value_counts()

HPD    591

HFD    377

Name: DEPARTMENT, dtype: int64

>>> emp2['RACE'].value_counts()

White                        478

Hispanic/Latino              250

Black or African American    240

Name: RACE, dtype: int64
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Let's use one of the simpler Axes-level functions, such as violinplot to view the distribution 
of years of experience by gender:

>>> common_depts = (emp

...     .groupby('DEPARTMENT') 

...     .filter(lambda group: len(group) > 50)

... )

>>> fig, ax = plt.subplots(figsize=(8, 6))   

>>> sns.violinplot(x='YEARS_EXPERIENCE', y='GENDER',

...     data=common_depts)

>>> fig.savefig('c13-vio1.png', dpi=300, bbox_inches='tight')

Seaborn violin plot

We can then use the catplot to add a violin plot for each unique combination of department 
and race with the col and row parameters:

>>> grid = sns.catplot(x='YEARS_EXPERIENCE', y='GENDER',

...                       col='RACE', row='DEPARTMENT',

...                       height=3, aspect=2,

...                       data=emp2, kind='violin')

>>> grid.fig.savefig('c13-vio2.png', dpi=300, bbox_inches='tight')
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Seaborn violin plot

Uncovering Simpson's Paradox in the 
diamonds dataset with seaborn

It is unfortunately quite easy to report erroneous results when doing data analysis. Simpson's 
Paradox is one of the more common phenomena that can appear. It occurs when one group 
shows a higher result than another group, when all the data is aggregated, but it shows the 
opposite when the data is subdivided into different segments. For instance, let's say we have 
two students, A and B, who have each been given a test with 100 questions on it. Student 
A answers 50% of the questions correct, while Student B gets 80% correct. This obviously 
suggests Student B has greater aptitude:

Student Raw Score Percent Correct
A 50/100 50
B 80/100 80

Let's say that the two tests were very different. Student A's test consisted of 95 problems 
that were difficult and only five that were easy. Student B was given a test with the exact 
opposite ratio:

Student Difficult Easy
Difficult 
Percent

Easy 
Percent Percent

A 45/95 5/5 47 100 50
B 2/5 78/95 40 82 80

This paints a completely different picture. Student A now has a higher percentage of both 
the difficult and easy problems but has a much lower percentage as a whole. This is a 
quintessential example of Simpson's Paradox. The aggregated whole shows the opposite 
of each individual segment.
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In this recipe, we will first reach a perplexing result that appears to suggest that higher 
quality diamonds are worth less than lower quality ones. We uncover Simpson's Paradox 
by taking more finely grained glimpses into the data that suggest the opposite is true.

How to do it…
1. Read in the diamonds dataset:

>>> dia = pd.read_csv('data/diamonds.csv')

>>> dia

       carat        cut color  ...     x     y     z

0       0.23      Ideal     E  ...  3.95  3.98  2.43

1       0.21    Premium     E  ...  3.89  3.84  2.31

2       0.23       Good     E  ...  4.05  4.07  2.31

3       0.29    Premium     I  ...  4.20  4.23  2.63

4       0.31       Good     J  ...  4.34  4.35  2.75

...      ...        ...   ...  ...   ...   ...   ...

53935   0.72      Ideal     D  ...  5.75  5.76  3.50

53936   0.72       Good     D  ...  5.69  5.75  3.61

53937   0.70  Very Good     D  ...  5.66  5.68  3.56

53938   0.86    Premium     H  ...  6.15  6.12  3.74

53939   0.75      Ideal     D  ...  5.83  5.87  3.64

2. Before we begin analysis, let's change the cut, color, and clarity columns into 
ordered categorical variables:
>>> cut_cats = ['Fair', 'Good', 'Very Good', 'Premium', 'Ideal']

>>> color_cats = ['J', 'I', 'H', 'G', 'F', 'E', 'D']

>>> clarity_cats = ['I1', 'SI2', 'SI1', 'VS2',

...                 'VS1', 'VVS2', 'VVS1', 'IF']

>>> dia2 = (dia

...     .assign(cut=pd.Categorical(dia['cut'], 

...                  categories=cut_cats,

...                  ordered=True),

...             color=pd.Categorical(dia['color'], 

...                  categories=color_cats,

...                  ordered=True),

...             clarity=pd.Categorical(dia['clarity'], 

...                  categories=clarity_cats,
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...                  ordered=True))

... )

>>> dia2

       carat        cut color  ...     x     y     z

0       0.23      Ideal     E  ...  3.95  3.98  2.43

1       0.21    Premium     E  ...  3.89  3.84  2.31

2       0.23       Good     E  ...  4.05  4.07  2.31

3       0.29    Premium     I  ...  4.20  4.23  2.63

4       0.31       Good     J  ...  4.34  4.35  2.75

...      ...        ...   ...  ...   ...   ...   ...

53935   0.72      Ideal     D  ...  5.75  5.76  3.50

53936   0.72       Good     D  ...  5.69  5.75  3.61

53937   0.70  Very Good     D  ...  5.66  5.68  3.56

53938   0.86    Premium     H  ...  6.15  6.12  3.74

53939   0.75      Ideal     D  ...  5.83  5.87  3.64

3. Seaborn uses category orders for its plots. Let's make a bar plot of the mean price for 
each level of the cut, color, and clarity columns:
>>> import seaborn as sns

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='price', data=dia2, ax=ax1)

>>> sns.barplot(x='cut', y='price', data=dia2, ax=ax2)

>>> sns.barplot(x='clarity', y='price', data=dia2, ax=ax3)

>>> fig.suptitle('Price Decreasing with Increasing Quality?')

>>> fig.savefig('c13-bar4.png', dpi=300, bbox_inches='tight')

Seaborn bar plot



Visualization with Matplotlib, Pandas, and Seaborn

548

4. There seems to be a decreasing trend for color and price. The highest quality cut 
and clarity levels also have low prices. How can this be? Let's dig a little deeper and 
plot the price for each diamond color again, but make a new plot for each level of 
the clarity column:
>>> grid = sns.catplot(x='color', y='price', col='clarity',

...     col_wrap=4, data=dia2, kind='bar')

>>> grid.fig.savefig('c13-bar5.png', dpi=300, bbox_inches='tight')

Seaborn bar plot

5. This plot is a little more revealing. Although price appears to decrease as the quality 
of color increases, it does not do so when clarity is at its highest level. There is a 
substantial increase in price. We have yet to look at just the price of the diamond 
without paying any attention to its size. Let's recreate the plot from step 3 but use the 
carat size in place of price:
>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='carat', data=dia2, ax=ax1)

>>> sns.barplot(x='cut', y='carat', data=dia2, ax=ax2)

>>> sns.barplot(x='clarity', y='carat', data=dia2, ax=ax3)

>>> fig.suptitle('Diamond size decreases with quality')

>>> fig.savefig('c13-bar6.png', dpi=300, bbox_inches='tight')
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Seaborn bar plot

6. Now our story is starting to make a bit more sense. Higher quality diamonds appear 
to be smaller in size, which intuitively makes sense. Let's create a new variable that 
segments the carat values into five distinct sections, and then create a point plot. 
The plot that follows reveals that higher quality diamonds do, in fact, cost more 
money when they are segmented based on size:

>>> dia2 = (dia2

...     .assign(carat_category=pd.qcut(dia2.carat, 5))

... )

>>> from matplotlib.cm import Greys

>>> greys = Greys(np.arange(50,250,40))

>>> grid = sns.catplot(x='clarity', y='price', data=dia2,

...    hue='carat_category', col='color',

...    col_wrap=4, kind='point', palette=greys)

>>> grid.fig.suptitle('Diamond price by size, color and clarity',

...    y=1.02, size=20)

>>> grid.fig.savefig('c13-bar7.png', dpi=300, bbox_inches='tight')
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Seaborn point plot

How it works…
In this recipe, it is important to create categorical columns, as they are allowed to be ordered. 
Seaborn uses this ordering to place the labels on the plot. Steps 3 and 4 show what appears 
to be a downward trend for increasing diamond quality. This is where Simpson's paradox 
takes center stage. This aggregated result of the whole is being confounded by other 
variables not yet examined.

