

Pandas 1.x Cookbook
Second Edition

Practical recipes for scientific computing, time series
analysis, and exploratory data analysis using Python

Matt Harrison
Theodore Petrou

BIRMINGHAM - MUMBAI

Pandas 1.x Cookbook
Second Edition

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its dealers
and distributors, will be held liable for any damages caused or alleged to have been caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Tushar Gupta
Acquisition Editor – Peer Reviews: Suresh Jain
Content Development Editor: Kate Blackham
Technical Editor: Gaurav Gavas
Project Editor: Kishor Rit
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Presentation Designer: Sandip Tadge

First published: October 2017
Second edition: February 2020

Production reference: 1260220

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-83921-310-6

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
 f Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

 f Learn better with Skill Plans built especially for you

 f Get a free eBook or video every month

 f Fully searchable for easy access to vital information

 f Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.Packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://www.Packt.com
mailto:customercare@packtpub.com
http://www.Packt.com

Contributors

About the authors
Matt Harrison has been using Python since 2000. He runs MetaSnake, which provides
corporate training for Python and Data Science.

He is the author of Machine Learning Pocket Reference, the best-selling Illustrated Guide
to Python 3, and Learning the Pandas Library, as well as other books.

Theodore Petrou is a data scientist and the founder of Dunder Data, a professional
educational company focusing on exploratory data analysis. He is also the head of Houston
Data Science, a meetup group with more than 2,000 members that has the primary goal
of getting local data enthusiasts together in the same room to practice data science. Before
founding Dunder Data, Ted was a data scientist at Schlumberger, a large oil services company,
where he spent the vast majority of his time exploring data.

Some of his projects included using targeted sentiment analysis to discover the root cause
of part failure from engineer text, developing customized client/server dashboarding
applications, and real-time web services to avoid the mispricing of sales items. Ted received
his masters degree in statistics from Rice University, and used his analytical skills to play
poker professionally and teach math before becoming a data scientist. Ted is a strong
supporter of learning through practice and can often be found answering questions about
pandas on Stack Overflow.

About the reviewer
Simon Hawkins holds a master's degree in aeronautical engineering from Imperial College
London. During the early part of his career, he worked exclusively in the defense and nuclear
sectors as a technology analyst focusing on various modelling capabilities and simulation
techniques for high-integrity equipment. He then transitioned into the world of e-commerce
and the focus shifted toward data analysis. Today, he is interested in all things data science
and is a member of the pandas core development team.

i

Table of Contents
Preface vii
Chapter 1: Pandas Foundations 1

Importing pandas 1
Introduction 1
The pandas DataFrame 2
DataFrame attributes 4
Understanding data types 6
Selecting a column 10
Calling Series methods 14
Series operations 21
Chaining Series methods 27
Renaming column names 32
Creating and deleting columns 36

Chapter 2: Essential DataFrame Operations 45
Introduction 45
Selecting multiple DataFrame columns 45
Selecting columns with methods 48
Ordering column names 52
Summarizing a DataFrame 55
Chaining DataFrame methods 59
DataFrame operations 62
Comparing missing values 67
Transposing the direction of a DataFrame operation 71
Determining college campus diversity 74

Chapter 3: Creating and Persisting DataFrames 81
Introduction 81
Creating DataFrames from scratch 81

ii

Table of Contents

Writing CSV 84
Reading large CSV files 86
Using Excel files 95
Working with ZIP files 97
Working with databases 101
Reading JSON 102
Reading HTML tables 106

Chapter 4: Beginning Data Analysis 115
Introduction 115
Developing a data analysis routine 115
Data dictionaries 120
Reducing memory by changing data types 120
Selecting the smallest of the largest 126
Selecting the largest of each group by sorting 128
Replicating nlargest with sort_values 133
Calculating a trailing stop order price 136

Chapter 5: Exploratory Data Analysis 139
Introduction 139
Summary statistics 139
Column types 143
Categorical data 147
Continuous data 156
Comparing continuous values across categories 163
Comparing two continuous columns 169
Comparing categorical and categorical values 178
Using the pandas profiling library 185

Chapter 6: Selecting Subsets of Data 189
Introduction 189
Selecting Series data 189
Selecting DataFrame rows 196
Selecting DataFrame rows and columns simultaneously 200
Selecting data with both integers and labels 203
Slicing lexicographically 205

Chapter 7: Filtering Rows 209
Introduction 209
Calculating Boolean statistics 209
Constructing multiple Boolean conditions 213
Filtering with Boolean arrays 215
Comparing row filtering and index filtering 219

iii

Table of Contents

Selecting with unique and sorted indexes 222
Translating SQL WHERE clauses 225
Improving the readability of Boolean indexing with the query method 230
Preserving Series size with the .where method 232
Masking DataFrame rows 237
Selecting with Booleans, integer location, and labels 240

Chapter 8: Index Alignment 245
Introduction 245
Examining the Index object 245
Producing Cartesian products 248
Exploding indexes 251
Filling values with unequal indexes 255
Adding columns from different DataFrames 260
Highlighting the maximum value from each column 266
Replicating idxmax with method chaining 275
Finding the most common maximum of columns 282

Chapter 9: Grouping for Aggregation, Filtration, and Transformation 285
Introduction 285
Defining an aggregation 286
Grouping and aggregating with multiple columns and functions 290
Removing the MultiIndex after grouping 296
Grouping with a custom aggregation function 301
Customizing aggregating functions with *args and **kwargs 305
Examining the groupby object 309
Filtering for states with a minority majority 313
Transforming through a weight loss bet 316
Calculating weighted mean SAT scores per state with apply 325
Grouping by continuous variables 330
Counting the total number of flights between cities 334
Finding the longest streak of on-time flights 339

Chapter 10: Restructuring Data into a Tidy Form 349
Introduction 349
Tidying variable values as column names with stack 351
Tidying variable values as column names with melt 356
Stacking multiple groups of variables simultaneously 359
Inverting stacked data 362
Unstacking after a groupby aggregation 368
Replicating pivot_table with a groupby aggregation 372
Renaming axis levels for easy reshaping 376

iv

Table of Contents

Tidying when multiple variables are stored as column names 382
Tidying when multiple variables are stored as a single column 389
Tidying when two or more values are stored in the same cell 394
Tidying when variables are stored in column names and values 398

Chapter 11: Combining Pandas Objects 401
Introduction 401
Appending new rows to DataFrames 401
Concatenating multiple DataFrames together 408
Understanding the differences between concat, join, and merge 411
Connecting to SQL databases 421

Chapter 12: Time Series Analysis 429
Introduction 429
Understanding the difference between Python and pandas date tools 429
Slicing time series intelligently 436
Filtering columns with time data 441
Using methods that only work with a DatetimeIndex 445
Counting the number of weekly crimes 453
Aggregating weekly crime and traffic accidents separately 457
Measuring crime by weekday and year 463
Grouping with anonymous functions with a DatetimeIndex 474
Grouping by a Timestamp and another column 478

Chapter 13: Visualization with Matplotlib, Pandas, and Seaborn 485
Introduction 485
Getting started with matplotlib 486
Object-oriented guide to matplotlib 488
Visualizing data with matplotlib 499
Plotting basics with pandas 507
Visualizing the flights dataset 511
Stacking area charts to discover emerging trends 525
Understanding the differences between seaborn and pandas 530
Multivariate analysis with seaborn Grids 538
Uncovering Simpson's Paradox in the diamonds dataset with seaborn 545

Chapter 14: Debugging and Testing Pandas 553
Code to transform data 553
Apply performance 558
Improving apply performance with Dask, Pandarell, Swifter, and more 561
Inspecting code 564
Debugging in Jupyter 569
Managing data integrity with Great Expectations 573

v

Table of Contents

Using pytest with pandas 582
Generating tests with Hypothesis 587

Other Books You May Enjoy 595
Index 599

vii

Preface
pandas is a library for creating and manipulating structured data with Python. What do
I mean by structured? I mean tabular data in rows and columns like what you would find
in a spreadsheet or database. Data scientists, analysts, programmers, engineers, and more
are leveraging it to mold their data.

pandas is limited to "small data" (data that can fit in memory on a single machine).
However, the syntax and operations have been adopted or inspired other projects: PySpark,
Dask, Modin, cuDF, Baloo, Dexplo, Tabel, StaticFrame, among others. These projects
have different goals, but some of them will scale out to big data. So there is a value
in understanding how pandas works as the features are becoming the defacto API for
interacting with structured data.

I, Matt Harrison, run a company, MetaSnake, that does corporate training. My bread and
butter is training large companies that want to level up on Python and data skills. As such,
I've taught thousands of Python and pandas users over the years. My goal in producing the
second version of this book is to highlight and help with the aspects that many find confusing
when coming to pandas. For all of its benefits, there are some rough edges or confusing
aspects of pandas. I intend to navigate you to these and then guide you through them, so you
will be able to deal with them in the real world.

If your company is interested in such live training, feel free to reach out (matt@metasnake.
com).

Who this book is for
This book contains nearly 100 recipes, ranging from very simple to advanced. All recipes
strive to be written in clear, concise, and modern idiomatic pandas code. The How it works...
sections contain extremely detailed descriptions of the intricacies of each step of the recipe.
Often, in the There's more... section, you will get what may seem like an entirely new recipe.
This book is densely packed with an extraordinary amount of pandas code.

Preface

viii

As a generalization, the recipes in the first seven chapters tend to be simpler and more
focused on the fundamental and essential operations of pandas than the later chapters,
which focus on more advanced operations and are more project-driven. Due to the wide range
of complexity, this book can be useful to both novice and everyday users alike. It has been my
experience that even those who use pandas regularly will not master it without being exposed
to idiomatic pandas code. This is somewhat fostered by the breadth that pandas offers. There
are almost always multiple ways of completing the same operation, which can have users get
the result they want but in a very inefficient manner. It is not uncommon to see an order of
magnitude or more in performance difference between two sets of pandas solutions to the
same problem.

The only real prerequisite for this book is a fundamental knowledge of Python. It is assumed
that the reader is familiar with all the common built-in data containers in Python, such as lists,
sets, dictionaries, and tuples.

What this book covers
Chapter 1, Pandas Foundations, covers the anatomy and vocabulary used to identify the
components of the two main pandas data structures, the Series and the DataFrame. Each
column must have exactly one type of data, and each of these data types is covered. You
will learn how to unleash the power of the Series and the DataFrame by calling and chaining
together their methods.

Chapter 2, Essential DataFrame Operations, focuses on the most crucial and typical
operations that you will perform during data analysis.

Chapter 3, Creating and Persisting DataFrames, discusses the various ways to ingest data
and create DataFrames.

Chapter 4, Beginning Data Analysis, helps you develop a routine to get started after reading
in your data.

Chapter 5, Exploratory Data Analysis, covers basic analysis techniques for comparing numeric
and categorical data. This chapter will also demonstrate common visualization techniques.

Chapter 6, Selecting Subsets of Data, covers the many varied and potentially confusing ways
of selecting different subsets of data.

Chapter 7, Filtering Rows, covers the process of querying your data to select subsets of
it based on Boolean conditions.

Chapter 8, Index Alignment, targets the very important and often misunderstood index object.
Misuse of the Index is responsible for lots of erroneous results, and these recipes show you
how to use it correctly to deliver powerful results.

Preface

ix

Chapter 9, Grouping for Aggregation, Filtration, and Transformation, covers the powerful
grouping capabilities that are almost always necessary during data analysis. You will build
customized functions to apply to your groups.

Chapter 10, Restructuring Data into a Tidy Form, explains what tidy data is and why it's so
important, and then it shows you how to transform many different forms of messy datasets
into tidy ones.

Chapter 11, Combining Pandas Objects, covers the many available methods to combine
DataFrames and Series vertically or horizontally. We will also do some web-scraping and
connect to a SQL relational database.

Chapter 12, Time Series Analysis, covers advanced and powerful time series capabilities
to dissect by any dimension of time possible.

Chapter 13, Visualization with Matplotlib, Pandas, and Seaborn, introduces the matplotlib
library, which is responsible for all of the plotting in pandas. We will then shift focus to
the pandas plot method and, finally, to the seaborn library, which is capable of producing
aesthetically pleasing visualizations not directly available in pandas.

Chapter 14, Debugging and Testing Pandas, explores mechanisms of testing our DataFrames
and pandas code. If you are planning on deploying pandas in production, this chapter will help
you have confidence in your code.

To get the most out of this book
There are a couple of things you can do to get the most out of this book. First, and most
importantly, you should download all the code, which is stored in Jupyter Notebooks. While
reading through each recipe, run each step of code in the notebook. Make sure you explore
on your own as you run through the code. Second, have the pandas official documentation
open (http://pandas.pydata.org/pandas-docs/stable/) in one of your browser
tabs. The pandas documentation is an excellent resource containing over 1,000 pages of
material. There are examples for most of the pandas operations in the documentation, and
they will often be directly linked from the See also section. While it covers the basics of most
operations, it does so with trivial examples and fake data that don't reflect situations that you
are likely to encounter when analyzing datasets from the real world.

What you need for this book
pandas is a third-party package for the Python programming language and, as of the printing
of this book, is on version 1.0.1. Currently, Python is at version 3.8. The examples in this book
should work fine in versions 3.6 and above.

http://pandas.pydata.org/pandas-docs/stable/

Preface

x

There are a wide variety of ways in which you can install pandas and the rest of the libraries
mentioned on your computer, but an easy method is to install the Anaconda distribution.
Created by Anaconda, it packages together all the popular libraries for scientific computing
in a single downloadable file available on Windows, macOS, and Linux. Visit the download
page to get the Anaconda distribution (https://www.anaconda.com/distribution).

In addition to all the scientific computing libraries, the Anaconda distribution comes with
Jupyter Notebook, which is a browser-based program for developing in Python, among many
other languages. All of the recipes for this book were developed inside of a Jupyter Notebook
and all of the individual notebooks for each chapter will be available for you to use.

It is possible to install all the necessary libraries for this book without the use of the
Anaconda distribution. For those that are interested, visit the pandas installation page
(http://pandas.pydata.org/pandas-docs/stable/install.html).

Download the example code files
You can download the example code files for this book from your account at www.packt.com.
If you purchased this book elsewhere, you can visit www.packtpub.com/support/errata
and register to have the files emailed directly to you.

You can download the code files by following these steps:

1. Log in or register at www.packt.com.

2. Select the Support tab.

3. Click on Code Downloads.

4. Enter the name of the book in the Search box and follow the on-screen instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

 f WinRAR / 7-Zip for Windows

 f Zipeg / iZip / UnRarX for Mac

 f 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Pandas-Cookbook-Second-Edition. In case there's an update
to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

https://www.anaconda.com/distribution
http://pandas.pydata.org/pandas-docs/stable/install.html
http://www.packt.com
http://www.packtpub.com/support/errata
http://www.packt.com
https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition
https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition
https://github.com/PacktPublishing/

Preface

xi

Running a Jupyter Notebook
The suggested method to work through the content of this book is to have a Jupyter Notebook
up and running so that you can run the code while reading through the recipes. Following
along on your computer allows you to go off exploring on your own and gain a deeper
understanding than by just reading the book alone.

Assuming that you have installed the Anaconda distribution on your machine, you have two
options available to start the Jupyter Notebook, from the Anaconda GUI or the command
line. I highly encourage you to use the command line. If you are going to be doing much
with Python, you will need to feel comfortable from there.

After installing Anaconda, open a command prompt (type cmd at the search bar on Windows,
or open a Terminal on Mac or Linux) and type:

$ jupyter-notebook

It is not necessary to run this command from your home directory. You can run it from any
location, and the contents in the browser will reflect that location.

Although we have now started the Jupyter Notebook program, we haven't actually launched
a single individual notebook where we can start developing in Python. To do so, you can click
on the New button on the right-hand side of the page, which will drop down a list of all the
possible kernels available for you to use. If you just downloaded Anaconda, then you will only
have a single kernel available to you (Python 3). After selecting the Python 3 kernel, a new tab
will open in the browser, where you can start writing Python code.

You can, of course, open previously created notebooks instead of beginning a new one. To do
so, navigate through the filesystem provided in the Jupyter Notebook browser home page and
select the notebook you want to open. All Jupyter Notebook files end in .ipynb.

Alternatively, you may use cloud providers for a notebook environment. Both Google and
Microsoft provide free notebook environments that come preloaded with pandas.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781839213106_ColorImages.pdf.

 https://static.packt-cdn.com/downloads/9781839213106_ColorImages.pdf
 https://static.packt-cdn.com/downloads/9781839213106_ColorImages.pdf

Preface

xii

Conventions
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example:
"You may need to install xlwt or openpyxl to write XLS or XLSX files respectively."

A block of code is set as follows:

import pandas as pd
import numpy as np
movies = pd.read_csv("data/movie.csv")
movies

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import pandas as pd
import numpy as np
movies = pd.read_csv("data/movie.csv")
movies

Any command-line input or output is written as follows:

>>> employee = pd.read_csv('data/employee.csv')

>>> max_dept_salary = employee.groupby('DEPARTMENT')['BASE_SALARY'].max()

Bold: Indicates a new term, an important word, or words that you see on the screen, for
example, in menus or dialog boxes, also appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

xiii

Assumptions for every recipe
It should be assumed that at the beginning of each recipe pandas, NumPy, and matplotlib
are imported into the namespace. For plots to be embedded directly within the notebook,
you must also run the magic command %matplotlib inline. Also, all data is stored in
the data directory and is most commonly stored as a CSV file, which can be read directly
with the read_csv function:

>>> %matplotlib inline

>>> import numpy as np

>>> import matplotlib.pyplot as plt

>>> import pandas as pd

>>> my_dataframe = pd.read_csv('data/dataset_name.csv')

Dataset descriptions
There are about two dozen datasets that are used throughout this book. It can be very helpful
to have background information on each dataset as you complete the steps in the recipes. A
detailed description of each dataset may be found in the dataset_descriptions Jupyter
Notebook found at https://github.com/PacktPublishing/Pandas-Cookbook-
Second-Edition. For each dataset, there will be a list of the columns, information about
each column and notes on how the data was procured.