The key to uncovering this paradox is to focus on carat size. Step 5 reveals to us that carat 
size is also decreasing with increasing quality. To account for this fact, we cut the diamond 
size into five equally-sized bins with the qcut function. By default, this function cuts the 
variable into discrete categories based on the given quantiles. By passing it an integer, as was 
done in this step, it creates equally-spaced quantiles. You also have the option of passing it a 
sequence of explicit non-regular quantiles.

With this new variable, we can make a plot of the mean price per diamond size per group, 
as done in step 6. The point plot in seaborn creates a line plot connecting the means of 
each category. The vertical bar at each point is the standard deviation for that group. This 
plot confirms that diamonds do indeed become more expensive as their quality increases, 
as long as we hold the carat size as the constant.
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There's more…
The bar plots in steps 3 and 5 could have been created with the more advanced seaborn 
PairGrid constructor, which can plot a bivariate relationship. Using a PairGrid is a 
two-step process. The first step is to call the constructor and alert it to which variables will 
be x and which will be y. The second step calls the .map method to apply a plot to all of the 
combinations of x and y columns:

>>> g = sns.PairGrid(dia2, height=5,

...     x_vars=["color", "cut", "clarity"],

...     y_vars=["price"])

>>> g.map(sns.barplot)

>>> g.fig.suptitle('Replication of Step 3 with PairGrid', y=1.02)

>>> g.fig.savefig('c13-bar8.png', dpi=300, bbox_inches='tight')

Seaborn bar plot
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Debugging and 
Testing Pandas

Code to transform data
In this chapter, we will look at some code that analyzes survey data that Kaggle did in 2018. 
The survey queried Kaggle users about socio-economic information.

This section will present the survey data along with some code to analyze it. The subtitle for 
this data is "the most comprehensive dataset available on the state of machine learning and 
data science". Let's dig into this data and see what it has. The data was originally available at 
https://www.kaggle.com/kaggle/kaggle-survey-2018.

How to do it…
1. Load the data into a DataFrame:

>>> import pandas as pd

>>> import numpy as np

>>> import zipfile

>>> url = 'data/kaggle-survey-2018.zip'

>>> with zipfile.ZipFile(url) as z:

...     print(z.namelist())

...     kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

https://www.kaggle.com/kaggle/kaggle-survey-2018
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...     df = kag.iloc[1:]

['multipleChoiceResponses.csv', 'freeFormResponses.csv', 
'SurveySchema.csv']

2. Look at the data and data types:
>>> df.T

                    1          2            3      ...   23857

Time from...          710        434          718  ...     370

Q1                 Female       Male       Female  ...    Male

Q1_OTHER_...           -1         -1           -1  ...      -1

Q2                  45-49      30-34        30-34  ...   22-24

Q3            United S...  Indonesia  United S...  ...  Turkey

...                   ...        ...          ...  ...     ...

Q50_Part_5            NaN        NaN          NaN  ...     NaN

Q50_Part_6            NaN        NaN          NaN  ...     NaN

Q50_Part_7            NaN        NaN          NaN  ...     NaN

Q50_Part_8            NaN        NaN          NaN  ...     NaN

Q50_OTHER...           -1         -1           -1  ...      -1

>>> df.dtypes

Time from Start to Finish (seconds)    object

Q1                                     object

Q1_OTHER_TEXT                          object

Q2                                     object

Q3                                     object

                                        ...  

Q50_Part_5                             object

Q50_Part_6                             object

Q50_Part_7                             object

Q50_Part_8                             object

Q50_OTHER_TEXT                         object

Length: 395, dtype: object

3. It turns out that most of the survey data was selecting from options of responses. We 
see that the type of all of the columns is object. We could go through our standard 
process of exploring these values using the .value_counts method:
>>> df.Q1.value_counts(dropna=False)

Male                       19430
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Female                      4010

Prefer not to say            340

Prefer to self-describe       79

Name: Q1, dtype: int64

4. To make a long story short, I pull out each column of interest as a Series. I filtered 
most of the values to a limited number of values. I used the Series .rename method 
to give the column a better name. Some of the values, such as the Q2, Q8, and Q9, 
have range answers. In the case of age (Q2), you have values like 55-59 and 60-69. 
I use the .str.slice method to pull out the first two characters, and convert the 
type from string to integer.

For the education column (Q4), I convert the values to ordinal numbers. Finally, after 
I have converted many columns I'm working with to numbers and cleaned up some 
of the others, I put all of the Series back in a DataFrame with pd.concat.

I put all of this code into a function, tweak_kag:
>>> def tweak_kag(df):

...     na_mask = df.Q9.isna()

...     hide_mask = df.Q9.str.startswith('I do not').fillna(False)

...     df = df[~na_mask & ~hide_mask]

...     

...     q1 = (df.Q1

...       .replace({'Prefer not to say': 'Another',

...                'Prefer to self-describe': 'Another'})

...       .rename('Gender')

...     )

...     q2 = df.Q2.str.slice(0,2).astype(int).rename('Age')

...     def limit_countries(val):

...         if val in  {'United States of America', 'India', 
'China'}:

...             return val

...         return 'Another'

...     q3 = df.Q3.apply(limit_countries).rename('Country')

...    

...     q4 = (df.Q4

...      .replace({'Master's degree': 18,

...      'Bachelor's degree': 16,

...      'Doctoral degree': 20,

...      'Some college/university study without earning a 
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bachelor's degree': 13,

...      'Professional degree': 19,

...      'I prefer not to answer': None,

...      'No formal education past high school': 12})

...      .fillna(11)

...      .rename('Edu')

...     )

...     

...     def only_cs_stat_val(val):

...         if val not in {'cs', 'eng', 'stat'}:

...             return 'another'

...         return val

...   

...     q5 = (df.Q5

...             .replace({

...                 'Computer science (software engineering, 
etc.)': 'cs',

...                 'Engineering (non-computer focused)': 'eng',

...                 'Mathematics or statistics': 'stat'})

...              .apply(only_cs_stat_val)

...              .rename('Studies'))

...     def limit_occupation(val):

...         if val in {'Student', 'Data Scientist', 'Software 
Engineer', 'Not employed',

...                   'Data Engineer'}:

...             return val

...         return 'Another'

...   

...     q6 = df.Q6.apply(limit_occupation).rename('Occupation')

...     

...     q8 = (df.Q8

...       .str.replace('+', '')

...       .str.split('-', expand=True)

...       .iloc[:,0]

...       .fillna(-1)

...       .astype(int)
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...       .rename('Experience')

...     )

...     

...     q9 = (df.Q9

...      .str.replace('+','')

...      .str.replace(',','')

...      .str.replace('500000', '500')

...      .str.replace('I do not wish to disclose my approximate 
yearly compensation','')

...      .str.split('-', expand=True)

...      .iloc[:,0]

...      .astype(int)

...      .mul(1000)

...      .rename('Salary'))

...     return pd.concat([q1, q2, q3, q4, q5, q6, q8, q9], axis=1)

>>> tweak_kag(df)

       Gender  Age      Country  ...   Occupation Experience

2        Male   30      Another  ...      Another          5

3      Female   30  United S...  ...  Data Sci...          0

5        Male   22        India  ...      Another          0

7        Male   35      Another  ...      Another         10

8        Male   18        India  ...      Another          0

...       ...  ...          ...  ...          ...        ...

23844    Male   30      Another  ...  Software...         10

23845    Male   22      Another  ...      Student          0

23854    Male   30      Another  ...      Another          5

23855    Male   45      Another  ...      Another          5

23857    Male   22      Another  ...  Software...          0

>>> tweak_kag(df).dtypes

Gender         object

Age             int64

Country        object

Edu           float64

Studies        object
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Occupation     object

Experience      int64

Salary          int64

dtype: object

How it works…
The survey data is rich with information, but it's a little hard to analyze it because all of the 
columns come in as objects. Our tweak_kag function filters out respondents who did not 
provide salary information. We also convert a few of the columns (Age, Edu, Experience, 
and Salary) to numeric values for easier quantification. The remaining categorical columns 
are pruned down to lower cardinality.

Cleaning up our data makes it easier to analyze. For example, we can easily group by country 
and correlate salary and experience:

>>> kag = tweak_kag(df)

>>> (kag

...     .groupby('Country')

...     .apply(lambda g: g.Salary.corr(g.Experience))

... )

Country

Another                     0.289827

China                       0.252974

India                       0.167335

United States of America    0.354125

dtype: float64

Apply performance
The .apply method on a Series and DataFrame is one of the slowest operations in pandas. 
In this recipe, we will explore the speed of it and see if we can debug what is going on.

How to do it…
1. Let's time how long one use of the .apply method takes using the %%timeit 

cell magic in Jupiter. This is the code from the tweak_kag function that limits the 
cardinality of the country column (Q3):
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>>> %%timeit

>>> def limit_countries(val):

...      if val in  {'United States of America', 'India', 
'China'}:

...          return val

...      return 'Another'

>>> q3 = df.Q3.apply(limit_countries).rename('Country')

6.42 ms ± 1.22 ms per loop (mean ± std. dev. of 7 runs, 100 loops 
each)

2. Let's look at using the .replace method instead of .apply and see if that improves 
performance:
>>> %%timeit

>>> other_values = df.Q3.value_counts().iloc[3:].index

>>> q3_2 = df.Q3.replace(other_values, 'Another')

27.7 ms ± 535 µs per loop (mean ± std. dev. of 7 runs, 10 loops 
each)

3. Woah! That was slower than the .apply method! Let's try again. If we recreate this 
code using the .isin method combined with .where, it runs over twice as fast as 
.apply:
>>> %%timeit

>>> values = {'United States of America', 'India', 'China'}

>>> q3_3 = df.Q3.where(df.Q3.isin(values), 'Another')

3.39 ms ± 570 µs per loop (mean ± std. dev. of 7 runs, 100 loops 
each)

4. Finally, let's try the np.where function. This is not part of pandas, but pandas often 
works with NumPy functions:
>>> %%timeit

>>> values = {'United States of America', 'India', 'China'}

>>> q3_4 = pd.Series(np.where(df.Q3.isin(values), df.Q3, 
'Another'), 

...      index=df.index)

2.75 ms ± 345 µs per loop (mean ± std. dev. of 7 runs, 100 loops 
each)

5. Let's check if the results are the same:

>>> q3.equals(q3_2)

True
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>>> q3.equals(q3_3)

True

>>> q3.equals(q3_4)

True

How it works…
This recipe benchmarked the .apply, .replace, and .where methods. Of those three, 
the .where method was the quickest. Finally, it showed the NumPy where function, which 
is even faster than pandas. However, if we use the NumPy function, we need to convert the 
result back into a series (and give it the same index as the original DataFrame).

There's more…
The documentation for the .apply method states that if you pass in a NumPy function, 
it will run a fast path and pass the whole series to the function. However, if you pass in a 
Python function, that function will be called for each value in the Series. This can be confusing 
because the method behaves differently depending on the parameter that is passed into it.

If you find yourself in a situation where you are passing in a function to .apply (or have 
done a groupby operation and are calling .agg, .transform, or some other method that 
takes a function as a parameter) and cannot remember what arguments will be passed into 
the function, you can use the following code to help. (Of course, you can also look at the 
documentation or even look at the code for .apply):

>>> def limit_countries(val):

...      if val in  {'United States of America', 'India', 'China'}:

...          return val

...      return 'Another'

>>> q3 = df.Q3.apply(limit_countries).rename('Country')

>>> def debug(something):

...     # what is something? A cell, series, dataframe?

...     print(type(something), something)

...     1/0

>>> q3.apply(debug)

<class 'str'> United States of America
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Traceback (most recent call last)

...

ZeroDivisionError: division by zero

The output shows that a string (a scalar value from the series q3) was passed into the debug 
function.

If you do not want to throw an exception, you can set a global variable to hold the parameter 
passed into the function:

>>> the_item = None

>>> def debug(something):

...     global the_item

...     the_item = something

...     return something

>>> _ = q3.apply(debug)

>>> the_item

'Another'

One thing to keep in mind is that the function we pass into the .apply method is called once 
per item in the Series. Operating on single items is a slow path, and we should try to avoid it 
if possible. The next recipe will show another option for speeding calls to .apply.

Improving apply performance with Dask, 
Pandarell, Swifter, and more

Sometimes .apply is convenient. Various libraries enable parallelizing such operations. 
There are various mechanisms to do this. The easiest is to try and leverage vectorization. 
Math operations are vectorized in pandas, if you add a number (say 5) to a numerical series, 
pandas will not add 5 to each value. Rather it will leverage a feature of modern CPUs to do the 
operation one time.

If you cannot vectorize, as is the case with our limit_countries function, you have other 
options. This section will show a few of them.

Note that you will need to install these libraries as they are not included with pandas.

The examples show limiting values in the country column from the survey data to a few values.
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How to do it…
1. Import and initialize the Pandarallel library. This library tries to parallelize pandas 

operations across all available CPUs. Note that this library runs fine on Linux and 
Mac. Because of the shared memory technique it leverages, it will not work on 
Windows unless Python is being executed with the Windows Subsystem for Linux:
>>> from pandarallel import pandarallel

>>> pandarallel.initialize()

2. This library augments the DataFrame to add some extra methods. Use the 
.parallel_apply method:
>>> def limit_countries(val):

...      if val in  {'United States of America', 'India', 
'China'}:

...          return val

...      return 'Another'

>>> %%timeit

>>> res_p = df.Q3.parallel_apply(limit_countries).
rename('Country')

133 ms ± 11.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops 
each)

3. Let's try another library. Import the swifter library:
>>> import swifter

4. This library also augments the DataFrame to add a .swifter accessor. Use the 
swifter library:
>>> %%timeit

>>> res_s = df.Q3.swifter.apply(limit_countries).rename('Country')

187 ms ± 31.4 ms per loop (mean ± std. dev. of 7 runs, 10 loops 
each)