Sections
In this book, you will find several headings that appear frequently.

To give clear instructions on how to complete a recipe, we use these sections as follows:

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition
https://github.com/PacktPublishing/Pandas-Cookbook-Second-Edition

Preface

xiv

There's more...
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book title
in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you have found a mistake in this book we would be grateful if you would report this
to us. Please visit, www.packtpub.com/support/errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name. Please
contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packtpub.com/support/errata
http://authors.packtpub.com
http://authors.packtpub.com
http://packt.com

1

1
Pandas Foundations

Importing pandas
Most users of the pandas library will use an import alias so they can refer to it as pd. In
general in this book, we will not show the pandas and NumPy imports, but they look like this:

>>> import pandas as pd

>>> import numpy as np

Introduction
The goal of this chapter is to introduce a foundation of pandas by thoroughly inspecting the
Series and DataFrame data structures. It is important for pandas users to know the difference
between a Series and a DataFrame.

The pandas library is useful for dealing with structured data. What is structured data? Data
that is stored in tables, such as CSV files, Excel spreadsheets, or database tables, is all
structured. Unstructured data consists of free form text, images, sound, or video. If you find
yourself dealing with structured data, pandas will be of great utility to you.

In this chapter, you will learn how to select a single column of data from a DataFrame (a two-
dimensional dataset), which is returned as a Series (a one-dimensional dataset). Working with
this one-dimensional object makes it easy to show how different methods and operators work.
Many Series methods return another Series as output. This leads to the possibility of calling
further methods in succession, which is known as method chaining.

Pandas Foundations

2

The Index component of the Series and DataFrame is what separates pandas from most other
data analysis libraries and is the key to understanding how many operations work. We will get
a glimpse of this powerful object when we use it as a meaningful label for Series values. The
final two recipes contain tasks that frequently occur during a data analysis.

The pandas DataFrame
Before diving deep into pandas, it is worth knowing the components of the DataFrame.
Visually, the outputted display of a pandas DataFrame (in a Jupyter Notebook) appears to be
nothing more than an ordinary table of data consisting of rows and columns. Hiding beneath
the surface are the three components—the index, columns, and data that you must be aware
of to maximize the DataFrame's full potential.

This recipe reads in the movie dataset into a pandas DataFrame and provides a labeled
diagram of all its major components.

>>> movies = pd.read_csv("data/movie.csv")

>>> movies

 color direc/_name ... aspec/ratio movie/likes

0 Color James Cameron ... 1.78 33000

1 Color Gore Verbinski ... 2.35 0

2 Color Sam Mendes ... 2.35 85000

3 Color Christopher Nolan ... 2.35 164000

4 NaN Doug Walker ... NaN 0

...

4911 Color Scott Smith ... NaN 84

4912 Color NaN ... 16.00 32000

4913 Color Benjamin Roberds ... NaN 16

4914 Color Daniel Hsia ... 2.35 660

4915 Color Jon Gunn ... 1.85 456

Chapter 1

3

DataFrame anatomy

How it works…
pandas first reads the data from disk into memory and into a DataFrame using the read_
csv function. By convention, the terms index label and column name refer to the individual
members of the index and columns, respectively. The term index refers to all the index labels
as a whole, just as the term columns refers to all the column names as a whole.

The labels in index and column names allow for pulling out data based on the index and
column name. We will show that later. The index is also used for alignment. When multiple
Series or DataFrames are combined, the indexes align first before any calculation occurs.
A later recipe will show this as well.

Collectively, the columns and the index are known as the axes. More specifically, the index
is axis 0, and the columns are axis 1.

pandas uses NaN (not a number) to represent missing values. Notice that even though the
color column has string values, it uses NaN to represent a missing value.

Pandas Foundations

4

The three consecutive dots, ..., in the middle of the columns indicate that there is at least
one column that exists but is not displayed due to the number of columns exceeding the
predefined display limits. By default, pandas shows 60 rows and 20 columns, but we have
limited that in the book, so the data fits in a page.

The .head method accepts an optional parameter, n, which controls the number of rows
displayed. The default value for n is 5. Similarly, the .tail method returns the last n rows.

DataFrame attributes
Each of the three DataFrame components–the index, columns, and data–may be accessed
from a DataFrame. You might want to perform operations on the individual components and
not on the DataFrame as a whole. In general, though we can pull out the data into a NumPy
array, unless all the columns are numeric, we usually leave it in a DataFrame. DataFrames are
ideal for managing heterogenous columns of data, NumPy arrays not so much.

This recipe pulls out the index, columns, and the data of the DataFrame into their own
variables, and then shows how the columns and index are inherited from the same object.

How to do it…
1. Use the DataFrame attributes index, columns, and values to assign the index,

columns, and data to their own variables:
>>> movies = pd.read_csv("data/movie.csv")

>>> columns = movies.columns

>>> index = movies.index

>>> data = movies.to_numpy()

2. Display each component's values:
>>> columns

Index(['color', 'director_name', 'num_critic_for_reviews',
'duration',

 'director_facebook_likes', 'actor_3_facebook_likes',
'actor_2_name',

 'actor_1_facebook_likes', 'gross', 'genres', 'actor_1_
name',

 'movie_title', 'num_voted_users', 'cast_total_facebook_
likes',

 'actor_3_name', 'facenumber_in_poster', 'plot_keywords',

 'movie_imdb_link', 'num_user_for_reviews', 'language',
'country',

 'content_rating', 'budget', 'title_year', 'actor_2_

Chapter 1

5

facebook_likes',

 'imdb_score', 'aspect_ratio', 'movie_facebook_likes'],
 dtype='object')

>>> index
RangeIndex(start=0, stop=4916, step=1)

>>> data

array([['Color', 'James Cameron', 723.0, ..., 7.9, 1.78, 33000],

 ['Color', 'Gore Verbinski', 302.0, ..., 7.1, 2.35, 0],

 ['Color', 'Sam Mendes', 602.0, ..., 6.8, 2.35, 85000],

 ...,

 ['Color', 'Benjamin Roberds', 13.0, ..., 6.3, nan, 16],

 ['Color', 'Daniel Hsia', 14.0, ..., 6.3, 2.35, 660],

 ['Color', 'Jon Gunn', 43.0, ..., 6.6, 1.85, 456]],
dtype=object)

3. Output the Python type of each DataFrame component (the word following the last
dot of the output):
>>> type(index)

<class 'pandas.core.indexes.range.RangeIndex'>

>>> type(columns)

<class 'pandas.core.indexes.base.Index'>

>>> type(data)

<class 'numpy.ndarray'>

4. The index and the columns are closely related. Both of them are subclasses of
Index. This allows you to perform similar operations on both the index and the
columns:

>>> issubclass(pd.RangeIndex, pd.Index)

True

>>> issubclass(columns.__class__, pd.Index)

True

How it works…
The index and the columns represent the same thing but along different axes. They are
occasionally referred to as the row index and column index.

There are many types of index objects in pandas. If you do not specify the index, pandas will
use a RangeIndex. A RangeIndex is a subclass of an Index that is analogous to Python's
range object. Its entire sequence of values is not loaded into memory until it is necessary
to do so, thereby saving memory. It is completely defined by its start, stop, and step values.

Pandas Foundations

6

There's more...
When possible, Index objects are implemented using hash tables that allow for very fast
selection and data alignment. They are similar to Python sets in that they support operations
such as intersection and union, but are dissimilar because they are ordered and can have
duplicate entries.

Notice how the .values DataFrame attribute returned a NumPy n-dimensional array, or
ndarray. Most of pandas relies heavily on the ndarray. Beneath the index, columns, and
data are NumPy ndarrays. They could be considered the base object for pandas that many
other objects are built upon. To see this, we can look at the values of the index and columns:

>>> index.to_numpy()

array([0, 1, 2, ..., 4913, 4914, 4915], dtype=int64))

>>> columns.to_numpy()

array(['color', 'director_name', 'num_critic_for_reviews', 'duration',

'director_facebook_likes', 'actor_3_facebook_likes',

'actor_2_name', 'actor_1_facebook_likes', 'gross', 'genres',

'actor_1_name', 'movie_title', 'num_voted_users',

'cast_total_facebook_likes', 'actor_3_name',

'facenumber_in_poster', 'plot_keywords', 'movie_imdb_link',

'num_user_for_reviews', 'language', 'country', 'content_rating',

'budget', 'title_year', 'actor_2_facebook_likes', 'imdb_score',

'aspect_ratio', 'movie_facebook_likes'], dtype=object)

Having said all of that, we usually do not access the underlying NumPy objects. We tend to
leave the objects as pandas objects and use pandas operations. However, we regularly apply
NumPy functions to pandas objects.

Understanding data types
In very broad terms, data may be classified as either continuous or categorical. Continuous
data is always numeric and represents some kind of measurements, such as height, wage, or
salary. Continuous data can take on an infinite number of possibilities. Categorical data, on
the other hand, represents discrete, finite amounts of values such as car color, type of poker
hand, or brand of cereal.

Chapter 1

7

pandas does not broadly classify data as either continuous or categorical. Instead, it has
precise technical definitions for many distinct data types. The following describes common
pandas data types:

 f float – The NumPy float type, which supports missing values

 f int – The NumPy integer type, which does not support missing values

 f 'Int64' – pandas nullable integer type

 f object – The NumPy type for storing strings (and mixed types)

 f 'category' – pandas categorical type, which does support missing values

 f bool – The NumPy Boolean type, which does not support missing values (None
becomes False, np.nan becomes True)

 f 'boolean' – pandas nullable Boolean type

 f datetime64[ns] – The NumPy date type, which does support missing values (NaT)

In this recipe, we display the data type of each column in a DataFrame. After you ingest data,
it is crucial to know the type of data held in each column as it fundamentally changes the kind
of operations that are possible with it.

How to do it…
1. Use the .dtypes attribute to display each column name along with its data type:

>>> movies = pd.read_csv("data/movie.csv")

>>> movies.dtypes

color object

director_name object

num_critic_for_reviews float64

duration float64

director_facebook_likes float64

 ...

title_year float64

actor_2_facebook_likes float64

imdb_score float64

aspect_ratio float64

movie_facebook_likes int64

Length: 28, dtype: object

Pandas Foundations

8

2. Use the .value_counts method to return the counts of each data type:
>>> movies.dtypes.value_counts()

float64 13

int64 3

object 12

dtype: int64

3. Look at the .info method:

>>> movies.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 4916 entries, 0 to 4915

Data columns (total 28 columns):

color 4897 non-null object

director_name 4814 non-null object

num_critic_for_reviews 4867 non-null float64

duration 4901 non-null float64

director_facebook_likes 4814 non-null float64

actor_3_facebook_likes 4893 non-null float64

actor_2_name 4903 non-null object

actor_1_facebook_likes 4909 non-null float64

gross 4054 non-null float64

genres 4916 non-null object

actor_1_name 4909 non-null object

movie_title 4916 non-null object

num_voted_users 4916 non-null int64

cast_total_facebook_likes 4916 non-null int64

actor_3_name 4893 non-null object

facenumber_in_poster 4903 non-null float64
plot_keywords 4764 non-null object

movie_imdb_link 4916 non-null object

num_user_for_reviews 4895 non-null float64

language 4904 non-null object

country 4911 non-null object

content_rating 4616 non-null object

budget 4432 non-null float64

title_year 4810 non-null float64

Chapter 1

9

actor_2_facebook_likes 4903 non-null float64

imdb_score 4916 non-null float64

aspect_ratio 4590 non-null float64

movie_facebook_likes 4916 non-null int64

dtypes: float64(13), int64(3), object(12)

memory usage: 1.1+ MB

How it works…
Each DataFrame column lists one type. For instance, every value in the column aspect_
ratio is a 64-bit float, and every value in movie_facebook_likes is a 64-bit integer.
pandas defaults its core numeric types, integers, and floats to 64 bits regardless of the size
necessary for all data to fit in memory. Even if a column consists entirely of the integer value
0, the data type will still be int64.

The .value_counts method returns the count of all the data types in the DataFrame when
called on the .dtypes attribute.

The object data type is the one data type that is unlike the others. A column that is of the
object data type may contain values that are of any valid Python object. Typically, when a
column is of the object data type, it signals that the entire column is strings. When you load
CSV files and string columns are missing values, pandas will stick in a NaN (float) for that cell.
So the column might have both object and float (missing) values in it. The .dtypes attribute
will show the column as an object (or O on the series). It will not show it as a mixed type
column (that contains both strings and floats):

>>> pd.Series(["Paul", np.nan, "George"]).dtype

dtype('O')

The .info method prints the data type information in addition to the count of non-null
values. It also lists the amount of memory used by the DataFrame. This is useful information,
but is printed on the screen. The .dtypes attribute returns a pandas Series if you needed to
use the data.

There's more…
Almost all of pandas data types are built from NumPy. This tight integration makes it easier
for users to integrate pandas and NumPy operations. As pandas grew larger and more
popular, the object data type proved to be too generic for all columns with string values.
pandas created its own categorical data type to handle columns of strings (or numbers)
with a fixed number of possible values.

Pandas Foundations

10

Selecting a column
Selected a single column from a DataFrame returns a Series (that has the same index as the
DataFrame). It is a single dimension of data, composed of just an index and the data. You can
also create a Series by itself without a DataFrame, but it is more common to pull them off of
a DataFrame.

This recipe examines two different syntaxes to select a single column of data, a Series.
One syntax uses the index operator and the other uses attribute access (or dot notation).

How to do it…
1. Pass a column name as a string to the indexing operator to select a Series of data:

>>> movies = pd.read_csv("data/movie.csv")

>>> movies["director_name"]

0 James Cameron

1 Gore Verbinski

2 Sam Mendes

3 Christopher Nolan

4 Doug Walker

 ...

4911 Scott Smith

4912 NaN

4913 Benjamin Roberds

4914 Daniel Hsia

4915 Jon Gunn

Name: director_name, Length: 4916, dtype: object

2. Alternatively, you may use attribute access to accomplish the same task:
>>> movies.director_name

0 James Cameron

1 Gore Verbinski

2 Sam Mendes

3 Christopher Nolan

4 Doug Walker

 ...

4911 Scott Smith

4912 NaN

Chapter 1

11

4913 Benjamin Roberds

4914 Daniel Hsia

4915 Jon Gunn

Name: director_name, Length: 4916, dtype: object

3. We can also index off of the .loc and .iloc attributes to pull out a Series. The
former allows us to pull out by column name, while the latter by position. These
are referred to as label-based and positional-based in the pandas documentation.

The usage of .loc specifies a selector for both rows and columns separated by
a comma. The row selector is a slice with no start or end name (:) which means
select all of the rows. The column selector will just pull out the column named
director_name.

The .iloc index operation also specifies both row and column selectors. The row
selector is the slice with no start or end index (:) that selects all of the rows. The
column selector, 1, pulls off the second column (remember that Python is zero-
based):
>>> movies.loc[:, "director_name"]

0 James Cameron

1 Gore Verbinski

2 Sam Mendes

3 Christopher Nolan

4 Doug Walker

 ...

4911 Scott Smith

4912 NaN

4913 Benjamin Roberds

4914 Daniel Hsia

4915 Jon Gunn

Name: director_name, Length: 4916, dtype: object

>>> movies.iloc[:, 1]

0 James Cameron

1 Gore Verbinski

2 Sam Mendes

3 Christopher Nolan

4 Doug Walker

 ...

4911 Scott Smith

Pandas Foundations

12

4912 NaN

4913 Benjamin Roberds

4914 Daniel Hsia

4915 Jon Gunn

Name: director_name, Length: 4916, dtype: object

4. Jupyter shows the series in a monospace font, and shows the index, type, length, and
name of the series. It will also truncate data according to the pandas configuration
settings. See the image for a description of these.

Series anatomy

You can also view the index, type, length, and name of the series with the appropriate
attributes:
>>> movies["director_name"].index

RangeIndex(start=0, stop=4916, step=1)

>>> movies["director_name"].dtype

dtype('O')

>>> movies["director_name"].size

4196

>>> movies["director_name"].name

'director_name'

Chapter 1

13

5. Verify that the output is a Series:
>>> type(movies["director_name"])

<class 'pandas.core.series.Series'>

6. Note that even though the type is reported as object, because there are missing
values, the Series has both floats and strings in it. We can use the .apply method
with the type function to get back a Series that has the type of every member.
Rather than looking at the whole Series result, we will chain the .unique method
onto the result, to look at just the unique types that are found in the director_
name column:

>>> movies["director_name"].apply(type).unique()

array([<class 'str'>, <class 'float'>], dtype=object)

How it works…
A pandas DataFrame typically has multiple columns (though it may also have only one
column). Each of these columns can be pulled out and treated as a Series.

There are many mechanisms to pull out a column from a DataFrame. Typically the easiest is to
try and access it as an attribute. Attribute access is done with the dot operator (.notation).
There are good things about this:

 f Least amount of typing

 f Jupyter will provide completion on the name

 f Jupyter will provide completion on the Series attributes

There are some downsides as well:

 f Only works with columns that have names that are valid Python attributes and do not
conflict with existing DataFrame attributes

 f Cannot create a new column, can only update existing ones

What is a valid Python attribute? A sequence of alphanumerics that starts with a character
and includes underscores. Typically these are in lowercase to follow standard Python naming
conventions. This means that column names with spaces or special characters will not work
with an attribute.

Selecting column names using the index operator ([) will work with any column name. You
can also create and update columns with this operator. Jupyter will provide completion on the
column name when you use the index operator, but sadly, will not complete on subsequent
Series attributes.

Pandas Foundations

14

I often find myself using attribute access because getting completion on the Series attribute
is very handy. But, I also make sure that the column names are valid Python attribute names
that don't conflict with existing DataFrame attributes. I also try not to update using either
attribute or index assignment, but rather using the .assign method. You will see many
examples of using .assign in this book.