5. Import the Dask library:
>>> import dask

6. Use the Dask .map_partitions function:
>>> %%timeit

>>> res_d = (dask.dataframe.from_pandas(

...        df, npartitions=4)

...    .map_partitions(lambda df: df.Q3.apply(limit_countries))
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...    .rename('Countries')

... )

29.1 s ± 1.75 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

7. Use np.vectorize:
>>> np_fn = np.vectorize(limit_countries)

>>> %%timeit

>>> res_v = df.Q3.apply(np_fn).rename('Country')

643 ms ± 86.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop 
each)

8. Import numba and decorate the function with the jit decorator:
>>> from numba import jit

>>> @jit

... def limit_countries2(val):

...      if val in  ['United States of America', 'India', 
'China']:

...          return val

...      return 'Another'

9. Use the decorated numba function:

>>> %%timeit

>>> res_n = df.Q3.apply(limit_countries2).rename('Country')

158 ms ± 16.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops 
each)

How it works…
Note that there is overhead to parallelizing code. In the examples above, all of the code ran 
faster in serial with normal pandas code. There is a crossover point where the overhead 
penalty makes sense. The examples for the Pandarallel library use at least a million samples. 
Our dataset is much smaller than that, so the vanilla .apply method is faster in our case.

In step 1 and 2 we use the Pandarallel library. This library leverages the multiprocessing 
library from the standard library to try and run computations in parallel. When you initialize 
the library, you can specify an nb_workers parameter that indicates how many CPUs to use 
(by default it will use all of the CPUs). The example shows how to use the .parallel_apply 
method which is analogous to the .apply method in pandas. This library also works with 
groupby objects and series objects.
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Step 3 and 4 show use of the swifter library. This library adds a .swifter attribute to 
a DataFrame and series. This library takes a different approach to speeding up code. It will 
try to see if the operation can be vectorized. Otherwise, it will see how long pandas will take 
(by running on a small sample), it then determines whether to leverage the Dask library, or to 
just stick with pandas. Again, the logic to even determine which path to use has overhead, so 
blindly using this library might not lead to the most efficient code.

The Swifter website has a notebook where they performed comparisons of Swifter, 
np.vectorize, Dask, and pandas. It has extensive benchmarking on different types of 
functions. For what it calls non-vectorized functions (which our limit_countries is as it 
has normal Python logic), it isn't until you get to almost a million rows that the vanilla pandas 
.apply method starts to lose out.

In step 5 and 6 the Dask library is presented. Note that there is a bit of overhead loading 
the data and leveraging the parallelization afforded by the library. Many users of Dask forgo 
pandas completely and just use Dask, as it implements similar functionality but allows 
processing to scale out to big data (and running on a cluster).

Next, we try the vectorize function from NumPy in step 7. It creates a NumPy ufunc (a 
universal function that operates on NumPy arrays) from an arbitrary Python function. It tries to 
leverage NumPy broadcasting rules. In this case, there is no performance increase by using it.

Step 8 and 9 demonstrate using the Numba library. We leverage the jit decorator to create 
a new function limit_countries2. This decorator converts the Python function into native 
code. Again, this function is not amenable to speed increases from this decorator.

Many of the options illustrated here may provide a performance boost with larger datasets. 
In our case, blindly applying them would slow down the code.

Inspecting code
The Jupyter environment has an extension that allows you to quickly pull up the 
documentation or the source code for a class, method, or function. I strongly encourage you 
to get used to using these. If you can stay in the Jupyter environment to answer questions that 
may come up, you will increase your productivity.

In this section, we will show how to look at the source code for the .apply method. It 
is easiest to look at the documentation for a DataFrame or series method directly on 
the DataFrame or series object, respectively. Throughout this book, we have heavily 
recommended chaining operations on pandas objects. Sadly Jupyter (and any other editor 
environment) is not able to perform code completion or look up documentation on the 
intermediate object returned from a chained method call. Hence the recommendation 
to perform the lookup directly on a method that is not chained.
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How to do it…
1. Load the survey data:

>>> import zipfile

>>> url = 'data/kaggle-survey-2018.zip'

>>> with zipfile.ZipFile(url) as z:

...     kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

...     df = kag.iloc[1:]

2. Let's look up the documentation for .apply using the Jupyter ? extension. (We could 
also hit Shift + Tab four times to get this in Jupyter):
>>> df.Q3.apply?

Signature: df.Q3.apply(func, convert_dtype=True, args=(), **kwds)

Docstring:

Invoke function on values of Series.

Can be ufunc (a NumPy function that applies to the entire Series)

or a Python function that only works on single values.

Parameters

----------

func : function

    Python function or NumPy ufunc to apply.

convert_dtype : bool, default True

    Try to find better dtype for elementwise function results. If

    False, leave as dtype=object.

args : tuple

    Positional arguments passed to func after the series value.

**kwds

    Additional keyword arguments passed to func.

Returns

-------

Series or DataFrame

    If func returns a Series object the result will be a 
DataFrame.
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See Also

--------

Series.map: For element-wise operations.

Series.agg: Only perform aggregating type operations.

Series.transform: Only perform transforming type operations.

Examples

--------

  ...

File:      ~/.env/364/lib/python3.6/site-packages/pandas/core/
series.py

Type:      method

3. Let's look at the source code by using ??. (There is no Shift + Tab keyboard shortcut 
to get the code):
>>> df.Q3.apply??

Signature: df.Q3.apply(func, convert_dtype=True, args=(), **kwds)

Source:   

    def apply(self, func, convert_dtype=True, args=(), **kwds):

    ...

        if len(self) == 0:

            return self._constructor(dtype=self.dtype, index=self.
index).__finalize__(

                self

            )

        # dispatch to agg

        if isinstance(func, (list, dict)):

            return self.aggregate(func, *args, **kwds)

        # if we are a string, try to dispatch

        if isinstance(func, str):
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            return self._try_aggregate_string_function(func, 
*args, **kwds)

        # handle ufuncs and lambdas

        if kwds or args and not isinstance(func, np.ufunc):

            def f(x):

                return func(x, *args, **kwds)

        else:

            f = func

        with np.errstate(all="ignore"):

            if isinstance(f, np.ufunc):

                return f(self)

            # row-wise access

            if is_extension_type(self.dtype):

                mapped = self._values.map(f)

            else:

                values = self.astype(object).values

                mapped = lib.map_infer(values, f, convert=convert_
dtype)

        if len(mapped) and isinstance(mapped[0], Series):

            # GH 25959 use pd.array instead of tolist

            # so extension arrays can be used

            return self._constructor_expanddim(pd.array(mapped), 
index=self.index)

        else:

            return self._constructor(mapped, index=self.index).__
finalize__(self)

File:      ~/.env/364/lib/python3.6/site-packages/pandas/core/
series.py

Type:      method
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4. We can see that this method tries to figure out the appropriate code to call. If those 
all fail, eventually it calculates the mapped variable. Let's try and figure out what 
lib.map_infer does:

>>> import pandas.core.series

>>> pandas.core.series.lib

<module 'pandas._libs.lib' from '.env/364/lib/python3.6/site-
packages/pandas/_libs/lib.cpython-36m-darwin.so'>

>>> pandas.core.series.lib.map_infer??

Docstring:

Substitute for np.vectorize with pandas-friendly dtype inference

Parameters

----------

arr : ndarray

f : function

Returns

-------

mapped : ndarray

Type:      builtin_function_or_method

How it works…
Jupyter has the ability to inspect both the docstrings and the source code for Python objects. 
The standard Python REPL can leverage the built-in help function to view a docstring, but it 
cannot display the source code.

Jupyter, however has some tricks up its sleeves. If you tack on a single question mark (?) 
following a function or method, it will show the documentation for that code. Note that this is 
not valid Python syntax, it is a feature of Jupyter. If you add on two question marks (??), then 
Jupyter will display the source code of the function or method.

This recipe showed tracing through the source code to see how the .apply method in pandas 
works under the covers.

We can see a shortcut in step 3 if there are no results. We can also see how string functions 
(that is, passing in the string literal mean) work. The getattr function pulls off the 
corresponding method from the DataFrame.
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Next, the code checks if it is dealing with a NumPy function. Eventually, it will call the function 
if it is an instance of np.ufunc, or it will call the .map method on the underlying ._values 
attribute, or it will call lib.map_infer.

In step 4, we tried to inspect lib.map_infer but saw that it was an so file (pyd on 
Windows). This is a compiled file that is usually the result of writing Python in C or using 
Cython. Jupyter cannot show us the source of compiled files.

There's more…
When you view the source code for a function or method, Jupyter will display the file that it 
belongs to at the bottom of pane. If I really need to dig into the source code, I will open that in 
an editor outside of Jupyter. Then I can browse through that code and any corresponding code 
with my editor (most editors have better code navigation capabilities than Jupyter).

Debugging in Jupyter
The previous recipes have shown how to understand pandas code and inspect it from Jupyter. 
In this section, we will look at using the IPython debugger (ipdb) in Jupyter.

In this section, I will create a function that throws an error when I try to use it with the series 
.apply method. I will use ipdb to debug it.

How to do it…
1. Load the survey data:

>>> import zipfile

>>> url = 'data/kaggle-survey-2018.zip'

>>> with zipfile.ZipFile(url) as z:

...     kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

...     df = kag.iloc[1:]

2. Try and run a function to add one to a series:
>>> def add1(x):

...     return x + 1

>>> df.Q3.apply(add1)

------------------------------------------------------------------
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---------

TypeError                                 Traceback (most recent 
call last)

<ipython-input-9-6ce28d2fea57> in <module>

      2     return x + 1

      3 

----> 4 df.Q3.apply(add1)

~/.env/364/lib/python3.6/site-packages/pandas/core/series.py in 
apply(self, func, convert_dtype, args, **kwds)

   4043             else:

   4044                 values = self.astype(object).values

-> 4045                 mapped = lib.map_infer(values, f, 
convert=convert_dtype)

   4046 

   4047         if len(mapped) and isinstance(mapped[0], Series):

pandas/_libs/lib.pyx in pandas._libs.lib.map_infer()

<ipython-input-9-6ce28d2fea57> in add1(x)

      1 def add1(x):

----> 2     return x + 1

      3 

      4 df.Q3.apply(add1)

TypeError: must be str, not int

3. Use the %debug cell magic immediately following an exception to drop into a debug 
window. (This might seem a little backward because you call this after you have run 
a cell with an exception). This will open the debugger to the point where the exception 
was thrown.

You can use the debugger commands to navigate through the stack. Hitting U key 
will pop the stack to the function that called the current line. You can inspect objects 
using the print command (p):
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Jupyter debugging

4. If you want to step into code without requiring that an exception be thrown, you can 
use the set_trace function from the IPython debugger. This will drop you into the 
debugger immediately following that line:

>>> from IPython.core.debugger import set_trace

>>> def add1(x):

...     set_trace()

...     return x + 1

>>> df.Q3.apply(add1)
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Jupyter debugging

How it works…
Jupyter (which is derived from IPython) ships with the IPython debugger. This replicates the 
functionality of the pdb module in the standard library, but with niceties such as syntax 
highlighting. (It also has tab completion, but this does not work in Jupyter, only in the IPython 
console).

There's more…
If you are unfamiliar with using the debugger, here is a lifejacket for you: The command h will 
print out all of the commands that you can run from the debugger:

ipdb> h

Documented commands (type help <topic>):

========================================

EOF    cl         disable  interact  next    psource  rv         unt   

a      clear      display  j         p       q        s          until 

alias  commands   down     jump      pdef    quit     source     up    

args   condition  enable   l         pdoc    r        step       w     

b      cont       exit     list      pfile   restart  tbreak     whatis
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break  continue   h        ll        pinfo   return   u          where 

bt     d          help     longlist  pinfo2  retval   unalias  

c      debug      ignore   n         pp      run      undisplay    

The most common commands that I use are s, n, l, u, d, and c. If you want to know what s 
does, then type:

ipdb> h s

s(tep)

        Execute the current line, stop at the first possible occasion

        (either in a function that is called or in the current

        function).

        

This tells the debugger to print the help (h) documentation for step (s). Because we are 
usually coding in small steps in Jupyter, a debugger is often overkill. But knowing how to use 
it can come in handy, especially if you want to jump into pandas source code and understand 
what is going on.

Managing data integrity with Great 
Expectations

Great Expectations is a third-party tool that allows you to capture and define the properties 
of a dataset. You can save these properties and then use them to validate future data to 
ensure data integrity. This can be very useful when building machine learning models, as new 
categorical data values and numeric outliers tend to cause a model to perform poorly or error 
out.

In this section, we will look at the Kaggle dataset and make an expectation suite to test and 
validate the data.

How to do it…
1. Read the data using the tweak_kag function previously defined:

>>> kag = tweak_kag(df)

2. Use the Great Expectations from_pandas function to read in a Great Expectations 
DataFrame (a subclass of DataFrame with some extra methods):
>>> import great_expectations as ge

>>> kag_ge = ge.from_pandas(kag)
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3. Examine the extra methods on the DataFrame:
>>> sorted([x for x in set(dir(kag_ge)) - set(dir(kag))

...     if not x.startswith('_')])

['autoinspect',

'batch_fingerprint',

'batch_id',

'batch_kwargs',

'column_aggregate_expectation',

'column_map_expectation',

'column_pair_map_expectation',

'discard_failing_expectations',

'edit_expectation_suite',

'expect_column_bootstrapped_ks_test_p_value_to_be_greater_than',

'expect_column_chisquare_test_p_value_to_be_greater_than',

'expect_column_distinct_values_to_be_in_set',

'expect_column_distinct_values_to_contain_set',

'expect_column_distinct_values_to_equal_set',

'expect_column_kl_divergence_to_be_less_than',

'expect_column_max_to_be_between',

'expect_column_mean_to_be_between',

'expect_column_median_to_be_between',

'expect_column_min_to_be_between',

'expect_column_most_common_value_to_be_in_set',

'expect_column_pair_values_A_to_be_greater_than_B',

'expect_column_pair_values_to_be_equal',

'expect_column_pair_values_to_be_in_set',

'expect_column_parameterized_distribution_ks_test_p_value_to_be_
greater_than',

'expect_column_proportion_of_unique_values_to_be_between',

'expect_column_quantile_values_to_be_between',

'expect_column_stdev_to_be_between',

'expect_column_sum_to_be_between',

'expect_column_to_exist',

'expect_column_unique_value_count_to_be_between',

'expect_column_value_lengths_to_be_between',

'expect_column_value_lengths_to_equal',
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'expect_column_values_to_be_between',