There's more…
To get completion in Jupyter an press the Tab key following a dot, or after starting a string in
an index access. Jupyter will pop up a list of completions, and you can use the up and down
arrow keys to highlight one, and hit Enter to complete it.

Calling Series methods
A typical workflow in pandas will have you going back and forth between executing statements
on Series and DataFrames. Calling Series methods is the primary way to use the abilities that
the Series offers.

Both Series and DataFrames have a tremendous amount of power. We can use the built-in
dir function to uncover all the attributes and methods of a Series. In the following code, we
also show the number of attributes and methods common to both Series and DataFrames.
Both of these objects share the vast majority of attribute and method names:

>>> s_attr_methods = set(dir(pd.Series))

>>> len(s_attr_methods)

471

>>> df_attr_methods = set(dir(pd.DataFrame))

>>> len(df_attr_methods)

458

>>> len(s_attr_methods & df_attr_methods)

400

As you can see there is a lot of functionality on both of these objects. Don't be overwhelmed
by this. Most pandas users only use a subset of the functionality and get along just fine.

This recipe covers the most common and powerful Series methods and attributes. Many of
the methods are nearly equivalent for DataFrames.

Chapter 1

15

How to do it…
1. After reading in the movies dataset, select two Series with different data types.

The director_name column contains strings (pandas calls this an object or O
data type), and the column actor_1_facebook_likes contains numerical data
(formally float64):
>>> movies = pd.read_csv("data/movie.csv")

>>> director = movies["director_name"]

>>> fb_likes = movies["actor_1_facebook_likes"]

>>> director.dtype

dtype('O')

>>> fb_likes.dtype

dtype('float64')

2. The .head method lists the first five entries of a Series. You may provide an optional
argument to change the number of entries returned. Another option is to use the
.sample method to view some of the data. Depending on your dataset, this might
provide better insight into your data as the first rows might be very different from
subsequent rows:
>>> director.head()

0 James Cameron

1 Gore Verbinski

2 Sam Mendes

3 Christopher Nolan

4 Doug Walker

Name: director_name, dtype: object

>>> director.sample(n=5, random_state=42)

2347 Brian Percival

4687 Lucio Fulci

691 Phillip Noyce

3911 Sam Peckinpah

2488 Rowdy Herrington

Name: director_name, dtype: object

>>> fb_likes.head()

Pandas Foundations

16

0 1000.0

1 40000.0

2 11000.0

3 27000.0

4 131.0

Name: actor_1_facebook_likes, dtype: float64

3. The data type of the Series usually determines which of the methods will be the most
useful. For instance, one of the most useful methods for the object data type Series
is .value_counts, which calculates the frequencies:
>>> director.value_counts()

Steven Spielberg 26

Woody Allen 22

Clint Eastwood 20

Martin Scorsese 20

Ridley Scott 16

 ..

Eric England 1

Moustapha Akkad 1

Jay Oliva 1

Scott Speer 1

Leon Ford 1

Name: director_name, Length: 2397, dtype: int64

4. The .value_counts method is typically more useful for Series with object data
types but can occasionally provide insight into numeric Series as well. Used with fb_
likes, it appears that higher numbers have been rounded to the nearest thousand
as it is unlikely that so many movies received exactly 1,000 likes:
>>> fb_likes.value_counts()

1000.0 436

11000.0 206

2000.0 189

3000.0 150

12000.0 131

 ...

362.0 1

216.0 1

859.0 1

Chapter 1

17

225.0 1

334.0 1

Name: actor_1_facebook_likes, Length: 877, dtype: int64

5. Counting the number of elements in the Series may be done with the .size or
.shape attribute or the built-in len function. The .unique method will return
a NumPy array with the unique values:
>>> director.size

4916

>>> director.shape

(4916,)

>>> len(director)

4916

>>> director.unique()

array(['James Cameron', 'Gore Verbinski', 'Sam Mendes', ...,

 'Scott Smith', 'Benjamin Roberds', 'Daniel Hsia'],
dtype=object)

6. Additionally, there is the .count method, which doesn't return the count of items,
but the number of non-missing values:
>>> director.count()

4814

>>> fb_likes.count()

4909

7. Basic summary statistics are provided with .min, .max, .mean, .median, and .std:
>>> fb_likes.min()

0.0

>>> fb_likes.max()

640000.0

>>> fb_likes.mean()

6494.488490527602

>>> fb_likes.median()

982.0

Pandas Foundations

18

>>> fb_likes.std()

15106.986883848309

8. To simplify step 7, you may use the .describe method to return both the summary
statistics and a few of the quantiles at once. When .describe is used with an
object data type column, a completely different output is returned:
>>> fb_likes.describe()

count 4909.000000

mean 6494.488491

std 15106.986884

min 0.000000

25% 607.000000

50% 982.000000

75% 11000.000000

max 640000.000000

Name: actor_1_facebook_likes, dtype: float64

>>> director.describe()

count 4814

unique 2397

top Steven Spielberg

freq 26

Name: director_name, dtype: object

9. The .quantile method calculates the quantile of numeric data. Note that if you
pass in a scaler, you will get scalar output, but if you pass in a list, the output is
a pandas Series:
>>> fb_likes.quantile(0.2)

510.0

>>> fb_likes.quantile(

... [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

...)

0.1 240.0

0.2 510.0

0.3 694.0

0.4 854.0

0.5 982.0

0.6 1000.0

Chapter 1

19

0.7 8000.0

0.8 13000.0

0.9 18000.0

Name: actor_1_facebook_likes, dtype: float64

10. Since the .count method in step 6 returned a value less than the total number
of Series elements found in step 5, we know that there are missing values in each
Series. The .isna method can be used to determine whether each individual value is
missing or not. The result is a Series. You may see this referred to as a Boolean array
(a Series with Boolean values that has the same index and length as the original
Series):
>>> director.isna()

0 False

1 False

2 False

3 False

4 False

 ...

4911 False

4912 True

4913 False

4914 False

4915 False

Name: director_name, Length: 4916, dtype: bool

11. It is possible to replace all missing values within a Series with the .fillna method:
>>> fb_likes_filled = fb_likes.fillna(0)

>>> fb_likes_filled.count()

4916

12. To remove the entries in Series elements with missing values, use the .dropna
method:

>>> fb_likes_dropped = fb_likes.dropna()

>>> fb_likes_dropped.size

4909

Pandas Foundations

20

How it works…
The methods used in this recipe were chosen because of how frequently they are used in data
analysis.

The steps in this recipe return different types of objects.

The result from the .head method in step 1 is another Series. The .value_counts method
also produces a Series but has the unique values from the original Series as the index and the
count as its values. In step 5, the .size property and .count method return scalar values,
but the .shape property returns a one-item tuple. This is a convention borrowed from NumPy,
which allows for arrays of arbitrary dimensions.

In step 7, each individual method returns a scalar value.

In step 8, the .describe method returns a Series with all the summary statistic names as
the index and the statistic as the values.

In step 9, the .quantile method is flexible and returns a scalar value when passed a single
value but returns a Series when given a list.

In steps 10, 11, and 12, .isna, .fillna, and .dropna all return a Series.

There's more…
The .value_counts method is one of the most informative Series methods and heavily
used during exploratory analysis, especially with categorical columns. It defaults to returning
the counts, but by setting the normalize parameter to True, the relative frequencies are
returned instead, which provides another view of the distribution:

>>> director.value_counts(normalize=True)

Steven Spielberg 0.005401

Woody Allen 0.004570

Clint Eastwood 0.004155

Martin Scorsese 0.004155

Ridley Scott 0.003324

 ...

Eric England 0.000208

Moustapha Akkad 0.000208

Jay Oliva 0.000208

Scott Speer 0.000208

Leon Ford 0.000208

Name: director_name, Length: 2397, dtype: float64

Chapter 1

21

In this recipe, we determined that there were missing values in the Series by observing
that the result from the .count method did not match the .size attribute. A more direct
approach is to inspect the .hasnans attribute:

>>> director.hasnans

True

There exists a complement of .isna; the .notna method, which returns True for all the
non-missing values:

>>> director.notna()

0 True

1 True

2 True

3 True

4 True

 ...

4911 True

4912 False

4913 True

4914 True

4915 True

Name: director_name, Length: 4916, dtype: bool

There is also a .isnull method, which is an alias for .isna. I'm lazy so if I can type less
while still being explicit about my intentions, then I'm all for it. Because pandas uses NaN all
over the place, I prefer the spelling of .isna to .isnull. We don't ever see NULL anywhere
in the pandas or Python world.

Series operations
There exist a vast number of operators in Python for manipulating objects. For instance, when
the plus operator is placed between two integers, Python will add them together:

>>> 5 + 9 # plus operator example. Adds 5 and 9

14

Series and DataFrames support many of the Python operators. Typically, a new Series
or DataFrame is returned when using an operator.

In this recipe, a variety of operators will be applied to different Series objects to produce
a new Series with completely different values.

Pandas Foundations

22

How to do it…
1. Select the imdb_score column as a Series:

>>> movies = pd.read_csv("data/movie.csv")

>>> imdb_score = movies["imdb_score"]

>>> imdb_score

0 7.9

1 7.1

2 6.8

3 8.5

4 7.1

 ...

4911 7.7

4912 7.5

4913 6.3

4914 6.3

4915 6.6

Name: imdb_score, Length: 4916, dtype: float64

2. Use the plus operator to add one to each Series element:
>>> imdb_score + 1

0 8.9

1 8.1

2 7.8

3 9.5

4 8.1

 ...

4911 8.7

4912 8.5

4913 7.3

4914 7.3

4915 7.6

Name: imdb_score, Length: 4916, dtype: float64

3. The other basic arithmetic operators, minus (-), multiplication (*), division (/), and
exponentiation (**) work similarly with scalar values. In this step, we will multiply the
series by 2.5:
>>> imdb_score * 2.5

Chapter 1

23

0 19.75

1 17.75

2 17.00

3 21.25

4 17.75

 ...

4911 19.25

4912 18.75

4913 15.75

4914 15.75

4915 16.50

Name: imdb_score, Length: 4916, dtype: float64

4. Python uses a double slash (//) for floor division. The floor division operator
truncates the result of the division. The percent sign (%) is the modulus operator,
which returns the remainder after a division. The Series instances also support
these operations:
>>> imdb_score // 7

0 1.0

1 1.0

2 0.0

3 1.0

4 1.0

 ...

4911 1.0

4912 1.0

4913 0.0

4914 0.0

4915 0.0

Name: imdb_score, Length: 4916, dtype: float64

5. There exist six comparison operators, greater than (>), less than (<), greater than or
equal to (>=), less than or equal to (<=), equal to (==), and not equal to (!=). Each
comparison operator turns each value in the Series to True or False based on the
outcome of the condition. The result is a Boolean array, which we will see is very
useful for filtering in later recipes:

>>> imdb_score > 7

0 True

Pandas Foundations

24

1 True

2 False

3 True

4 True

 ...

4911 True

4912 True

4913 False

4914 False

4915 False

Name: imdb_score, Length: 4916, dtype: bool

>>> director = movies["director_name"]

>>> director == "James Cameron"

0 True

1 False

2 False

3 False

4 False

 ...

4911 False

4912 False

4913 False

4914 False

4915 False

Name: director_name, Length: 4916, dtype: bool

How it works…
All the operators used in this recipe apply the same operation to each element in the Series.
In native Python, this would require a for loop to iterate through each of the items in the
sequence before applying the operation. pandas relies heavily on the NumPy library, which
allows for vectorized computations, or the ability to operate on entire sequences of data
without the explicit writing of for loops. Each operation returns a new Series with the same
index, but with the new values.

Chapter 1

25

There's more…
All of the operators used in this recipe have method equivalents that produce the exact same
result. For instance, in step 1, imdb_score + 1 can be reproduced with the .add method.

Using the method rather than the operator can be useful when we chain methods together.

Here are a few examples:

>>> imdb_score.add(1) # imdb_score + 1

0 8.9

1 8.1

2 7.8

3 9.5

4 8.1

 ...

4911 8.7

4912 8.5

4913 7.3

4914 7.3

4915 7.6

Name: imdb_score, Length: 4916, dtype: float64

>>> imdb_score.gt(7) # imdb_score > 7

0 True

1 True

2 False

3 True

4 True

 ...

4911 True

4912 True

4913 False

4914 False

4915 False

Name: imdb_score, Length: 4916, dtype: bool

Pandas Foundations

26

Why does pandas offer a method equivalent to these operators? By its nature, an operator
only operates in exactly one manner. Methods, on the other hand, can have parameters that
allow you to alter their default functionality.

Other recipes will dive into this further, but here is a small example. The .sub method
performs subtraction on a Series. When you do subtraction with the - operator, missing
values are ignored. However, the .sub method allows you to specify a fill_value
parameter to use in place of missing values:

>>> money = pd.Series([100, 20, None])

>>> money – 15

0 85.0

1 5.0

2 NaN

dtype: float64

>>> money.sub(15, fill_value=0)

0 85.0

1 5.0

2 -15.0

dtype: float64

Following is a table of operators and the corresponding methods:

Operator group Operator Series method name

Arithmetic +,-,*,/,//,%,** .add, .sub, .mul, .div, .floordiv, .mod, .pow
Comparison <,>,<=,>=,==,!= .lt, .gt, .le, .ge, .eq, .ne

You may be curious as to how a Python Series object, or any object for that matter, knows
what to do when it encounters an operator. For example, how does the expression imdb_
score * 2.5 know to multiply each element in the Series by 2.5? Python has a built-in,
standardized way for objects to communicate with operators using special methods.

Special methods are what objects call internally whenever they encounter an operator.
Special methods always begin and end with two underscores. Because of this, they are also
called dunder methods as the method that implements the operator is surrounded by double
underscores (dunder being a lazy geeky programmer way of saying "double underscores").
For instance, the special method .__mul__ is called whenever the multiplication operator
is used. Python interprets the imdb_score * 2.5 expression as imdb_score.__mul__
(2.5).

Chapter 1

27

There is no difference between using the special method and using an operator as they
are doing the exact same thing. The operator is just syntactic sugar for the special method.
However, calling the .mul method is different than calling the .__mul__ method.

Chaining Series methods
In Python, every variable points to an object, and many attributes and methods return new
objects. This allows sequential invocation of methods using attribute access. This is called
method chaining or flow programming. pandas is a library that lends itself well to method
chaining, as many Series and DataFrame methods return more Series and DataFrames,
upon which more methods can be called.

To motivate method chaining, let's take an English sentence and translate the chain of events
into a chain of methods. Consider the sentence: A person drives to the store to buy food, then
drives home and prepares, cooks, serves, and eats the food before cleaning the dishes.

A Python version of this sentence might take the following form:

(person.drive('store')
.buy('food')
.drive('home')
.prepare('food')
.cook('food')
.serve('food')
.eat('food')
.cleanup('dishes')
)

In the preceding code, the person is the object (or instance of a class) that calls a method.
Each method returns another instance that allows the chain of calls to happen. The
parameter passed to each of the methods specifies how the method operates.

Although it is possible to write the entire method chain in a single unbroken line, it is far more
palatable to write a single method per line. Since Python does not normally allow a single
expression to be written on multiple lines, we have a couple of options. My preferred style is
to wrap everything in parentheses. Alternatively, you may end each line with a backslash (\)
to indicate that the line continues on the next line. To improve readability even more, you can
align the method calls vertically.

This recipe shows a similar method chaining using a pandas Series.

Pandas Foundations

28

How to do it…
1. Load in the movie dataset, and pull two columns out of it:

>>> movies = pd.read_csv("data/movie.csv")

>>> fb_likes = movies["actor_1_facebook_likes"]

>>> director = movies["director_name"]

2. Two of the most common methods to append to the end of a chain are the .head or
the .sample method. This suppresses long output. If the resultant DataFrame is very
wide, I like to transpose the results using the .T property. (For shorter chains, there
isn't as great a need to place each method on a different line):
>>> director.value_counts().head(3)

Steven Spielberg 26

Woody Allen 22

Clint Eastwood 20

Name: director_name, dtype: int64

3. A common way to count the number of missing values is to chain the .sum method
after a call to .isna:
>>> fb_likes.isna().sum()

7

4. All the non-missing values of fb_likes should be integers as it is impossible to have
a partial Facebook like. In most pandas versions, any numeric columns with missing
values must have their data type as float (pandas 0.24 introduced the Int64 type,
which supports missing values but is not used by default). If we fill missing values
from fb_likes with zeros, we can then convert it to an integer with the .astype
method:
>>> fb_likes.dtype

dtype('float64')

>>> (fb_likes.fillna(0).astype(int).head())

0 1000

1 40000

2 11000

3 27000

4 131

Name: actor_1_facebook_likes, dtype: int64

Chapter 1

29

How it works…
Step 2 first uses the .value_counts method to return a Series and then chains the .head
method to select the first three elements. The final returned object is a Series, which could
also have had more methods chained on it.

In step 3, the .isna method creates a Boolean array. pandas treats False and True as
0 and 1, so the .sum method returns the number of missing values.

Each of the three chained methods in step 4 returns a Series. It may not seem intuitive,
but the .astype method returns an entirely new Series with a different data type.

There's more…
One potential downside of chaining is that debugging becomes difficult. Because none of the
intermediate objects created during the method calls is stored in a variable, it can be hard
to trace the exact location in the chain where it occurred.

One of the nice aspects of putting each call on its own line is that it enables debugging of
more complicated commands. I typically build up these chains one method at a time, but
occasionally I need to come back to previous code or tweak it slightly.

To debug this code, I start by commenting out all of the commands except the first. Then
I uncomment the first chain, make sure it works, and move on to the next.

If I were debugging the previous code, I would comment out the last two method calls and
make sure I knew what .fillna was doing:

>>> (

... fb_likes.fillna(0)

... # .astype(int)

... # .head()

...)

0 1000.0

1 40000.0

2 11000.0

3 27000.0

4 131.0

 ...