'expect_column_values_to_be_dateutil_parseable',

'expect_column_values_to_be_decreasing',

'expect_column_values_to_be_in_set',

'expect_column_values_to_be_in_type_list',

'expect_column_values_to_be_increasing',

'expect_column_values_to_be_json_parseable',

'expect_column_values_to_be_null',

'expect_column_values_to_be_of_type',

'expect_column_values_to_be_unique',

'expect_column_values_to_match_json_schema',

'expect_column_values_to_match_regex',

'expect_column_values_to_match_regex_list',

'expect_column_values_to_match_strftime_format',

'expect_column_values_to_not_be_in_set', 
'expect_column_values_to_not_be_null',

'expect_column_values_to_not_match_regex','expect_column_values_
to_not_match_regex_list',

'expect_multicolumn_values_to_be_unique',

'expect_table_column_count_to_be_between',

'expect_table_column_count_to_equal',

'expect_table_columns_to_match_ordered_list',

'expect_table_row_count_to_be_between',

'expect_table_row_count_to_equal',

'expectation',

'find_expectation_indexes',

'find_expectations',

'from_dataset',

'get_column_count',

'get_column_count_in_range',

'get_column_hist',

'get_column_max',

'get_column_mean',

'get_column_median',

'get_column_min',

'get_column_modes',
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'get_column_nonnull_count',

'get_column_partition',

'get_column_quantiles',

'get_column_stdev',

'get_column_sum',

'get_column_unique_count',

'get_column_value_counts',

'get_config_value',

'get_data_asset_name',

'get_default_expectation_arguments',

'get_evaluation_parameter',

'get_expectation_suite',

'get_expectation_suite_name',

'get_expectations_config',

'get_row_count',

'get_table_columns',

'hashable_getters',

'multicolumn_map_expectation',

'profile',

'remove_expectation',

'save_expectation_suite',

'save_expectation_suite_name',

'set_config_value',

'set_data_asset_name',

'set_default_expectation_argument',

'set_evaluation_parameter',

'test_column_aggregate_expectation_function',

'test_column_map_expectation_function',

'test_expectation_function',

'validate']

4. Great Expectations has expectations for table shape, missing values, types, ranges, 
strings, dates, aggregate functions, column pairs, distributions, and file properties. 
Let's use some of them. As we do, the library will track the expectations we use. 
We can later save these as a suite of expectations:
>>> kag_ge.expect_column_to_exist('Salary')

{'success': True}
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>>> kag_ge.expect_column_mean_to_be_between(

...    'Salary', min_value=10_000, max_value=100_000)

{'success': True,

'result': {'observed_value': 43869.66102793441,

'element_count': 15429,

'missing_count': 0,

'missing_percent': 0.0}}

>>> kag_ge.expect_column_values_to_be_between(

...    'Salary', min_value=0, max_value=500_000)

{'success': True,

'result': {'element_count': 15429,

'missing_count': 0,

'missing_percent': 0.0,

'unexpected_count': 0,

'unexpected_percent': 0.0,

'unexpected_percent_nonmissing': 0.0,

'partial_unexpected_list': []}}

>>> kag_ge.expect_column_values_to_not_be_null('Salary')

{'success': True,

'result': {'element_count': 15429,

'unexpected_count': 0,

'unexpected_percent': 0.0,

'partial_unexpected_list': []}}

>>> kag_ge.expect_column_values_to_match_regex(

...     'Country', r'America|India|Another|China')

{'success': True,

'result': {'element_count': 15429,

'missing_count': 0,

'missing_percent': 0.0,

'unexpected_count': 0,

'unexpected_percent': 0.0,

'unexpected_percent_nonmissing': 0.0,
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'partial_unexpected_list': []}}

>>> kag_ge.expect_column_values_to_be_of_type(

...    'Salary', type_='int')

{'success': True, 'result': {'observed_value': 'int64'}}

5. Save the expectations to a file. Great Expectations uses JSON to specify them:
>>> kag_ge.save_expectation_suite('kaggle_expectations.json')

The file should look like this:
{

  "data_asset_name": null,

  "expectation_suite_name": "default",

  "meta": {

    "great_expectations.__version__": "0.8.6"

  },

  "expectations": [

    {

      "expectation_type": "expect_column_to_exist",

      "kwargs": {

        "column": "Salary"

      }

    },

    {

      "expectation_type": "expect_column_mean_to_be_between",

      "kwargs": {

        "column": "Salary",

        "min_value": 10000,

        "max_value": 100000

      }

    },

    {

      "expectation_type": "expect_column_values_to_be_between",

      "kwargs": {

        "column": "Salary",

        "min_value": 0,

        "max_value": 500000
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      }

    },

    {

      "expectation_type": "expect_column_values_to_not_be_null",

      "kwargs": {

        "column": "Salary"

      }

    },

    {

      "expectation_type": "expect_column_values_to_match_regex",

      "kwargs": {

        "column": "Country",

        "regex": "America|India|Another|China"

      }

    },

    {

      "expectation_type": "expect_column_values_to_be_of_type",

      "kwargs": {

        "column": "Salary",

        "type_": "int"

      }

    }

  ],

  "data_asset_type": "Dataset"

}   

6. Use the suite to evaluate data found in a CSV file. We will persist our Kaggle data to 
a CSV file and test that to make sure it still passes:

>>> kag_ge.to_csv('kag.csv')

>>> import json

>>> ge.validate(ge.read_csv('kag.csv'), 

...     expectation_suite=json.load(

...         open('kaggle_expectations.json')))

{'results': [{'success': True,

   'expectation_config': {'expectation_type': 'expect_column_to_
exist',

    'kwargs': {'column': 'Salary'}},
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   'exception_info': {'raised_exception': False,

    'exception_message': None,

    'exception_traceback': None}},

  {'success': True,

   'result': {'observed_value': 43869.66102793441,

    'element_count': 15429,

    'missing_count': 0,

    'missing_percent': 0.0},

   'expectation_config': {'expectation_type': 'expect_column_mean_
to_be_between',

    'kwargs': {'column': 'Salary', 'min_value': 10000, 'max_
value': 100000}},

   'exception_info': {'raised_exception': False,

    'exception_message': None,

    'exception_traceback': None}},

  {'success': True,

   'result': {'element_count': 15429,

    'missing_count': 0,

    'missing_percent': 0.0,

    'unexpected_count': 0,

    'unexpected_percent': 0.0,

    'unexpected_percent_nonmissing': 0.0,

    'partial_unexpected_list': []},

   'expectation_config': {'expectation_type': 'expect_column_
values_to_be_between',

    'kwargs': {'column': 'Salary', 'min_value': 0, 'max_value': 
500000}},

   'exception_info': {'raised_exception': False,

    'exception_message': None,

    'exception_traceback': None}},

  {'success': True,

   'result': {'element_count': 15429,

    'unexpected_count': 0,

    'unexpected_percent': 0.0,

    'partial_unexpected_list': []},

   'expectation_config': {'expectation_type': 'expect_column_
values_to_not_be_null',
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    'kwargs': {'column': 'Salary'}},

   'exception_info': {'raised_exception': False,

    'exception_message': None,

    'exception_traceback': None}},

  {'success': True,

   'result': {'observed_value': 'int64'},

   'expectation_config': {'expectation_type': 'expect_column_
values_to_be_of_type',