4911 637.0

4912 841.0

4913 0.0

Pandas Foundations

30

4914 946.0

4915 86.0

Name: actor_1_facebook_likes, Length: 4916, dtype: float64

Then I would uncomment the next method and ensure that it was working correctly:

>>> (

... fb_likes.fillna(0).astype(int)

... # .head()

...)

0 1000

1 40000

2 11000

3 27000

4 131

 ...

4911 637

4912 841

4913 0

4914 946

4915 86

Name: actor_1_facebook_likes, Length: 4916, dtype: int64

Another option for debugging chains is to call the .pipe method to show an intermediate
value. The .pipe method on a Series needs to be passed a function that accepts a Series as
input and can return anything (but we want to return a Series if we want to use it in a method
chain).

This function, debug_ser, will print out the value of the intermediate result:

>>> def debug_ser(ser):

... print("BEFORE")

... print(ser)

... print("AFTER")

... return ser

>>> (fb_likes.fillna(0).pipe(debug_ser).astype(int).head())

BEFORE

0 1000.0

1 40000.0

Chapter 1

31

2 11000.0

3 27000.0

4 131.0

 ...

4911 637.0

4912 841.0

4913 0.0

4914 946.0

4915 86.0

Name: actor_1_facebook_likes, Length: 4916, dtype: float64

AFTER

0 1000

1 40000

2 11000

3 27000

4 131

Name: actor_1_facebook_likes, dtype: int64

If you want to create a global variable to store an intermediate value you can also use .pipe:

>>> intermediate = None

>>> def get_intermediate(ser):

... global intermediate

... intermediate = ser

... return ser

>>> res = (

... fb_likes.fillna(0)

... .pipe(get_intermediate)

... .astype(int)

... .head()

...)

>>> intermediate

0 1000.0

1 40000.0

2 11000.0

Pandas Foundations

32

3 27000.0

4 131.0

 ...

4911 637.0

4912 841.0

4913 0.0

4914 946.0

4915 86.0

Name: actor_1_facebook_likes, Length: 4916, dtype: float64

As was mentioned at the beginning of the recipe, it is possible to use backslashes for
multi line code. Step 4 may be rewritten this way:

>>> fb_likes.fillna(0)\

... .astype(int)\

... .head()

0 1000

1 40000

2 11000

3 27000

4 131

Name: actor_1_facebook_likes, dtype: int64

I prefer wrapping the chain with parentheses. Having to continually add trailing backslashes
when you add a method to the chain is annoying.

Renaming column names
One of the most common operations on a DataFrame is to rename the column names. I like to
rename my columns so that they are also valid Python attribute names. This means that they
do not start with numbers and are lowercased alphanumerics with underscores. Good column
names should also be descriptive, brief, and not clash with existing DataFrame or Series
attributes.

In this recipe, the column names are renamed. The motivation for renaming is to make your
code easier to understand, and also let your environment assist you. Recall that Jupyter will
allow you to complete Series methods if you accessed the Series using dot notation (but will
not allow method completion on index access).

Chapter 1

33

How to do it…
1. Read in the movie dataset, and make the index meaningful by setting it as the movie

title:
>>> movies = pd.read_csv("data/movie.csv")

2. The renamed DataFrame method accepts dictionaries that map the old value to the
new value. Let's create one for the columns:
>>> col_map = {

... "director_name": "director",

... "num_critic_for_reviews": "critic_reviews",

... }

3. Pass the dictionaries to the rename method, and assign the result to a new variable:
>>> movies.rename(columns=col_map).head()

 color director ... aspec/ratio movie/likes

0 Color James Cameron ... 1.78 33000

1 Color Gore Verbinski ... 2.35 0

2 Color Sam Mendes ... 2.35 85000

3 Color Christopher Nolan ... 2.35 164000

4 NaN Doug Walker ... NaN 0

How it works…
The .rename method on a DataFrame allows for column labels to be renamed. We can
rename the columns by assigning to the columns attribute. But we cannot chain on an
assignment. As I keep saying, I prefer chaining because it makes our code easier to read.
The next section shows an example of renaming via assignment to the .column attribute:

There's more…
In this recipe, we changed the names of the columns. You can also rename the index using
the .rename method if you want to. This makes more sense if the columns are string values.
So we will set the index to the movie_title column and then map those values to new ones:

>>> idx_map = {

... "Avatar": "Ratava",

... "Spectre": "Ertceps",

... "Pirates of the Caribbean: At World's End": "POC",

Pandas Foundations

34

... }

>>> col_map = {

... "aspect_ratio": "aspect",

... "movie_facebook_likes": "fblikes",

... }

>>> (

... movies.set_index("movie_title")

... .rename(index=idx_map, columns=col_map)

... .head(3)

...)

 color director_name ... aspect fblikes

movie_title ...

Ratava Color James Cameron ... 1.78 33000

POC Color Gore Verbinski ... 2.35 0

Ertceps Color Sam Mendes ... 2.35 85000

There are multiple ways to rename row and column labels. It is possible to reassign the index
and column attributes to a Python list. This assignment works when the list has the same
number of elements as the row and column labels.

The following code shows an example. We will read the data from the CSV file, and use the
index_col parameter to tell pandas to use the movie_title column as the index. Then
we use the .tolist method on each Index object to create a Python list of labels. We then
modify three values in each of the lists and reassign them to the .index and .column
attributes:

>>> movies = pd.read_csv(

... "data/movie.csv", index_col="movie_title"

...)

>>> ids = movies.index.to_list()

>>> columns = movies.columns.to_list()

rename the row and column labels with list assignments

>>> ids[0] = "Ratava"

>>> ids[1] = "POC"

>>> ids[2] = "Ertceps"

>>> columns[1] = "director"

>>> columns[-2] = "aspect"

>>> columns[-1] = "fblikes"

>>> movies.index = ids

Chapter 1

35

>>> movies.columns = columns

>>> movies.head(3)

 color director ... aspect fblikes

Ratava Color James Cameron ... 1.78 33000

POC Color Gore Verbinski ... 2.35 0

Ertceps Color Sam Mendes ... 2.35 85000

Another option is to pass a function into the .rename method. The function takes a column
name and returns a new name. Assuming there are spaces and uppercases in the columns,
this code will clean them up:

>>> def to_clean(val):

... return val.strip().lower().replace(" ", "_")

>>> movies.rename(columns=to_clean).head(3)

 color director ... aspect fblikes

Ratava Color James Cameron ... 1.78 33000

POC Color Gore Verbinski ... 2.35 0

Ertceps Color Sam Mendes ... 2.35 85000

In pandas code in the wild, you will also see list comprehensions used to clean up the column
names. With the new cleaned up list, you can reassign the result back to the .columns
attribute. Assuming there are spaces and uppercases in the columns, this code will clean
them up:

>>> cols = [

... col.strip().lower().replace(" ", "_")

... for col in movies.columns

...]

>>> movies.columns = cols

>>> movies.head(3)

 color director ... aspect fblikes

Ratava Color James Cameron ... 1.78 33000

POC Color Gore Verbinski ... 2.35 0

Ertceps Color Sam Mendes ... 2.35 85000

Because this code mutates the original DataFrame, consider using the .rename method.

Pandas Foundations

36

Creating and deleting columns
During data analysis, it is likely that you will need to create new columns to represent new
variables. Commonly, these new columns will be created from previous columns already in
the dataset. pandas has a few different ways to add new columns to a DataFrame.

In this recipe, we create new columns in the movie dataset by using the .assign method
and then delete columns with the .drop method.

How to do it…
1. One way to create a new column is to do an index assignment. Note that this will not

return a new DataFrame but mutate the existing DataFrame. If you assign the column
to a scalar value, it will use that value for every cell in the column. Let's create the
has_seen column in the movie dataset to indicate whether or not we have seen the
movie. We will assign zero for every value. By default, new columns are appended to
the end:
>>> movies = pd.read_csv("data/movie.csv")

>>> movies["has_seen"] = 0

2. While this method works and is common, as I find myself chaining methods very
often, I prefer to use the .assign method instead. This will return a new DataFrame
with the new column. Because it uses the parameter name as the column name, the
column name must be a valid parameter name:
>>> movies = pd.read_csv("data/movie.csv")

>>> idx_map = {

... "Avatar": "Ratava",

... "Spectre": "Ertceps",

... "Pirates of the Caribbean: At World's End": "POC",

... }

>>> col_map = {

... "aspect_ratio": "aspect",

... "movie_facebook_likes": "fblikes",

... }

>>> (

... movies.rename(

... index=idx_map, columns=col_map

...).assign(has_seen=0)

...)

Chapter 1

37

 color director_name ... fblikes has_seen

0 Color James Cameron ... 33000 0

1 Color Gore Verbinski ... 0 0

2 Color Sam Mendes ... 85000 0

3 Color Christopher Nolan ... 164000 0

4 NaN Doug Walker ... 0 0

...

4911 Color Scott Smith ... 84 0

4912 Color NaN ... 32000 0

4913 Color Benjamin Roberds ... 16 0

4914 Color Daniel Hsia ... 660 0

4915 Color Jon Gunn ... 456 0

3. There are several columns that contain data on the number of Facebook likes. Let's
add up all actor and director Facebook like columns and assign them to the total_
likes column. We can do this in a couple of ways.

We can add each of the columns:
>>> total = (

... movies["actor_1_facebook_likes"]

... + movies["actor_2_facebook_likes"]

... + movies["actor_3_facebook_likes"]

... + movies["director_facebook_likes"]

...)

>>> total.head(5)

0 2791.0

1 46563.0

2 11554.0

3 95000.0

4 NaN

dtype: float64

My preference is to use methods that we can chain, so I prefer calling .sum here.
I will pass in a list of columns to select to .loc to pull out just those columns that
I want to sum:
>>> cols = [

... "actor_1_facebook_likes",

Pandas Foundations

38

... "actor_2_facebook_likes",

... "actor_3_facebook_likes",

... "director_facebook_likes",

...]

>>> sum_col = movies.loc[:, cols].sum(axis="columns")

>>> sum_col.head(5)

0 2791.0

1 46563.0

2 11554.0

3 95000.0

4 274.0

dtype: float64

Then we can assign this Series to the new column. Note that when we called the
+ operator, the result had missing numbers (NaN), but the .sum method ignores
missing numbers by default, so we get a different result:
>>> movies.assign(total_likes=sum_col).head(5)

 color direc/_name ... movie/likes total/likes

0 Color James Cameron ... 33000 2791.0

1 Color Gore Verbinski ... 0 46563.0

2 Color Sam Mendes ... 85000 11554.0

3 Color Christopher Nolan ... 164000 95000.0

4 NaN Doug Walker ... 0 274.0

Another option is to pass in a function as the value of the parameter in the call
to the .assign method. This function accepts a DataFrame as input and should
return a Series:
>>> def sum_likes(df):

... return df[

... [

... c

... for c in df.columns

... if "like" in c

... and ("actor" in c or "director" in c)

...]

...].sum(axis=1)

Chapter 1

39

>>> movies.assign(total_likes=sum_likes).head(5)

 color direc/_name ... movie/likes total/likes

0 Color James Cameron ... 33000 2791.0

1 Color Gore Verbinski ... 0 46563.0

2 Color Sam Mendes ... 85000 11554.0

3 Color Christopher Nolan ... 164000 95000.0

4 NaN Doug Walker ... 0 274.0

4. From the Calling Series methods recipe in this chapter, we know that this dataset
contains missing values. When numeric columns are added to one another as in the
preceding step using the plus operator, the result is NaN if there is any value missing.
However, with the .sum method it converts NaN to zero.

Let's check if there are missing values in our new column using both methods:
>>> (

... movies.assign(total_likes=sum_col)["total_likes"]

... .isna()

... .sum()

...)

0

>>> (

... movies.assign(total_likes=total)["total_likes"]

... .isna()

... .sum()

...)

122

We could fill in the missing values with zero as well:
>>> (

... movies.assign(total_likes=total.fillna(0))[

... "total_likes"

...]

... .isna()

... .sum()

...)

0

Pandas Foundations

40

5. There is another column in the dataset named cast_total_facebook_likes.
It would be interesting to see what percentage of this column comes from our newly
created column, total_likes. Before we create our percentage column, let's do
some basic data validation. We will ensure that cast_total_facebook_likes
is greater than or equal to total_likes:
>>> def cast_like_gt_actor(df):

... return (

... df["cast_total_facebook_likes"]

... >= df["total_likes"]

...)

>>> df2 = movies.assign(

... total_likes=total,

... is_cast_likes_more=cast_like_gt_actor,

...)

6. is_cast_likes_more is now a column from a Boolean array. We can check
whether all the values of this column are True using the .all method:
>>> df2["is_cast_likes_more"].all()

False

7. It turns out that there is at least one movie with more total_likes than cast_
total_facebook_likes. It could be that director Facebook likes are not part of
the cast total likes. Let's backtrack and delete the total_likes column. We can
use the .drop method with the columns parameter to do that:
>>> df2 = df2.drop(columns="total_likes")

8. Let's recreate a Series of just the total actor likes:
>>> actor_sum = movies[

... [

... c

... for c in movies.columns

... if "actor_" in c and "_likes" in c

...]

...].sum(axis="columns")

>>> actor_sum.head(5)

0 2791.0

1 46000.0

Chapter 1

41

2 11554.0

3 73000.0

4 143.0

dtype: float64

9. Check again whether all the values in cast_total_facebook_likes are greater
than actor_sum. We can do this with the >= operator or the .ge method:
>>> movies["cast_total_facebook_likes"] >= actor_sum

0 True

1 True

2 True

3 True

4 True

 ...

4911 True

4912 True

4913 True

4914 True

4915 True

Length: 4916, dtype: bool

>>> movies["cast_total_facebook_likes"].ge(actor_sum)

0 True

1 True

2 True

3 True

4 True

 ...

4911 True

4912 True

4913 True

4914 True

4915 True

Length: 4916, dtype: bool

>>> movies["cast_total_facebook_likes"].ge(actor_sum).all()

True

Pandas Foundations

42

10. Finally, let's calculate the percentage of the cast_total_facebook_likes that
come from actor_sum:
>>> pct_like = actor_sum.div(

... movies["cast_total_facebook_likes"]

...).mul(100)

11. Let's validate that the minimum and maximum of this Series fall between 0 and 1:
>>> pct_like.describe()

count 4883.000000

mean 83.327889

std 14.056578

min 30.076696

25% 73.528368

50% 86.928884

75% 95.477440

max 100.000000

dtype: float64

12. We can then create a Series using the movie_title column as the index. The
Series constructor lets us pass in both the values and an index:

>>> pd.Series(

... pct_like.to_numpy(), index=movies["movie_title"]

...).head()

movie_title

Avatar 57.736864

Pirates of the Caribbean: At World's End 95.139607

Spectre 98.752137

The Dark Knight Rises 68.378310

Star Wars: Episode VII - The Force Awakens 100.000000

dtype: float64

How it works…
Many pandas operations are flexible, and column creation is one of them. This recipe assigns
both a scalar value, as seen in step 1, and a Series, as seen in step 2, to create a new
column.

Chapter 1

43

Step 3 adds four different Series together with the plus operator and the .sum method. Step
4 uses method chaining to find and fill missing values. Step 5 uses the greater than or equal
comparison operator to return a Boolean Series, which is then evaluated with the .all
method in step 6 to check whether every single value is True or not.

The .drop method accepts the name of the row or column to delete. It defaults to dropping
rows by the index names. To drop columns, you must set the axis parameter to either 1 or
'columns'. The default value for axis is 0 or 'index'.

Steps 8 and 9 redo the work of step 3 to step 6 without the total_likes column. Step
10 finally calculates the desired column we wanted since step 4. Step 11 validates that the
percentages are between 0 and 100.

There's more…
It is possible to insert a new column into a specific location in a DataFrame with the .insert
method. The .insert method takes the integer position of the new column as its first
argument, the name of the new column as its second, and the values as its third. You will
need to use the .get_loc Index method to find the integer location of the column name.

The .insert method modifies the calling DataFrame in-place, so there won't be an
assignment statement. It also returns None. For this reason, I prefer the .assign method to
create new columns. If I need them in order, I can pass in an ordered list of columns into the
index operator (or to .loc).

The profit of each movie is calculated by subtracting budget from gross and inserting it after
gross with the following:

>>> profit_index = movies.columns.get_loc("gross") + 1

>>> profit_index

9

>>> movies.insert(

... loc=profit_index,

... column="profit",

... value=movies["gross"] - movies["budget"],

...)

An alternative to deleting columns with the .drop method is to use the del statement. This
also does not return a new DataFrame, so favor .drop over this:

>>> del movies["director_name"]

45

2
Essential DataFrame

Operations

Introduction
This chapter covers many fundamental operations of the DataFrame. Many of the recipes
will be similar to those in Chapter 1, Pandas Foundations, which primarily covered operations
on a Series.

Selecting multiple DataFrame columns
We can select a single column by passing the column name to the index operator of
a DataFrame. This was covered in the Selecting a column recipe in Chapter 1, Pandas
Foundations. It is often necessary to focus on a subset of the current working dataset,
which is accomplished by selecting multiple columns.

In this recipe, all the actor and director columns will be selected from the movie dataset.

How to do it...
1. Read in the movie dataset, and pass in a list of the desired columns to the indexing

operator:
>>> import pandas as pd

>>> import numpy as np

Essential DataFrame Operations

46

>>> movies = pd.read_csv("data/movie.csv")

>>> movie_actor_director = movies[

... [

... "actor_1_name",

... "actor_2_name",

... "actor_3_name",

... "director_name",

...]

...]