    'kwargs': {'column': 'Salary', 'type_': 'int'}},

   'exception_info': {'raised_exception': False,

    'exception_message': None,

    'exception_traceback': None}},

  {'success': True,

   'result': {'element_count': 15429,

    'missing_count': 0,

    'missing_percent': 0.0,

    'unexpected_count': 0,

    'unexpected_percent': 0.0,

    'unexpected_percent_nonmissing': 0.0,

    'partial_unexpected_list': []},

   'expectation_config': {'expectation_type': 'expect_column_
values_to_match_regex',

    'kwargs': {'column': 'Country', 'regex': 'America|India|Anothe
r|China'}},

   'exception_info': {'raised_exception': False,

    'exception_message': None,

    'exception_traceback': None}}],

 'success': True,

 'statistics': {'evaluated_expectations': 6,

  'successful_expectations': 6,

  'unsuccessful_expectations': 0,

  'success_percent': 100.0},

 'meta': {'great_expectations.__version__': '0.8.6',

  'data_asset_name': None,

  'expectation_suite_name': 'default',

  'run_id': '2020-01-08T214957.098199Z'}}
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How it works…
The Great Expectations library extends a pandas DataFrame. You can use it to validate raw 
data, or data that you have used pandas to tweak. In our example, we showed how to create 
expectations for a DataFrame.

There are numerous built-in expectations that are listed in step 3. You can leverage those, 
or build a custom expectation if you desire. The result of validating the data is a JSON object 
with entries for "success". You can integrate these into a test suite to ensure that your data 
processing pipeline will work with new data.

Using pytest with pandas
In this section, we will show how to test your pandas code. We do this by testing the artifacts. 
We will use the third-party library, pytest, to do this testing.

For this recipe, we will not be using Jupyter, but rather the command line.

How to do it…
1. Create a project data layout. The pytest library supports projects laid out in a couple 

different styles. We will create a folder structure that looks like this:
kag-demo-pytest/

├── data

│ └── kaggle-survey-2018.zip

├── kag.py

└── test

    └── test_kag.py

The kag.py file has code to load the raw data and code to tweak it. It looks like this:
import pandas as pd

import zipfile

def load_raw(zip_fname):

    with zipfile.ZipFile(zip_fname) as z:

        kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

        df = kag.iloc[1:]
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    return df

def tweak_kag(df):

    na_mask = df.Q9.isna()

    hide_mask = df.Q9.str.startswith('I do not').fillna(False)

    df = df[~na_mask & ~hide_mask]

    q1 = (df.Q1

      .replace({'Prefer not to say': 'Another',

               'Prefer to self-describe': 'Another'})

      .rename('Gender')

    )

    q2 = df.Q2.str.slice(0,2).astype(int).rename('Age')

    def limit_countries(val):

        if val in  {'United States of America', 'India', 'China'}:

            return val

        return 'Another'

    q3 = df.Q3.apply(limit_countries).rename('Country')

    q4 = (df.Q4

     .replace({'Master's degree': 18,

     'Bachelor's degree': 16,

     'Doctoral degree': 20,

     'Some college/university study without earning a bachelor's 
degree': 13,

     'Professional degree': 19,

     'I prefer not to answer': None,

     'No formal education past high school': 12})

     .fillna(11)

     .rename('Edu')

    )

    def only_cs_stat_val(val):

        if val not in {'cs', 'eng', 'stat'}:

            return 'another'
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        return val

    q5 = (df.Q5

            .replace({

                'Computer science (software engineering, etc.)': 
'cs',

                'Engineering (non-computer focused)': 'eng',

                'Mathematics or statistics': 'stat'})

             .apply(only_cs_stat_val)

             .rename('Studies'))

    def limit_occupation(val):

        if val in {'Student', 'Data Scientist', 'Software 
Engineer', 'Not employed',

                  'Data Engineer'}:

            return val

        return 'Another'

    q6 = df.Q6.apply(limit_occupation).rename('Occupation')

    q8 = (df.Q8

      .str.replace('+', '')

      .str.split('-', expand=True)

      .iloc[:,0]

      .fillna(-1)

      .astype(int)

      .rename('Experience')

    )

    q9 = (df.Q9

     .str.replace('+','')

     .str.replace(',','')

     .str.replace('500000', '500')

     .str.replace('I do not wish to disclose my approximate yearly 
compensation','')

     .str.split('-', expand=True)

     .iloc[:,0]

     .astype(int)
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     .mul(1000)

     .rename('Salary'))

    return pd.concat([q1, q2, q3, q4, q5, q6, q8, q9], axis=1)

The test_kag.py file looks like this:
import pytest

import kag

@pytest.fixture(scope='session')

def df():

    df = kag.load_raw('data/kaggle-survey-2018.zip')

    return kag.tweak_kag(df)

def test_salary_mean(df):

    assert 10_000 < df.Salary.mean() < 100_000

def test_salary_between(df):

    assert df.Salary.min() >= 0

    assert df.Salary.max() <= 500_000

def test_salary_not_null(df):

    assert not df.Salary.isna().any()

def test_country_values(df):

    assert set(df.Country.unique()) == {'Another', 'United States 
of America', 'India', 'China'}

def test_salary_dtype(df):

    assert df.Salary.dtype == int

2. Run the tests from the kag-demo directory. If you installed the pytest library, you 
will have a pytest executable. If you try to run that command you will get an error:
(env)$ pytest

================== test session starts ==================

platform darwin -- Python 3.6.4, pytest-3.10.1, py-1.7.0, 
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pluggy-0.8.0

rootdir: /Users/matt/pandas-cookbook/kag-demo, inifile:

plugins: asyncio-0.10.0

collected 0 items / 1 errors

======================== ERRORS =========================

___________ ERROR collecting test/test_kag.py ___________

ImportError while importing test module '/Users/matt/pandas-
cookbook/kag

demo/test/test_kag.py'.

Hint: make sure your test modules/packages have valid Python 
names.

Traceback:

test/test_kag.py:3: in <module>

    import kag

E   ModuleNotFoundError: No module named 'kag'

!!!!!!!! Interrupted: 1 errors during collection !!!!!!!!

================ 1 error in 0.15 seconds ================

This error is because pytest wants to use installed code to run the tests. Because I 
have not used pip (or another mechanism) to install kag.py, pytest complains that 
it cannot find the module in locations where code is installed.

3. A workaround to help pytest find the kag.py file is to invoke pytest as a module. Run 
this command instead:

$ python -m pytest

=========================== test session starts

===========================

platform darwin -- Python 3.6.4, pytest-3.10.1, py-1.7.0, 
pluggy-0.8.0

rootdir: /Users/matt/pandas-cookbook/kag-demo, inifile:

collected 5 items

test/test_kag.py .....                                              
[100%]

================== 5 passed, 1 warnings in 3.51 seconds 
==================

Invoking pytest in this manner adds the current directory to the PYTHONPATH and 
now the import for the kag module succeeds.
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How it works…
Complete coverage of using the pytest library is beyond the scope of this book. However, 
the test_kag.py file contains tests specified so that pytest understands them. Any function 
name that begins with test_ will be recognized as a test. The parameter to these test 
functions, df, is called a fixture.

Near the top of the file, I specified a function named df that was decorated with @pytest.
fixture(scope='session'). This function will be called once when the test session begins. 
Any test function with the parameter named df will get the output of this function. The scope is 
specified as a session scope, so that the data is only loaded once (for the entire test session). If 
we did not specify the scope, the fixture scope would be at the function-level (the default). With 
function-level scope, the fixture would be executed once for every test function that uses it as a 
parameter, which makes the tests run in 12 seconds (instead of three on my machine).