>>> movie_actor_director.head()

 actor_1_name actor_2_name actor_3_name director_name

0 CCH Pounder Joel Dav... Wes Studi James Ca...

1 Johnny Depp Orlando ... Jack Dav... Gore Ver...

2 Christop... Rory Kin... Stephani... Sam Mendes

3 Tom Hardy Christia... Joseph G... Christop...

4 Doug Walker Rob Walker NaN Doug Walker

2. There are instances when one column of a DataFrame needs to be selected. Using
the index operation can return either a Series or a DataFrame. If we pass in a list
with a single item, we will get back a DataFrame. If we pass in just a string with
the column name, we will get a Series back:
>>> type(movies[["director_name"]])

<class 'pandas.core.frame.DataFrame'>

>>> type(movies["director_name"])

<class 'pandas.core.series.Series'>

3. We can also use .loc to pull out a column by name. Because this index operation
requires that we pass in a row selector first, we will use a colon (:) to indicate a slice
that selects all of the rows. This can also return either a DataFrame or a Series:

>>> type(movies.loc[:, ["director_name"]])

<class 'pandas.core.frame.DataFrame'>

>>> type(movies.loc[:, "director_name"])

<class 'pandas.core.series.Series'>

Chapter 2

47

How it works...
The DataFrame index operator is very flexible and capable of accepting a number of different
objects. If a string is passed, it will return a single-dimensional Series. If a list is passed to the
indexing operator, it returns a DataFrame of all the columns in the list in the specified order.

Step 2 shows how to select a single column as a DataFrame and as a Series. Usually, a single
column is selected with a string, resulting in a Series. When a DataFrame is desired, put the
column name in a single-element list.

Step 3 shows how to use the loc attribute to pull out a Series or a DataFrame.

There's more...
Passing a long list inside the indexing operator might cause readability issues. To help with
this, you may save all your column names to a list variable first. The following code achieves
the same result as step 1:

>>> cols = [

... "actor_1_name",

... "actor_2_name",

... "actor_3_name",

... "director_name",

...]

>>> movie_actor_director = movies[cols]

One of the most common exceptions raised when working with pandas is KeyError.
This error is mainly due to mistyping of a column or index name. This same error is
raised whenever a multiple column selection is attempted without the use of a list:

>>> movies[

... "actor_1_name",

... "actor_2_name",

... "actor_3_name",

... "director_name",

...]

Traceback (most recent call last):

 ...

KeyError: ('actor_1_name', 'actor_2_name', 'actor_3_name', 'director_
name')

Essential DataFrame Operations

48

Selecting columns with methods
Although column selection is usually done with the indexing operator, there are some
DataFrame methods that facilitate their selection in an alternative manner. The .select_
dtypes and .filter methods are two useful methods to do this.

If you want to select by type, you need to be familiar with pandas data types. The
Understanding data types recipe in Chapter 1, Pandas Foundations, explains the types.

How to do it...
1. Read in the movie dataset. Shorten the column names for display. Use the .get_

dtype_counts method to output the number of columns with each specific data
type:
>>> movies = pd.read_csv("data/movie.csv")

>>> def shorten(col):

... return (

... str(col)

... .replace("facebook_likes", "fb")

... .replace("_for_reviews", "")

...)

>>> movies = movies.rename(columns=shorten)

>>> movies.dtypes.value_counts()

float64 13

int64 3

object 12

dtype: int64

2. Use the .select_dtypes method to select only the integer columns:
>>> movies.select_dtypes(include="int").head()

 num_voted_users cast_total_fb movie_fb

0 886204 4834 33000

1 471220 48350 0

2 275868 11700 85000

3 1144337 106759 164000

4 8 143 0

Chapter 2

49

3. If you would like to select all the numeric columns, you may pass the string number
to the include parameter:
>>> movies.select_dtypes(include="number").head()

 num_critics duration ... aspect_ratio movie_fb

0 723.0 178.0 ... 1.78 33000

1 302.0 169.0 ... 2.35 0

2 602.0 148.0 ... 2.35 85000

3 813.0 164.0 ... 2.35 164000

4 NaN NaN ... NaN 0

4. If we wanted integer and string columns we could do the following:
>>> movies.select_dtypes(include=["int", "object"]).head()

 color direc/_name ... conte/ating movie_fb

0 Color James Cameron ... PG-13 33000

1 Color Gore Verbinski ... PG-13 0

2 Color Sam Mendes ... PG-13 85000

3 Color Christopher Nolan ... PG-13 164000

4 NaN Doug Walker ... NaN 0

5. To exclude only floating-point columns, do the following:
>>> movies.select_dtypes(exclude="float").head()

 color director_name ... content_rating movie_fb

0 Color James Ca... ... PG-13 33000

1 Color Gore Ver... ... PG-13 0

2 Color Sam Mendes ... PG-13 85000

3 Color Christop... ... PG-13 164000

4 NaN Doug Walker ... NaN 0

6. An alternative method to select columns is with the .filter method. This method
is flexible and searches column names (or index labels) based on which parameter
is used. Here, we use the like parameter to search for all the Facebook columns
or the names that contain the exact string, fb. The like parameter is checking for
substrings in column names:
>>> movies.filter(like="fb").head()

 director_fb actor_3_fb ... actor_2_fb movie_fb

0 0.0 855.0 ... 936.0 33000

1 563.0 1000.0 ... 5000.0 0

2 0.0 161.0 ... 393.0 85000

3 22000.0 23000.0 ... 23000.0 164000

4 131.0 NaN ... 12.0 0

Essential DataFrame Operations

50

7. The .filter method has more tricks (or parameters) up its sleeve. If you use the
items parameters, you can pass in a list of column names:
>>> cols = [

... "actor_1_name",

... "actor_2_name",

... "actor_3_name",

... "director_name",

...]

>>> movies.filter(items=cols).head()

 actor_1_name ... director_name

0 CCH Pounder ... James Cameron

1 Johnny Depp ... Gore Verbinski

2 Christoph Waltz ... Sam Mendes

3 Tom Hardy ... Christopher Nolan

4 Doug Walker ... Doug Walker

8. The .filter method allows columns to be searched with regular expressions using
the regex parameter. Here, we search for all columns that have a digit somewhere
in their name:

>>> movies.filter(regex=r"\d").head()

 actor_3_fb actor_2_name ... actor_3_name actor_2_fb

0 855.0 Joel Dav... ... Wes Studi 936.0

1 1000.0 Orlando Jack Dav... 5000.0

2 161.0 Rory Kin... ... Stephani... 393.0

3 23000.0 Christia... ... Joseph G... 23000.0

4 NaN Rob Walker ... NaN 12.0

How it works...
Step 1 lists the frequencies of all the different data types. Alternatively, you may use the
.dtypes attribute to get the exact data type for each column. The .select_dtypes method
accepts either a list or single data type in its include or exclude parameters and returns
a DataFrame with columns of just those given data types (or not those types if excluding
columns). The list values may be either the string name of the data type or the actual
Python object.

The .filter method selects columns by only inspecting the column names and not the
actual data values. It has three mutually exclusive parameters: items, like, and regex,
only one of which can be used at a time.

Chapter 2

51

The like parameter takes a string and attempts to find all the column names that contain
that exact string somewhere in the name. To gain more flexibility, you may use the regex
parameter instead to select column names through a regular expression. This particular
regular expression, r'\d', represents all digits from zero to nine and matches any string
with at least a single digit in it.

The filter method comes with another parameter, items, which takes a list of exact column
names. This is nearly an exact duplication of the index operation, except that a KeyError
will not be raised if one of the strings does not match a column name. For instance, movies.
filter(items=['actor_1_name', 'asdf']) runs without error and returns a single
column DataFrame.

There's more...
One confusing aspect of .select_dtypes is its flexibility to take both strings and Python
objects. The following list should clarify all the possible ways to select the many different
column data types. There is no standard or preferred method of referring to data types in
pandas, so it's good to be aware of both ways:

 f np.number, 'number' – Selects both integers and floats regardless of size

 f np.float64, np.float_, float, 'float64', 'float_', 'float' – Selects
only 64-bit floats

 f np.float16, np.float32, np.float128, 'float16', 'float32',
'float128' – Respectively selects exactly 16, 32, and 128-bit floats

 f np.floating, 'floating' – Selects all floats regardless of size

 f np.int0, np.int64, np.int_, int, 'int0', 'int64', 'int_', 'int' – Selects
only 64-bit integers

 f np.int8, np.int16, np.int32, 'int8', 'int16', 'int32' – Respectively
selects exactly 8, 16, and 32-bit integers

 f np.integer, 'integer' – Selects all integers regardless of size

 f 'Int64' – Selects nullable integer; no NumPy equivalent

 f np.object, 'object', 'O' – Select all object data types

 f np.datetime64, 'datetime64', 'datetime' – All datetimes are 64 bits

 f np.timedelta64, 'timedelta64', 'timedelta' – All timedeltas are 64 bits

 f pd.Categorical, 'category' – Unique to pandas; no NumPy equivalent

Because all integers and floats default to 64 bits, you may select them by using the string
'int' or 'float' as you can see from the preceding bullet list. If you want to select all
integers and floats regardless of their specific size, use the string 'number'.

Essential DataFrame Operations

52

Ordering column names
One of the first tasks to consider after initially importing a dataset as a DataFrame is to
analyze the order of the columns. As humans we are used to reading languages from left
to right, which impacts our interpretations of the data. It's far easier to find and interpret
information when column order is given consideration.

There are no standardized set of rules that dictate how columns should be organized within
a dataset. However, it is good practice to develop a set of guidelines that you consistently
follow. This is especially true if you work with a group of analysts who share lots of datasets.

The following is a guideline to order columns:

 f Classify each column as either categorical or continuous

 f Group common columns within the categorical and continuous columns

 f Place the most important groups of columns first with categorical columns before
continuous ones

This recipe shows you how to order the columns with this guideline. There are many possible
orderings that are sensible.

How to do it...
1. Read in the movie dataset, and scan the data:

>>> movies = pd.read_csv("data/movie.csv")

>>> def shorten(col):

... return col.replace("facebook_likes", "fb").replace(

... "_for_reviews", ""

...)

>>> movies = movies.rename(columns=shorten)

2. Output all the column names and scan for similar categorical and continuous
columns:
>>> movies.columns

Index(['color', 'director_name', 'num_critic', 'duration',
'director_fb',

 'actor_3_fb', 'actor_2_name', 'actor_1_fb', 'gross',
'genres',

 'actor_1_name', 'movie_title', 'num_voted_users', 'cast_
total_fb',

 'actor_3_name', 'facenumber_in_poster', 'plot_keywords',

Chapter 2

53

 'movie_imdb_link', 'num_user', 'language', 'country',
'content_rating',

 'budget', 'title_year', 'actor_2_fb', 'imdb_score',
'aspect_ratio',

 'movie_fb'],

 dtype='object')

3. The columns don't appear to have any logical ordering to them. Organize the names
sensibly into lists so that the guideline from the previous section is followed:
>>> cat_core = [

... "movie_title",

... "title_year",

... "content_rating",

... "genres",

...]

>>> cat_people = [

... "director_name",

... "actor_1_name",

... "actor_2_name",

... "actor_3_name",

...]

>>> cat_other = [

... "color",

... "country",

... "language",

... "plot_keywords",

... "movie_imdb_link",

...]

>>> cont_fb = [

... "director_fb",

... "actor_1_fb",

... "actor_2_fb",

... "actor_3_fb",

... "cast_total_fb",

... "movie_fb",

...]

>>> cont_finance = ["budget", "gross"]

Essential DataFrame Operations

54

>>> cont_num_reviews = [

... "num_voted_users",

... "num_user",

... "num_critic",

...]

>>> cont_other = [

... "imdb_score",

... "duration",

... "aspect_ratio",

... "facenumber_in_poster",

...]

4. Concatenate all the lists together to get the final column order. Also, ensure that this
list contains all the columns from the original:
>>> new_col_order = (

... cat_core

... + cat_people

... + cat_other

... + cont_fb

... + cont_finance

... + cont_num_reviews

... + cont_other

...)

>>> set(movies.columns) == set(new_col_order)

True

5. Pass the list with the new column order to the indexing operator of the DataFrame to
reorder the columns:

>>> movies[new_col_order].head()

 movie_title title_year ... aspect_ratio facenumber_in_poster

0 Avatar 2009.0 ... 1.78 0.0

1 Pirates ... 2007.0 ... 2.35 0.0

2 Spectre 2015.0 ... 2.35 1.0

3 The Dark... 2012.0 ... 2.35 0.0

4 Star War... NaN ... NaN 0.0

Chapter 2

55

How it works...
You can select a subset of columns from a DataFrame, with a list of specific column names.
For instance, movies[['movie_title', 'director_name']] creates a new DataFrame
with only the movie_title and director_name columns. Selecting columns by name is
the default behavior of the index operator for a pandas DataFrame.

Step 3 neatly organizes all of the column names into separate lists based on their type
(categorical or continuous) and by how similar their data is. The most important columns,
such as the title of the movie, are placed first.

Step 4 concatenates all of the lists of column names and validates that this new list
contains the same exact values as the original column names. Python sets are unordered
and the equality statement checks whether each member of one set is a member of the
other. Manually ordering columns in this recipe is susceptible to human error as it's easy
to mistakenly forget a column in the new column list.

Step 5 completes the reordering by passing the new column order as a list to the indexing
operator. This new order is now much more sensible than the original.

There's more...
There are alternative guidelines for ordering columns besides the suggestion mentioned
earlier. Hadley Wickham's seminal paper on Tidy Data suggests placing the fixed variables
first, followed by measured variables. As this data does not come from a controlled
experiment, there is some flexibility in determining which variables are fixed and which ones
are measured. Good candidates for measured variables are those that we would like to
predict, such as gross, the budget, or the imdb_score. For instance, in this ordering, we can
mix categorical and continuous variables. It might make more sense to place the column for
the number of Facebook likes directly after the name of that actor. You can, of course, come
up with your own guidelines for column order as the computational parts are unaffected by it.

Summarizing a DataFrame
In the Calling Series methods recipe in Chapter 1, Pandas Foundations, a variety of methods
operated on a single column or Series of data. Many of these were aggregation or reducing
methods that returned a single scalar value. When these same methods are called from a
DataFrame, they perform that operation for each column at once and reduce the results for
each column in the DataFrame. They return a Series with the column names in the index and
the summary for each column as the value.

In this recipe, we explore a variety of the most common DataFrame attributes and methods
with the movie dataset.

Essential DataFrame Operations

56

How to do it...
1. Read in the movie dataset, and examine the basic descriptive properties, .shape,

.size, and .ndim, along with running the len function:
>>> movies = pd.read_csv("data/movie.csv")

>>> movies.shape

(4916, 28)

>>> movies.size

137648

>>> movies.ndim

2

>>> len(movies)

4916

2. The .count method shows the number of non-missing values for each column. It is
an aggregation method as it summarizes every column in a single value. The output
is a Series that has the original column names as its index:
>>> movies.count()

color 4897

director_name 4814

num_critic_for_reviews 4867

duration 4901

director_facebook_likes 4814

 ...

title_year 4810

actor_2_facebook_likes 4903

imdb_score 4916

aspect_ratio 4590

movie_facebook_likes 4916

Length: 28, dtype: int64

3. The other methods that compute summary statistics, .min, .max, .mean, .median,
and .std, return Series that have the column names of the numeric columns in the
index and their aggregations as the values:
>>> movies.min()

num_critic_for_reviews 1.00

duration 7.00

director_facebook_likes 0.00

Chapter 2

57

actor_3_facebook_likes 0.00

actor_1_facebook_likes 0.00

 ...

title_year 1916.00

actor_2_facebook_likes 0.00

imdb_score 1.60

aspect_ratio 1.18

movie_facebook_likes 0.00

Length: 16, dtype: float64

4. The .describe method is very powerful and calculates all the descriptive statistics
and quartiles at once. The end result is a DataFrame with the descriptive statistics
names as its index. I like to transpose the results using .T as I can usually fit more
information on the screen that way:
>>> movies.describe().T

 count mean ... 75% max

num_criti... 4867.0 137.988905 ... 191.00 813.0

duration 4901.0 107.090798 ... 118.00 511.0

director_... 4814.0 691.014541 ... 189.75 23000.0

actor_3_f... 4893.0 631.276313 ... 633.00 23000.0

actor_1_f... 4909.0 6494.488491 ... 11000.00 640000.0

...

title_year 4810.0 2002.447609 ... 2011.00 2016.0

actor_2_f... 4903.0 1621.923516 ... 912.00 137000.0

imdb_score 4916.0 6.437429 ... 7.20 9.5

aspect_ratio 4590.0 2.222349 ... 2.35 16.0

movie_fac... 4916.0 7348.294142 ... 2000.00 349000.0

5. It is possible to specify exact quantiles in the .describe method using the
percentiles parameter:
>>> movies.describe(percentiles=[0.01, 0.3, 0.99]).T

 count mean ... 99% max

num_criti... 4867.0 137.988905 ... 546.68 813.0

duration 4901.0 107.090798 ... 189.00 511.0

director_... 4814.0 691.014541 ... 16000.00 23000.0

actor_3_f... 4893.0 631.276313 ... 11000.00 23000.0

actor_1_f... 4909.0 6494.488491 ... 44920.00 640000.0

...

Essential DataFrame Operations

58

title_year 4810.0 2002.447609 ... 2016.00 2016.0

actor_2_f... 4903.0 1621.923516 ... 17000.00 137000.0

imdb_score 4916.0 6.437429 ... 8.50 9.5

aspect_ratio 4590.0 2.222349 ... 4.00 16.0

movie_fac... 4916.0 7348.294142 ... 93850.00 349000.0

How it works...
Step 1 gives basic information on the size of the dataset. The .shape attribute returns
a tuple with the number of rows and columns. The .size attribute returns the total number
of elements in the DataFrame, which is just the product of the number of rows and columns.
The .ndim attribute returns the number of dimensions, which is two for all DataFrames.
When a DataFrame is passed to the built-in len function, it returns the number of rows.

The methods in step 2 and step 3 aggregate each column down to a single number.
Each column name is now the index label in a Series with its aggregated result as the
corresponding value.

If you look closely, you will notice that the output from step 3 is missing all the object columns
from step 2. This method ignores string columns by default.

Note that numeric columns have missing values but have a result returned by .describe.
By default, pandas handles missing values in numeric columns by skipping them. It is possible
to change this behavior by setting the skipna parameter to False. This will cause pandas
to return NaN for all these aggregation methods if there exists at least a single missing value.

The .describe method displays the summary statistics of the numeric columns. You can
expand its summary to include more quantiles by passing a list of numbers between 0 and
1 to the percentiles parameter. See the Developing a data analysis routine recipe for more
on the .describe method.

There's more...
To see how the .skipna parameter affects the outcome, we can set its value to False and
rerun step 3 from the preceding recipe. Only numeric columns without missing values will
calculate a result:

>>> movies.min(skipna=False)

num_critic_for_reviews NaN

duration NaN

director_facebook_likes NaN

actor_3_facebook_likes NaN

Chapter 2

59

actor_1_facebook_likes NaN

 ...

title_year NaN

actor_2_facebook_likes NaN

imdb_score 1.6

aspect_ratio NaN

movie_facebook_likes 0.0

Length: 16, dtype: float64

Chaining DataFrame methods
The Chaining Series methods recipe in Chapter 1, Pandas Foundations, showcased several
examples of chaining Series methods together. All the method chains in this chapter will begin
from a DataFrame. One of the keys to method chaining is to know the exact object being
returned during each step of the chain. In pandas, this will nearly always
be a DataFrame, Series, or scalar value.

In this recipe, we count all the missing values in each column of the movie dataset.

How to do it...
1. We will use the .isnull method to get a count of the missing values. This method

will change every value to a Boolean, indicating whether it is missing:
>>> movies = pd.read_csv("data/movie.csv")

>>> def shorten(col):

... return col.replace("facebook_likes", "fb").replace(

... "_for_reviews", ""

...)

>>> movies = movies.rename(columns=shorten)

>>> movies.isnull().head()

 color director_name ... aspect_ratio movie_fb

0 False False ... False False

1 False False ... False False

2 False False ... False False

3 False False ... False False

4 True False ... True False

Essential DataFrame Operations

60

2. We will chain the .sum method that interprets True and False as 1 and
0, respectively. Because this is a reduction method, it aggregates the results
into a Series:
>>> (movies.isnull().sum().head())

color 19

director_name 102

num_critic 49

duration 15

director_fb 102

dtype: int64

3. We can go one step further and take the sum of this Series and return the count
of the total number of missing values in the entire DataFrame as a scalar value:
>>> movies.isnull().sum().sum()

2654

4. A way to determine whether there are any missing values in the DataFrame is to use
the .any method twice in succession:
>>> movies.isnull().any().any()

True

How it works...
The .isnull method returns a DataFrame the same size as the calling DataFrame but with
all values transformed to Booleans. See the counts of the following data types to verify this:

>>> movies.isnull().dtypes.value_counts()

bool 28

dtype: int64

In Python, Booleans evaluate to 0 and 1, and this makes it possible to sum them by column,
as done in step 2. The resulting Series itself also has a .sum method, which gets us the grand
total of missing values in the DataFrame.

In step 4, the .any method on a DataFrame returns a Series of Booleans indicating if there
exists at least one True for each column. The .any method is chained again on this resulting
Series of Booleans to determine if any of the columns have missing values. If step 4 evaluates
as True, then there is at least one missing value in the entire DataFrame.

Chapter 2

61

There's more...
Most of the columns in the movie dataset with the object data type contain missing values.
By default, aggregation methods (.min, .max, and .sum), do not return anything for object
columns. as seen in the following code snippet, which selects three object columns and
attempts to find the maximum value of each one:

>>> movies[["color", "movie_title", "color"]].max()

Series([], dtype: float64)

To force pandas to return something for each column, we must fill in the missing values. Here,
we choose an empty string:

>>> movies.select_dtypes(["object"]).fillna("").max()

color Color

director_name Étienne Faure

actor_2_name Zubaida Sahar

genres Western

actor_1_name Óscar Jaenada

 ...

plot_keywords zombie|zombie spoof

movie_imdb_link http://www.imdb....

language Zulu

country West Germany

content_rating X

Length: 12, dtype: object

For purposes of readability, method chains are often written as one method call per line
surrounded by parentheses. This makes it easier to read and insert comments on what is
returned at each step of the chain, or comment out lines to debug what is happening:

>>> (movies.select_dtypes(["object"]).fillna("").max())

color Color

director_name Étienne Faure

actor_2_name Zubaida Sahar

genres Western

actor_1_name Óscar Jaenada

 ...

plot_keywords zombie|zombie spoof

movie_imdb_link http://www.imdb....

language Zulu

Essential DataFrame Operations

62

country West Germany

content_rating X

Length: 12, dtype: object

DataFrame operations
A primer on operators was given in the Series operations recipe from Chapter 1, Pandas
Foundations, which will be helpful here. The Python arithmetic and comparison operators
work with DataFrames, as they do with Series.

When an arithmetic or comparison operator is used with a DataFrame, each value of each
column gets the operation applied to it. Typically, when an operator is used with a DataFrame,
the columns are either all numeric or all object (usually strings). If the DataFrame does
not contain homogeneous data, then the operation is likely to fail. Let's see an example
of this failure with the college dataset, which contains both numeric and object data types.
Attempting to add 5 to each value of the DataFrame raises a TypeError as integers cannot
be added to strings:

>>> colleges = pd.read_csv("data/college.csv")

>>> colleges + 5

Traceback (most recent call last):

 ...

TypeError: can only concatenate str (not "int") to str

To successfully use an operator with a DataFrame, first select homogeneous data. For this
recipe, we will select all the columns that begin with 'UGDS_'. These columns represent the
fraction of undergraduate students by race. To get started, we import the data and use the
institution name as the label for our index, and then select the columns we desire with the
.filter method:

>>> colleges = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college_ugds = colleges.filter(like="UGDS_")

>>> college_ugds.head()

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.0333 0.9353 ... 0.0059 0.0138

Universit... 0.5922 0.2600 ... 0.0179 0.0100

Amridge U... 0.2990 0.4192 ... 0.0000 0.2715

Universit... 0.6988 0.1255 ... 0.0332 0.0350

Alabama S... 0.0158 0.9208 ... 0.0243 0.0137

Chapter 2

63

This recipe uses multiple operators with a DataFrame to round the undergraduate columns to
the nearest hundredth. We will then see how this result is equivalent to the .round method.

How to do it...
1. pandas does bankers rounding, numbers that are exactly halfway between either side

to the even side. Look at what happens to the UGDS_BLACK row of this series when
we round it to two decimal places:
>>> name = "Northwest-Shoals Community College"

>>> college_ugds.loc[name]

UGDS_WHITE 0.7912

UGDS_BLACK 0.1250

UGDS_HISP 0.0339

UGDS_ASIAN 0.0036

UGDS_AIAN 0.0088

UGDS_NHPI 0.0006

UGDS_2MOR 0.0012

UGDS_NRA 0.0033

UGDS_UNKN 0.0324

Name: Northwest-Shoals Community College, dtype: float64

>>> college_ugds.loc[name].round(2)

UGDS_WHITE 0.79

UGDS_BLACK 0.12

UGDS_HISP 0.03

UGDS_ASIAN 0.00

UGDS_AIAN 0.01

UGDS_NHPI 0.00

UGDS_2MOR 0.00

UGDS_NRA 0.00

UGDS_UNKN 0.03

Name: Northwest-Shoals Community College, dtype: float64

If we add .0001 before rounding, it changes to rounding up:
>>> (college_ugds.loc[name] + 0.0001).round(2)

UGDS_WHITE 0.79

UGDS_BLACK 0.13

Essential DataFrame Operations

64

UGDS_HISP 0.03

UGDS_ASIAN 0.00

UGDS_AIAN 0.01

UGDS_NHPI 0.00

UGDS_2MOR 0.00

UGDS_NRA 0.00

UGDS_UNKN 0.03

Name: Northwest-Shoals Community College, dtype: float64

2. Let's do this to the DataFrame. To begin our rounding adventure with operators,
we will first add .00501 to each value of college_ugds:
>>> college_ugds + 0.00501

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.03831 0.94031 ... 0.01091 0.01881

Universit... 0.59721 0.26501 ... 0.02291 0.01501

Amridge U... 0.30401 0.42421 ... 0.00501 0.27651

Universit... 0.70381 0.13051 ... 0.03821 0.04001

Alabama S... 0.02081 0.92581 ... 0.02931 0.01871

...

SAE Insti... NaN NaN ... NaN NaN

Rasmussen... NaN NaN ... NaN NaN

National ... NaN NaN ... NaN NaN

Bay Area ... NaN NaN ... NaN NaN

Excel Lea... NaN NaN ... NaN NaN

3. Use the floor division operator, //, to round down to the nearest whole number
percentage:
>>> (college_ugds + 0.00501) // 0.01

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 3.0 94.0 ... 1.0 1.0

Universit... 59.0 26.0 ... 2.0 1.0

Amridge U... 30.0 42.0 ... 0.0 27.0

Universit... 70.0 13.0 ... 3.0 4.0

Alabama S... 2.0 92.0 ... 2.0 1.0

...

Chapter 2

65

SAE Insti... NaN NaN ... NaN NaN

Rasmussen... NaN NaN ... NaN NaN

National ... NaN NaN ... NaN NaN

Bay Area ... NaN NaN ... NaN NaN

Excel Lea... NaN NaN ... NaN NaN

4. To complete the rounding exercise, divide by 100:
>>> college_ugds_op_round = (

... (college_ugds + 0.00501) // 0.01 / 100

...)

>>> college_ugds_op_round.head()

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.03 0.94 ... 0.01 0.01

Universit... 0.59 0.26 ... 0.02 0.01

Amridge U... 0.30 0.42 ... 0.00 0.27

Universit... 0.70 0.13 ... 0.03 0.04

Alabama S... 0.02 0.92 ... 0.02 0.01

5. Now use the round DataFrame method to do the rounding automatically for us. Due
to bankers rounding, we add a small fraction before rounding:
>>> college_ugds_round = (college_ugds + 0.00001).round(2)

>>> college_ugds_round

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.03 0.94 ... 0.01 0.01

Universit... 0.59 0.26 ... 0.02 0.01

Amridge U... 0.30 0.42 ... 0.00 0.27

Universit... 0.70 0.13 ... 0.03 0.04

Alabama S... 0.02 0.92 ... 0.02 0.01

...

SAE Insti... NaN NaN ... NaN NaN

Rasmussen... NaN NaN ... NaN NaN

National ... NaN NaN ... NaN NaN

Bay Area ... NaN NaN ... NaN NaN

Excel Lea... NaN NaN ... NaN NaN

Essential DataFrame Operations

66

6. Use the equals DataFrame method to test the equality of two DataFrames:

>>> college_ugds_op_round.equals(college_ugds_round)

True

How it works...
Steps 1 and 2 use the plus operator, which attempts to add a scalar value to each value
of each column of the DataFrame. As the columns are all numeric, this operation works as
expected. There are some missing values in each of the columns but they stay missing after
the operation.

Mathematically, adding .005 should be enough so that the floor division in the next step
correctly rounds to the nearest whole percentage. The trouble appears because of the
inexactness of floating-point numbers:

>>> 0.045 + 0.005

0.049999999999999996

There is an extra .00001 added to each number to ensure that the floating-point
representation has the first four digits the same as the actual value. This works because
the maximum precision of all the points in the dataset is four decimal places.

Step 3 applies the floor division operator, //, to all the values in the DataFrame. As we are
dividing by a fraction, in essence, it is multiplying each value by 100 and truncating any
decimals. Parentheses are needed around the first part of the expression, as floor division
has higher precedence than addition. Step 4 uses the division operator to return the decimal
to the correct position.

In step 5, we reproduce the previous steps with the round method. Before we can do this, we
must again add an extra .00001 to each DataFrame value for a different reason from step 2.
NumPy and Python 3 round numbers that are exactly halfway between either side to the even
number. The bankers rounding (or ties to even http://bit.ly/2x3V5TU) technique is not
usually what is formally taught in schools. It does not consistently bias numbers to the higher
side (http://bit.ly/2zhsPy8).

It is necessary here to round up so that both DataFrame values are equal. The .equals
method determines if all the elements and indexes between two DataFrames are exactly
the same and returns a Boolean.

There's more...
Just as with Series, DataFrames have method equivalents of the operators. You may replace
the operators with their method equivalents:

http://bit.ly/2x3V5TU
http://bit.ly/2zhsPy8

Chapter 2

67

>>> college2 = (

... college_ugds.add(0.00501).floordiv(0.01).div(100)

...)

>>> college2.equals(college_ugds_op_round)

True

Comparing missing values
pandas uses the NumPy NaN (np.nan) object to represent a missing value. This is an
unusual object and has interesting mathematical properties. For instance, it is not equal to
itself. Even Python's None object evaluates as True when compared to itself:

>>> np.nan == np.nan

False

>>> None == None

True

All other comparisons against np.nan also return False, except not equal to (!=):

>>> np.nan > 5

False

>>> 5 > np.nan

False

>>> np.nan != 5

True

Getting ready
Series and DataFrames use the equals operator, ==, to make element-by-element
comparisons. The result is an object with the same dimensions. This recipe shows you how to
use the equals operator, which is very different from the .equals method.

As in the previous recipe, the columns representing the fraction of each race of
undergraduate students from the college dataset will be used:

>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college_ugds = college.filter(like="UGDS_")

Essential DataFrame Operations

68

How to do it...
1. To get an idea of how the equals operator works, let's compare each element to

a scalar value:
>>> college_ugds == 0.0019

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... False False ... False False

Universit... False False ... False False

Amridge U... False False ... False False

Universit... False False ... False False

Alabama S... False False ... False False

...

SAE Insti... False False ... False False

Rasmussen... False False ... False False

National ... False False ... False False

Bay Area ... False False ... False False

Excel Lea... False False ... False False

2. This works as expected but becomes problematic whenever you attempt to compare
DataFrames with missing values. You may be tempted to use the equals operator
to compare two DataFrames with one another on an element-by-element basis.
Take, for instance, college_ugds compared against itself, as follows:
>>> college_self_compare = college_ugds == college_ugds

>>> college_self_compare.head()

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... True True ... True True

Universit... True True ... True True

Amridge U... True True ... True True

Universit... True True ... True True

Alabama S... True True ... True True

3. At first glance, all the values appear to be equal, as you would expect. However, using
the .all method to determine if each column contains only True values yields an
unexpected result:
>>> college_self_compare.all()

UGDS_WHITE False

UGDS_BLACK False

Chapter 2

69

UGDS_HISP False

UGDS_ASIAN False

UGDS_AIAN False

UGDS_NHPI False

UGDS_2MOR False

UGDS_NRA False

UGDS_UNKN False

dtype: bool

4. This happens because missing values do not compare equally with one another.
If you tried to count missing values using the equal operator and summing up the
Boolean columns, you would get zero for each one:
>>> (college_ugds == np.nan).sum()

UGDS_WHITE 0

UGDS_BLACK 0

UGDS_HISP 0

UGDS_ASIAN 0

UGDS_AIAN 0

UGDS_NHPI 0

UGDS_2MOR 0

UGDS_NRA 0

UGDS_UNKN 0

dtype: int64

5. Instead of using == to find missing numbers, use the .isna method:
>>> college_ugds.isna().sum()

UGDS_WHITE 661

UGDS_BLACK 661

UGDS_HISP 661

UGDS_ASIAN 661

UGDS_AIAN 661

UGDS_NHPI 661

UGDS_2MOR 661

UGDS_NRA 661

UGDS_UNKN 661

dtype: int64

Essential DataFrame Operations

70

6. The correct way to compare two entire DataFrames with one another is not with the
equals operator (==) but with the .equals method. This method treats NaNs that
are in the same location as equal (note that the .eq method is the equivalent of ==):

>>> college_ugds.equals(college_ugds)

True

How it works...
Step 1 compares a DataFrame to a scalar value while step 2 compares a DataFrame with
another DataFrame. Both operations appear to be quite simple and intuitive at first glance.
The second operation is checking whether the DataFrames have identically labeled indexes
and thus the same number of elements. The operation will fail if this isn't the case.

Step 3 verifies that none of the columns in the DataFrames are equivalent to each other.
Step 4 further shows the non-equivalence of np.nan and itself. Step 5 verifies that there are
indeed missing values in the DataFrame. Finally, step 6 shows the correct way to compare
DataFrames with the .equals method, which always returns a Boolean scalar value.

There's more...
All the comparison operators have method counterparts that allow for more functionality.
Somewhat confusingly, the .eq DataFrame method does element-by-element comparison,
just like the equals (==) operator. The .eq method is not at all the same as the .equals
method. The following code duplicates step 1:

>>> college_ugds.eq(0.0019) # same as college_ugds == .0019

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... False False ... False False

Universit... False False ... False False

Amridge U... False False ... False False

Universit... False False ... False False

Alabama S... False False ... False False

...

SAE Insti... False False ... False False

Rasmussen... False False ... False False

National ... False False ... False False

Bay Area ... False False ... False False

Excel Lea... False False ... False False

Chapter 2

71

Inside the pandas.testing sub-package, a function exists that developers should use when
creating unit tests. The assert_frame_equal function raises an AssertionError if two
DataFrames are not equal. It returns None if the two DataFrames are equal:

>>> from pandas.testing import assert_frame_equal

>>> assert_frame_equal(college_ugds, college_ugds) is None

True

Unit tests are a very important part of software development and ensure that the code
is running correctly. pandas contains many thousands of unit tests that help ensure that
it is running properly. To read more on how pandas runs its unit tests, see the Contributing
to pandas section in the documentation (http://bit.ly/2vmCSU6).

Transposing the direction of a DataFrame
operation

Many DataFrame methods have an axis parameter. This parameter controls the direction
in which the operation takes place. Axis parameters can be 'index' (or 0) or 'columns'
(or 1). I prefer the string versions are they are more explicit and tend to make the code easier
to read.