There's more…
You can run Great Expectations test from pytest too. Add the following function to test_kag.
py (You will need to update the path to the expectation suite):

def test_ge(df):

    import json

    import great_expectations as ge

    res = ge.validate(ge.from_pandas(df),

        expectation_suite=json.load(open('kaggle_expectations.json')))

    failures = []

    for exp in res['results']:

        if not exp['success']:

            failures.append(json.dumps(exp, indent=2))

    if failures:

        assert False, '\n'.join(failures)

    else:

        assert True

Generating tests with Hypothesis
The Hypothesis library is a third-party library for generating tests, or performing property-
based testing. You create a strategy (an object that generates samples of data) and then 
run your code against the generated output of the strategy. You want to test an invariant, 
or something about your data that you presume to always hold true. 
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Again, there could be a book written solely about this type of testing, but in this section we will 
show an example of using the library.

We will show how to generate Kaggle survey data, then using that generated survey data, 
we will run it against the tweak_kag function and validate that the function will work on 
new data.

We will leverage the testing code found in the previous section. The Hypothesis library works 
with pytest, so we can use the same layout.

How to do it…
1. Create a project data layout. If you had the code from the previous section, add a 

test_hypot.py file and a conftest.py file:
kag-demo-hypo/

├── data

│ └── kaggle-survey-2018.zip

├── kag.py

└── test

    ├── conftest.py

    ├── test_hypot.py

    └── test_kag.py

2. We will put shared fixtures into conftest.py. This file is a special file that pytest 
looks for when trying to find fixtures. We do not need to import it, but any fixture 
defined in there can be used by the other test files.

Move the fixture code from test_kag.py to conftest.py so that it has the 
following code. We will also do a little refactoring to create a raw_ function that  
is not a fixture that we can call outside of tests:
import pytest

import kag

@pytest.fixture(scope='session')

def raw():

    return raw_()

def raw_():

    return kag.load_raw('data/kaggle-survey-2018.zip')
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@pytest.fixture(scope='session')

def df(raw):

    return kag.tweak_kag(raw)

Put the following code in test_hypot.py:
from hypothesis import given, strategies

from hypothesis.extra.pandas import column, data_frames

from conftest import raw_

import kag

def hypot_df_generator():

    df = raw_()

    cols = []

    for col in ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6', 'Q8', 'Q9']:

        cols.append(column(col, elements=strategies.sampled_
from(df[col].unique())))

    return data_frames(columns=cols)

@given(hypot_df_generator())

def test_countries(gen_df):

    if gen_df.shape[0] == 0:

        return

    kag_ = kag.tweak_kag(gen_df)

    assert len(kag_.Country.unique()) <= 4

The function hypot_df_generator constructs a Hypothesis search strategy. The 
search strategy can generate data of different types. We can manually create these 
strategies. In this case, I'm using the existing CSV file to populate the different values 
that are possible for the columns that I am interested in.

The function test_countries is a pytest test that is decorated with the @
given(hypot_df_generator()) decorator. The decoration will pass a gen_df 
object into the test function. This object will be a DataFrame that complies with the 
specifications that the search strategy has. We can now test our invariants against 
that DataFrame. In this case, we will run the tweak_kag function and ensure that 
the number of unique countries in the Country column is less than or equal to four.
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3. Go to the kag_demo directory and run the test. Here is a command to run only the 
test_countries test:
$ python -m pytest -k test_countries

The output looks like this:

====================== test session starts ======================

platform darwin -- Python 3.6.4, pytest-5.3.2, py-1.7.0, 
pluggy-0.13.1

rootdir: /Users/matt/kag-demo

plugins: asyncio-0.10.0, hypothesis-5.1.2

collected 6 items / 5 deselected / 1 selected

test/test_hypot.py F                                      [100%]

=========================== FAILURES ============================

________________________ test_countries _________________________

    @given(hypot_df_generator())

>   def test_countries(gen_df):

test/test_hypot.py:19:

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

test/test_hypot.py:23: in test_countries

    kag_ = kag.tweak_kag(gen_df)

kag.py:63: in tweak_kag

    q8 = (df.Q8

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
generic.py:5175: in

__getattr__

    return object.__getattribute__(self, name)

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
accessor.py:175: in

__get__

    accessor_obj = self._accessor(obj)

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
strings.py:1917: in __init__

    self._inferred_dtype = self._validate(data)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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data = Series([], Name: Q8, dtype: float64)

    @staticmethod

    def _validate(data):

        """

        Auxiliary function for StringMethods, infers and checks 
dtype of data.

        This is a "first line of defence" at the creation of the 
StringMethods-

        object (see _make_accessor), and just checks that the 
dtype is in the

        *union* of the allowed types over all string methods 
below; this

        restriction is then refined on a per-method basis using 
the decorator

        @forbid_nonstring_types (more info in the corresponding 
docstring).

        This really should exclude all series/index with any non-
string values,

        but that isn't practical for performance reasons until we 
have a str

        dtype (GH 9343 / 13877)

        Parameters

        ----------

        data : The content of the Series

        Returns

        -------

        dtype : inferred dtype of data

        """

        if isinstance(data, ABCMultiIndex):

            raise AttributeError(

                "Can only use .str accessor with Index, " "not 
MultiIndex"

            )
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        # see _libs/lib.pyx for list of inferred types

        allowed_types = ["string", "empty", "bytes", "mixed", 
"mixed-integer"]

        values = getattr(data, "values", data)  # Series / Index

        values = getattr(values, "categories", values)  # 
categorical / normal

        try:

            inferred_dtype = lib.infer_dtype(values, skipna=True)

        except ValueError:

            # GH#27571 mostly occurs with ExtensionArray

            inferred_dtype = None

        if inferred_dtype not in allowed_types:

>           raise AttributeError("Can only use .str accessor with 
string " "values!")

E           AttributeError: Can only use .str accessor with string 
values!

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
strings.py:1967: AttributeError

-------------------------- Hypothesis ---------------------------

Falsifying example: test_countries(

    gen_df=       Q1     Q2                        Q3  ...          
Q6  Q8  Q9

    0  Female  45-49  United States of America  ...  Consultant 
NaN NaN

    [1 rows x 8 columns],

)

========== 1 failed, 5 deselected, 1 warning in 2.23s ===========

There is a lot of noise in the output, but if you scan through it you will find that it is 
complaining about the code that processes the column Q8. The reason for this is 
that it generated a single row with a NaN entry for Q8. If we run tweak_kag with this 
DataFrame, pandas infers that the Q8 column has a float type and errors out when 
trying to use the .str accessor.

Is this a bug? It's hard to give a definitive answer on that. But this shows that if our 
raw data has only missing values then our code will not work.
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How it works…
The Hypothesis library tries to generate a span of data that conforms to a specification. You 
can use this generated data to test that invariants hold. In our case, we saw that the survey 
data had missing data. When we generated a DataFrame with a single row of missing data, 
our tweak_kag function did not work. The .str accessor only works if there is at least one 
string value in a column, and our column only had missing data (a float value).

We could address these issues and continue to test other invariants. This illustrates another 
point that comes up when programming. We get caught in the forest and only see specific 
trees. Sometimes we need to take a step back and look at things from a different perspective. 
Using Hypothesis is one way to do this.
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