Nearly all DataFrame methods default the axis parameter to 0, which applies to operations
along the index. This recipe shows you how to invoke the same method along both axes.

How to do it...
1. Read in the college dataset; the columns that begin with UGDS represent the

percentage of the undergraduate students of a particular race. Use the filter method
to select these columns:
>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college_ugds = college.filter(like="UGDS_")

>>> college_ugds.head()

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.0333 0.9353 ... 0.0059 0.0138

Universit... 0.5922 0.2600 ... 0.0179 0.0100

Amridge U... 0.2990 0.4192 ... 0.0000 0.2715

http://bit.ly/2vmCSU6

Essential DataFrame Operations

72

Universit... 0.6988 0.1255 ... 0.0332 0.0350

Alabama S... 0.0158 0.9208 ... 0.0243 0.0137

2. Now that the DataFrame contains homogenous column data, operations can be
sensibly done both vertically and horizontally. The .count method returns the
number of non-missing values. By default, its axis parameter is set to 0:
>>> college_ugds.count()

UGDS_WHITE 6874

UGDS_BLACK 6874

UGDS_HISP 6874

UGDS_ASIAN 6874

UGDS_AIAN 6874

UGDS_NHPI 6874

UGDS_2MOR 6874

UGDS_NRA 6874

UGDS_UNKN 6874

dtype: int64

The axis parameter is almost always set to 0. So, step 2 is equivalent to both
college_ugds.count(axis=0) and college_ugds.count(axis='index').

3. Changing the axis parameter to 'columns' changes the direction of the operation
so that we get back a count of non-missing items in each row:
>>> college_ugds.count(axis="columns").head()

INSTNM

Alabama A & M University 9

University of Alabama at Birmingham 9

Amridge University 9

University of Alabama in Huntsville 9

Alabama State University 9

dtype: int64

4. Instead of counting non-missing values, we can sum all the values in each row. Each
row of percentages should add up to 1. The .sum method may be used to verify this:
>>> college_ugds.sum(axis="columns").head()

INSTNM

Alabama A & M University 1.0000

University of Alabama at Birmingham 0.9999

Amridge University 1.0000

University of Alabama in Huntsville 1.0000

Chapter 2

73

Alabama State University 1.0000

dtype: float64

5. To get an idea of the distribution of each column, the .median method can be used:

>>> college_ugds.median(axis="index")

UGDS_WHITE 0.55570

UGDS_BLACK 0.10005

UGDS_HISP 0.07140

UGDS_ASIAN 0.01290

UGDS_AIAN 0.00260

UGDS_NHPI 0.00000

UGDS_2MOR 0.01750

UGDS_NRA 0.00000

UGDS_UNKN 0.01430

dtype: float64

How it works...
The direction of operation on the axis is one of the more confusing aspects of pandas. Many
pandas users have difficulty remembering the meaning of the axis parameter. I remember
them by reminding myself that a Series only has one axis, the index (or 0). A DataFrame also
has an index (axis 0) and columns (axis 1).

There's more...
The .cumsum method with axis=1 accumulates the race percentages across each row.
It gives a slightly different view of the data. For example, it is very easy to see the exact
percentage of white and black students for each school:

>>> college_ugds_cumsum = college_ugds.cumsum(axis=1)

>>> college_ugds_cumsum.head()

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.0333 0.9686 ... 0.9862 1.0000

Universit... 0.5922 0.8522 ... 0.9899 0.9999

Amridge U... 0.2990 0.7182 ... 0.7285 1.0000

Universit... 0.6988 0.8243 ... 0.9650 1.0000

Alabama S... 0.0158 0.9366 ... 0.9863 1.0000

Essential DataFrame Operations

74

Determining college campus diversity
Many articles are written every year on the different aspects and impacts of diversity on
college campuses. Various organizations have developed metrics attempting to measure
diversity. US News is a leader in providing rankings for many different categories of colleges,
with diversity being one of them. Their top 10 diverse colleges with Diversity Index are given
as follows:

>>> pd.read_csv(

... "data/college_diversity.csv", index_col="School"

...)

 Diversity Index

School

Rutgers University--Newark Newark, NJ 0.76

Andrews University Berrien Springs, MI 0.74

Stanford University Stanford, CA 0.74

University of Houston Houston, TX 0.74

University of Nevada--Las Vegas Las Vegas, NV 0.74

University of San Francisco San Francisco, CA 0.74

San Francisco State University San Francisco, CA 0.73

University of Illinois--Chicago Chicago, IL 0.73

New Jersey Institute of Technology Newark, NJ 0.72

Texas Woman's University Denton, TX 0.72

Our college dataset classifies race into nine different categories. When trying to quantify
something without an obvious definition, such as diversity, it helps to start with something
simple. In this recipe, our diversity metric will equal the count of the number of races having
greater than 15% of the student population.

How to do it...
1. Read in the college dataset, and filter for just the undergraduate race columns:

>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college_ugds = college.filter(like="UGDS_")

Chapter 2

75

2. Many of these colleges have missing values for all their race columns. We can count
all the missing values for each row and sort the resulting Series from the highest
to lowest. This will reveal the colleges that have missing values:
>>> (

... college_ugds.isnull()

... .sum(axis="columns")

... .sort_values(ascending=False)

... .head()

...)

INSTNM

Excel Learning Center-San Antonio South 9

Philadelphia College of Osteopathic Medicine 9

Assemblies of God Theological Seminary 9

Episcopal Divinity School 9

Phillips Graduate Institute 9

dtype: int64

3. Now that we have seen the colleges that are missing all their race columns, we
can use the .dropna method to drop all rows that have all nine race percentages
missing. We can then count the remaining missing values:
>>> college_ugds = college_ugds.dropna(how="all")

>>> college_ugds.isnull().sum()

UGDS_WHITE 0

UGDS_BLACK 0

UGDS_HISP 0

UGDS_ASIAN 0

UGDS_AIAN 0

UGDS_NHPI 0

UGDS_2MOR 0

UGDS_NRA 0

UGDS_UNKN 0

dtype: int64

4. There are no missing values left in the dataset. We can now calculate our diversity
metric. To get started, we will use the greater than or equal DataFrame method,
.ge, to return a DataFrame with a Boolean value for each cell:
>>> college_ugds.ge(0.15)

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

Essential DataFrame Operations

76

INSTNM ...

Alabama A... False True ... False False

Universit... True True ... False False

Amridge U... True True ... False True

Universit... True False ... False False

Alabama S... False True ... False False

...

Hollywood... True True ... False False

Hollywood... False True ... False False

Coachella... True False ... False False

Dewey Uni... False False ... False False

Coastal P... True True ... False False

5. From here, we can use the .sum method to count the True values for each college.
Notice that a Series is returned:
>>> diversity_metric = college_ugds.ge(0.15).sum(

... axis="columns"

...)

>>> diversity_metric.head()

INSTNM

Alabama A & M University 1

University of Alabama at Birmingham 2

Amridge University 3

University of Alabama in Huntsville 1

Alabama State University 1

dtype: int64

6. To get an idea of the distribution, we will use the .value_counts method on this
Series:
>>> diversity_metric.value_counts()

1 3042

2 2884

3 876

4 63

0 7

5 2

dtype: int64

Chapter 2

77

7. Amazingly, two schools have more than 15% in five different race categories. Let's
sort the diversity_metric Series to find out which ones they are:
>>> diversity_metric.sort_values(ascending=False).head()

INSTNM

Regency Beauty Institute-Austin 5

Central Texas Beauty College-Temple 5

Sullivan and Cogliano Training Center 4

Ambria College of Nursing 4

Berkeley College-New York 4

dtype: int64

8. It seems a little suspicious that schools can be that diverse. Let's look at the raw
percentages from these top two schools. We will use .loc to select rows based
on the index label:
>>> college_ugds.loc[

... [

... "Regency Beauty Institute-Austin",

... "Central Texas Beauty College-Temple",

...]

...]

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Regency B... 0.1867 0.2133 ... 0.0 0.2667

Central T... 0.1616 0.2323 ... 0.0 0.1515

9. It appears that several categories were aggregated into the unknown and two or more
races column. Regardless of this, they both appear to be quite diverse. We can see
how the top five US News schools fared with this basic diversity metric:

>>> us_news_top = [

... "Rutgers University-Newark",

... "Andrews University",

... "Stanford University",

... "University of Houston",

... "University of Nevada-Las Vegas",

...]

>>> diversity_metric.loc[us_news_top]

INSTNM

Rutgers University-Newark 4

Essential DataFrame Operations

78

Andrews University 3

Stanford University 3

University of Houston 3

University of Nevada-Las Vegas 3

dtype: int64

How it works...
Step 2 counts and then displays the schools with the highest number of missing values. As
there are nine columns in the DataFrame, the maximum number of missing values per school
is nine. Many schools are missing values for each column. Step 3 removes rows that have all
their values missing. The .dropna method in step 3 has the how parameter, which defaults
to the string 'any', but may also be changed to 'all'. When set to 'any', it drops rows
that contain one or more missing values. When set to 'all', it only drops rows where all
values are missing.

In this case, we conservatively drop rows that are missing all values. This is because it's
possible that some missing values represent 0 percent. This did not happen to be the case
here, as there were no missing values after the dropna method was performed. If there
were still missing values, we could have run the .fillna(0) method to fill all the remaining
values with 0.

Step 5 begins our diversity metric calculation using the greater than or equal to method,
.ge. This results in a DataFrame of all Booleans, which is summed horizontally by setting
axis='columns'.

The .value_counts method is used in step 6 to produce a distribution of our diversity
metric. It is quite rare for schools to have three races with 15% or more of the undergraduate
student population. Step 7 and step 8 find two schools that are the most diverse based on our
metric. Although they are diverse, it appears that many of the races are not fully accounted for
and are defaulted into the unknown and two or more categories.

Step 9 selects the top five schools from the US News article. It then selects their diversity
metric from our newly created Series. It turns out that these schools also score highly with
our simple ranking system.

There's more...
Alternatively, we can find the schools that are least diverse by ordering them by their
maximum race percentage:

>>> (

... college_ugds.max(axis=1)

Chapter 2

79

... .sort_values(ascending=False)

... .head(10)

...)

INSTNM

Dewey University-Manati 1.0

Yeshiva and Kollel Harbotzas Torah 1.0

Mr Leon's School of Hair Design-Lewiston 1.0

Dewey University-Bayamon 1.0

Shepherds Theological Seminary 1.0

Yeshiva Gedolah Kesser Torah 1.0

Monteclaro Escuela de Hoteleria y Artes Culinarias 1.0

Yeshiva Shaar Hatorah 1.0

Bais Medrash Elyon 1.0

Yeshiva of Nitra Rabbinical College 1.0

dtype: float64

We can also determine if any school has all nine race categories exceeding 1%:

>>> (college_ugds > 0.01).all(axis=1).any()

True

81

3
Creating and

Persisting DataFrames

Introduction
There are many ways to create a DataFrame. This chapter will cover some of the most
common ones. It will also show how to persist them.

Creating DataFrames from scratch
Usually, we create a DataFrame from an existing file or a database, but we can also create
one from scratch. We can create a DataFrame from parallel lists of data.

How to do it...
1. Create parallel lists with your data in them. Each of these lists will be a column in the

DataFrame, so they should have the same type:
>>> import pandas as pd

>>> import numpy as np

>>> fname = ["Paul", "John", "Richard", "George"]

>>> lname = ["McCartney", "Lennon", "Starkey", "Harrison"]

>>> birth = [1942, 1940, 1940, 1943]

Creating and Persisting DataFrames

82

2. Create a dictionary from the lists, mapping the column name to the list:
>>> people = {"first": fname, "last": lname, "birth": birth}

3. Create a DataFrame from the dictionary:

>>> beatles = pd.DataFrame(people)

>>> beatles

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

How it works...
By default, pandas will create a RangeIndex for our DataFrame when we call the constructor:

>>> beatles.index

RangeIndex(start=0, stop=4, step=1)

We can specify another index for the DataFrame if we desire:

>>> pd.DataFrame(people, index=["a", "b", "c", "d"])

 first last birth

a Paul McCartney 1942

b John Lennon 1940

c Richard Starkey 1940

d George Harrison 1943

There's more...
You can also create a DataFrame from a list of dictionaries:

>>> pd.DataFrame(

... [

... {

... "first": "Paul",

... "last": "McCartney",

... "birth": 1942,

... },

Chapter 3

83

... {

... "first": "John",

... "last": "Lennon",

... "birth": 1940,

... },

... {

... "first": "Richard",

... "last": "Starkey",

... "birth": 1940,

... },

... {

... "first": "George",

... "last": "Harrison",

... "birth": 1943,

... },

...]

...)

 birth first last

0 1942 Paul McCartney

1 1940 John Lennon

2 1940 Richard Starkey

3 1943 George Harrison

Note that the columns are ordered by the alphabetic ordering of the keys when you use rows
of dictionaries. You can use the columns parameter to specify the column order if that is
important to you:

>>> pd.DataFrame(

... [

... {

... "first": "Paul",

... "last": "McCartney",

... "birth": 1942,

... },

... {

... "first": "John",

... "last": "Lennon",

... "birth": 1940,

Creating and Persisting DataFrames

84

... },

... {

... "first": "Richard",

... "last": "Starkey",

... "birth": 1940,

... },

... {

... "first": "George",

... "last": "Harrison",

... "birth": 1943,

... },

...],

... columns=["last", "first", "birth"],

...)

 last first birth

0 McCartney Paul 1942

1 Lennon John 1940

2 Starkey Richard 1940

3 Harrison George 1943

Writing CSV
For better or worse, there are a lot of CSV files in the world. Like most technologies, there are
good and bad parts to CSV files. On the plus side, they are human-readable, can be opened in
any text editor, and most spreadsheet software can load them. On the downside, there is no
standard for CSV files, so encoding may be weird, there is no way to enforce types, and they
can be large because they are text-based (though they can be compressed).

In this recipe, we will show how to create a CSV file from a pandas DataFrame.

There are a few methods on the DataFrame that start with to_. These are methods that
export DataFrames. We are going to use the .to_csv method. We will write out to a string
buffer in the examples, but you will usually use a filename instead.

How to do it...
1. Write the DataFrame to a CSV file:

>>> beatles

Chapter 3

85

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

>>> from io import StringIO

>>> fout = StringIO()

>>> beatles.to_csv(fout) # use a filename instead of fout

2. Look at the file contents:

>>> print(fout.getvalue())

,first,last,birth

0,Paul,McCartney,1942

1,John,Lennon,1940

2,Richard,Starkey,1940

3,George,Harrison,1943

There's more...
The .to_csv method has a few options. You will notice that it included the index in the
output but did not give the index a column name. If you were to read this CSV file into
a DataFrame using the read_csv function, it would not use this as the index by default.
Instead, you will get a column named Unnamed: 0 in addition to an index. These columns
are redundant:

>>> _ = fout.seek(0)

>>> pd.read_csv(fout)

 Unnamed: 0 first last birth

0 0 Paul McCartney 1942

1 1 John Lennon 1940

2 2 Richard Starkey 1940

3 3 George Harrison 1943

The read_csv function has an index_col parameter that you can use to specify the
location of the index:

>>> _ = fout.seek(0)

>>> pd.read_csv(fout, index_col=0)

Creating and Persisting DataFrames

86

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

Alternatively, if we didn't want to include the index when writing the CSV file, we can set the
index parameter to False:

>>> fout = StringIO()

>>> beatles.to_csv(fout, index=False)

>>> print(fout.getvalue())

first,last,birth

Paul,McCartney,1942

John,Lennon,1940

Richard,Starkey,1940

George,Harrison,1943

Reading large CSV files
The pandas library is an in-memory tool. You need to be able to fit your data in memory to use
pandas with it. If you come across a large CSV file that you want to process, you have a few
options. If you can process portions of it at a time, you can read it into chunks and process
each chunk. Alternatively, if you know that you should have enough memory to load the file,
there are a few hints to help pare down the file size.

Note that in general, you should have three to ten times the amount of memory as the size
of the DataFrame that you want to manipulate. Extra memory should give you enough extra
space to perform many of the common operations.

How to do it...
In this section, we will look at the diamonds dataset. This dataset easily fits into the memory
of my 2015 MacBook, but let's pretend that the file is a lot bigger than it is, or that the
memory of my machine is limited such that when pandas tries to load it with the read_csv
function, I get a memory error.

1. Determine how much memory the whole file will take up. We will use the nrows
parameter of read_csv to limit how much data we load to a small sample:
>>> diamonds = pd.read_csv("data/diamonds.csv", nrows=1000)

Chapter 3

87

>>> diamonds

 carat cut color clarity ... price x y z

0 0.23 Ideal E SI2 ... 326 3.95 3.98 2.43

1 0.21 Premium E SI1 ... 326 3.89 3.84 2.31

2 0.23 Good E VS1 ... 327 4.05 4.07 2.31

3 0.29 Premium I VS2 ... 334 4.20 4.23 2.63

4 0.31 Good J SI2 ... 335 4.34 4.35 2.75

..

995 0.54 Ideal D VVS2 ... 2897 5.30 5.34 3.26

996 0.72 Ideal E SI1 ... 2897 5.69 5.74 3.57

997 0.72 Good F VS1 ... 2897 5.82 5.89 3.48

998 0.74 Premium D VS2 ... 2897 5.81 5.77 3.58

999 1.12 Premium J SI2 ... 2898 6.68 6.61 4.03

2. Use the .info method to see how much memory the sample of data uses:
>>> diamonds.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 10 columns):

carat 1000 non-null float64

cut 1000 non-null object

color 1000 non-null object

clarity 1000 non-null object

depth 1000 non-null float64

table 1000 non-null float64

price 1000 non-null int64

x 1000 non-null float64

y 1000 non-null float64

z 1000 non-null float64

dtypes: float64(6), int64(1), object(3)

memory usage: 78.2+ KB

We can see that 1,000 rows use about 78.2 KB of memory. If we had 1 billion
rows, that would take about 78 GB of memory. It turns out that it is possible to rent
machines in the cloud that have that much memory but let's see if we can take it
down a little.

Creating and Persisting DataFrames

88

3. Use the dtype parameter to read_csv to tell it to use the correct (or smaller)
numeric types:
>>> diamonds2 = pd.read_csv(

... "data/diamonds.csv",

... nrows=1000,

... dtype={

... "carat": np.float32,

... "depth": np.float32,

... "table": np.float32,

... "x": np.float32,

... "y": np.float32,

... "z": np.float32,

... "price": np.int16,

... },

...)

>>> diamonds2.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 10 columns):

carat 1000 non-null float32

cut 1000 non-null object

color 1000 non-null object

clarity 1000 non-null object

depth 1000 non-null float32

table 1000 non-null float32

price 1000 non-null int16

x 1000 non-null float32

y 1000 non-null float32

z 1000 non-null float32

dtypes: float32(6), int16(1), object(3)

memory usage: 49.0+ KB

Make sure that summary statistics are similar with our new dataset to the original:
>>> diamonds.describe()

 carat depth ... y z

count 1000.000000 1000.000000 ... 1000.000000 1000.000000

Chapter 3

89

mean 0.689280 61.722800 ... 5.599180 3.457530

std 0.195291 1.758879 ... 0.611974 0.389819

min 0.200000 53.000000 ... 3.750000 2.270000

25% 0.700000 60.900000 ... 5.630000 3.450000

50% 0.710000 61.800000 ... 5.760000 3.550000

75% 0.790000 62.600000 ... 5.910000 3.640000

max 1.270000 69.500000 ... 7.050000 4.330000

>>> diamonds2.describe()

 carat depth ... y z

count 1000.000000 1000.000000 ... 1000.000000 1000.000000

mean 0.689453 61.718750 ... 5.601562 3.457031

std 0.195312 1.759766 ... 0.611816 0.389648

min 0.199951 53.000000 ... 3.750000 2.269531

25% 0.700195 60.906250 ... 5.628906 3.449219

50% 0.709961 61.812500 ... 5.761719 3.550781

75% 0.790039 62.593750 ... 5.910156 3.640625

max 1.269531 69.500000 ... 7.050781 4.328125

By changing the numeric types, we use about 62% of the memory. Note that we lose
some precision, which may or may not be acceptable.

4. Use the dtype parameter to use change object types to categoricals. First, inspect
the .value_counts method of the object columns. If they are low cardinality, you
can convert them to categorical columns to save even more memory:
>>> diamonds2.cut.value_counts()

Ideal 333

Premium 290

Very Good 226

Good 89

Fair 62

Name: cut, dtype: int64

>>> diamonds2.color.value_counts()

E 240

F 226

Creating and Persisting DataFrames

90

G 139

D 129

H 125

I 95

J 46

Name: color, dtype: int64

>>> diamonds2.clarity.value_counts()

SI1 306

VS2 218

VS1 159

SI2 154

VVS2 62

VVS1 58

I1 29

IF 14

Name: clarity, dtype: int64

Because these are of low cardinality, we can convert them to categoricals and use
around 37% of the original size:
>>> diamonds3 = pd.read_csv(

... "data/diamonds.csv",

... nrows=1000,

... dtype={

... "carat": np.float32,

... "depth": np.float32,

... "table": np.float32,

... "x": np.float32,

... "y": np.float32,

... "z": np.float32,

... "price": np.int16,

... "cut": "category",

... "color": "category",

... "clarity": "category",

... },

...)

Chapter 3

91

>>> diamonds3.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 10 columns):

carat 1000 non-null float32

cut 1000 non-null category

color 1000 non-null category

clarity 1000 non-null category

depth 1000 non-null float32

table 1000 non-null float32

price 1000 non-null int16

x 1000 non-null float32

y 1000 non-null float32

z 1000 non-null float32

dtypes: category(3), float32(6), int16(1)

memory usage: 29.4 KB

5. If there are columns that we know we can ignore, we can use the usecols
parameter to specify the columns we want to load. Here, we will ignore columns x, y,
and z:
>>> cols = [

... "carat",

... "cut",

... "color",

... "clarity",

... "depth",

... "table",

... "price",

...]

>>> diamonds4 = pd.read_csv(

... "data/diamonds.csv",

... nrows=1000,

... dtype={

... "carat": np.float32,

... "depth": np.float32,

... "table": np.float32,

... "price": np.int16,

Creating and Persisting DataFrames

92

... "cut": "category",

... "color": "category",

... "clarity": "category",

... },

... usecols=cols,

...)

>>> diamonds4.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1000 entries, 0 to 999

Data columns (total 7 columns):

carat 1000 non-null float32

cut 1000 non-null category

color 1000 non-null category

clarity 1000 non-null category

depth 1000 non-null float32

table 1000 non-null float32

price 1000 non-null int16

dtypes: category(3), float32(3), int16(1)

memory usage: 17.7 KB

We are now at 21% of the original size.

6. If the preceding steps are not sufficient to create a small enough DataFrame, you
might still be in luck. If you can process chunks of the data at a time and do not
need all of it in memory, you can use the chunksize parameter:

>>> cols = [

... "carat",

... "cut",

... "color",

... "clarity",

... "depth",

... "table",

... "price",

...]

>>> diamonds_iter = pd.read_csv(

... "data/diamonds.csv",

Chapter 3

93

... nrows=1000,

... dtype={

... "carat": np.float32,

... "depth": np.float32,

... "table": np.float32,

... "price": np.int16,

... "cut": "category",

... "color": "category",

... "clarity": "category",

... },

... usecols=cols,

... chunksize=200,

...)

>>> def process(df):

... return f"processed {df.size} items"

>>> for chunk in diamonds_iter:

... process(chunk)

How it works...
Because CSV files contain no information about type, pandas tries to infer the types of the
columns. If all of the values of a column are whole numbers and none of them are missing,
then it uses the int64 type. If the column is numeric but not whole numbers, or if there are
missing values, it uses float64. These data types may store more information that you need.
For example, if your numbers are all below 200, you could use a smaller type, like np.int16
(or np.int8 if they are all positive).

As of pandas 0.24, there is a new type 'Int64' (note the capitalization) that supports integer
types with missing numbers. You will need to specify it with the dtype parameter if you want
to use this type, as pandas will convert integers that have missing numbers to float64.

If the column turns out to be non-numeric, pandas will convert it to an object column, and
treat the values as strings. String values in pandas take up a bunch of memory as each value
is stored as a Python string. If we convert these to categoricals, pandas will use much less
memory as it only stores the string once, rather than creating new strings (even if they repeat)
for every row.

Creating and Persisting DataFrames

94

The pandas library can also read CSV files found on the internet. You can point the read_csv
function to the URL directly.

There's more...
If we use int8 for the price, we will lose information. You can use the NumPy iinfo function
to list limits for NumPy integer types:

>>> np.iinfo(np.int8)

iinfo(min=-128, max=127, dtype=int8)

You can use the finfo function for information about floating-point numbers:

>>> np.finfo(np.float16)

finfo(resolution=0.001, min=-6.55040e+04,

 max=6.55040e+04, dtype=float16)

You can also ask a DataFrame or Series how many bytes it is using with the .memory_usage
method. Note that this also includes the memory requirements of the index. Also, you need to
pass deep=True to get the usage of Series with object types:

>>> diamonds.price.memory_usage()

8080

>>> diamonds.price.memory_usage(index=False)

8000

>>> diamonds.cut.memory_usage()

8080

>>> diamonds.cut.memory_usage(deep=True)

63413

Once you have your data in a format you like, you can save it in a binary format that tracks
types, such as the Feather format (pandas leverages the pyarrow library to do this). This
format is meant to enable in-memory transfer of structured data between languages and
optimized so that data can be used as is without internal conversion. Reading from this
format is much quicker and easy once you have the types defined:

>>> diamonds4.to_feather("d.arr")

>>> diamonds5 = pd.read_feather("d.arr")

Chapter 3

95

Another binary option is the Parquet format. Whereas Feather optimizes the binary data for
the in-memory structure, Parquet optimizes for the on-disk format. Parquet is used by many
big data products. The pandas library has support for Parquet as well.

>>> diamonds4.to_parquet("/tmp/d.pqt")

Right now there is some conversion required for pandas to load data from both Parquet and
Feather. But both are quicker than CSV and persist types.

Using Excel files
While CSV files are common, it seems that the world is ruled by Excel. I've been surprised in
my consulting work to see how many companies are using Excel as a critical if not the critical
tool for making decisions.

In this recipe, we will show how to create and read Excel files. You may need to install xlwt
or openpyxl to write XLS or XLSX files, respectively.

How to do it...
1. Create an Excel file using the .to_excel method. You can write either xls files or

xlsx files:
>>> beatles.to_excel("beat.xls")

>>> beatles.to_excel("beat.xlsx")

Excel file

Creating and Persisting DataFrames

96

2. Read the Excel file with the read_excel function:
>>> beat2 = pd.read_excel("/tmp/beat.xls")

>>> beat2

 Unnamed: 0 first last birth

0 0 Paul McCartney 1942

1 1 John Lennon 1940

2 2 Richard Starkey 1940

3 3 George Harrison 1943

3. Because this file had an index column included, you can specify that with the index_
col parameter:
>>> beat2 = pd.read_excel("/tmp/beat.xls", index_col=0)

>>> beat2

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

4. Inspect data types of the file to check that Excel preserved the types:

>>> beat2.dtypes

first object

last object

birth int64

dtype: object

How it works...
The Python ecosystem has many packages, which include the ability to read and write to
Excel. This functionality has been integrated into pandas, you just need to make sure that
you have the appropriate libraries for reading and writing to Excel.

There's more...
We can use pandas to write to a sheet of a spreadsheet. You can pass a sheet_name
parameter to the .to_excel method to tell it the name of the sheet to create:

>>> xl_writer = pd.ExcelWriter("beat2.xlsx")

Chapter 3

97

>>> beatles.to_excel(xl_writer, sheet_name="All")

>>> beatles[beatles.birth < 1941].to_excel(

... xl_writer, sheet_name="1940"

...)

>>> xl_writer.save()

This file will have two sheets, one labeled All that has the whole DataFrame, and another
labeled 1940 that is filtered to births before 1941.

Working with ZIP files
As was mentioned previously, CSV files are very common for sharing data. Because they are
plain text files, they can get big. One solution for managing the size of CSV files is to compress
them. In this recipe, we will look at loading files from ZIP files.

We will load a CSV file that is compressed as the only thing in the ZIP file. This is the behavior
that you get if you were to right-click on a file in the Finder on Mac and click Compress
beatles.csv. We will also look at reading a CSV file from a ZIP file with multiple files in it.

The first file is from the fueleconomy.gov website. It is a list of all car makes that have been
available in the US market from 1984-2018.

The second file is a survey of users of the Kaggle website. It was intended to get information
about the users, their background, and the tools that they prefer.

How to do it...
1. If the CSV file is the only file in the ZIP file, you can just call the read_csv function on

it:
>>> autos = pd.read_csv("data/vehicles.csv.zip")

>>> autos

 barrels08 barrelsA08 ... phevHwy phevComb

0 15.695714 0.0 ... 0 0

1 29.964545 0.0 ... 0 0

2 12.207778 0.0 ... 0 0

3 29.964545 0.0 ... 0 0

4 17.347895 0.0 ... 0 0

...

41139 14.982273 0.0 ... 0 0

41140 14.330870 0.0 ... 0 0

Creating and Persisting DataFrames

98

41141 15.695714 0.0 ... 0 0

41142 15.695714 0.0 ... 0 0

41143 18.311667 0.0 ... 0 0

>>> autos.modifiedOn.dtype

dtype('O')

2. One thing to be aware of is that if you have date columns in the CSV file, they will be
left as strings. You have two options to convert them. You can use the parse_dates
parameter from read_csv and convert them when loading the file. Alternatively, you
can use the more powerful to_datetime function after loading:
>>> autos.modifiedOn

0 Tue Jan 01 00:00:00 EST 2013

1 Tue Jan 01 00:00:00 EST 2013

2 Tue Jan 01 00:00:00 EST 2013

3 Tue Jan 01 00:00:00 EST 2013

4 Tue Jan 01 00:00:00 EST 2013

 ...

39096 Tue Jan 01 00:00:00 EST 2013

39097 Tue Jan 01 00:00:00 EST 2013

39098 Tue Jan 01 00:00:00 EST 2013

39099 Tue Jan 01 00:00:00 EST 2013

39100 Tue Jan 01 00:00:00 EST 2013

Name: modifiedOn, Length: 39101, dtype: object

>>> pd.to_datetime(autos.modifiedOn)

0 2013-01-01

1 2013-01-01

2 2013-01-01

3 2013-01-01

4 2013-01-01

 ...

39096 2013-01-01

39097 2013-01-01

39098 2013-01-01

39099 2013-01-01

39100 2013-01-01

Chapter 3

99

Name: modifiedOn, Length: 39101, dtype: datetime64[ns]

Here's the code to convert during load time:
>>> autos = pd.read_csv(

... "data/vehicles.csv.zip", parse_dates=["modifiedOn"]

...)

>>> autos.modifiedOn

0 2013-01-0...

1 2013-01-0...

2 2013-01-0...

3 2013-01-0...

4 2013-01-0...

 ...

41139 2013-01-0...

41140 2013-01-0...

41141 2013-01-0...

41142 2013-01-0...

41143 2013-01-0...

Name: modifiedOn, Length: 41144, dtype: datetime64[ns, tzlocal()]

3. If the ZIP file has many files it in, reading a CSV file from it is a little more involved.
The read_csv function does not have the ability to specify a file inside a ZIP file.
Instead, we will use the zipfile module from the Python standard library.

I like to print out the names of the files in the zip file; that makes it easy to see what
filename to choose. Note that this file has a long question in the second row (this
first row is a question identifier, which I'm keeping for the column names). I'm pulling
out the second row as kag_questions. The responses are stored in the survey
variable:
>>> import zipfile

>>> with zipfile.ZipFile(

... "data/kaggle-survey-2018.zip"

...) as z:

... print("\n".join(z.namelist()))

... kag = pd.read_csv(

... z.open("multipleChoiceResponses.csv")

...)

... kag_questions = kag.iloc[0]

Creating and Persisting DataFrames

100

... survey = kag.iloc[1:]

multipleChoiceResponses.csv

freeFormResponses.csv

SurveySchema.csv

>>> survey.head(2).T

1 2

Time from... 710 434

Q1 Female Male

Q1_OTHER_... -1 -1

Q2 45-49 30-34

Q3 United S... Indonesia

...

Q50_Part_5 NaN NaN

Q50_Part_6 NaN NaN

Q50_Part_7 NaN NaN

Q50_Part_8 NaN NaN

Q50_OTHER... -1 -1

How it works...
ZIP files with only a single file can be read directly with the read_csv function. If the ZIP file
contains multiple files, you will need to resort to another mechanism to read the data. The
standard library includes the zipfile module that can pull a file out of a ZIP file.

Sadly, the zipfile module will not work with URLs (unlike the read_csv function). So, if
your ZIP file is in a URL, you will need to download it first.

There's more...
The read_csv function will work with other compression types as well. If you have GZIP, BZ2,
or XZ files, pandas can handle those as long as they are just compressing a CSV file and not
a directory.

Chapter 3

101

Working with databases
We mentioned that pandas is useful for tabular or structured data. Many organizations use
databases to store tabular data. In this recipe, we will work with databases to insert and
read data.

Note that this example uses the SQLite database, which is included with Python. However,
Python has the ability to connect with most SQL databases and pandas, in turn, can
leverage that.

How to do it...
1. Create a SQLite database to store the Beatles information:

>>> import sqlite3

>>> con = sqlite3.connect("data/beat.db")

>>> with con:

... cur = con.cursor()

... cur.execute("""DROP TABLE Band""")

... cur.execute(

... """CREATE TABLE Band(id INTEGER PRIMARY KEY,

... fname TEXT, lname TEXT, birthyear INT)"""

...)

... cur.execute(

... """INSERT INTO Band VALUES(

... 0, 'Paul', 'McCartney', 1942)"""

...)

... cur.execute(

... """INSERT INTO Band VALUES(

... 1, 'John', 'Lennon', 1940)"""

...)

... _ = con.commit()

2. Read the table from the database into a DataFrame. Note that if we are reading
a table, we need to use a SQLAlchemy connection. SQLAlchemy is a library that
abstracts databases for us:
>>> import sqlalchemy as sa

>>> engine = sa.create_engine(

... "sqlite:///data/beat.db", echo=True

Creating and Persisting DataFrames

102

...)

>>> sa_connection = engine.connect()

>>> beat = pd.read_sql(

... "Band", sa_connection, index_col="id"

...)

>>> beat

 fname lname birthyear

id

0 Paul McCartney 1942

1 John Lennon 1940

3. Read from the table using a SQL query. This can use a SQLite connection or a
SQLAlchemy connection:

>>> sql = """SELECT fname, birthyear from Band"""

>>> fnames = pd.read_sql(sql, con)

>>> fnames

 fname birthyear

0 Paul 1942

1 John 1940

How it works...
The pandas library leverages the SQLAlchemy library, which can talk to most SQL databases.
This lets you create DataFrames from tables, or you can run a SQL select query and create the
DataFrame from the query.

Reading JSON
JavaScript Object Notation (JSON) is a common format used for transferring data over the
internet. Contrary to the name, it does not require JavaScript to read or create. The Python
standard library ships with the json library that will encode and decode from JSON:

>>> import json

>>> encoded = json.dumps(people)

>>> encoded

'{"first": ["Paul", "John", "Richard", "George"], "last": ["McCartney",
"Lennon", "Starkey", "Harrison"], "birth": [1942, 1940, 1940, 1943]}'

Chapter 3

103

>>> json.loads(encoded)

{'first': ['Paul', 'John', 'Richard', 'George'], 'last': ['McCartney',
'Lennon', 'Starkey', 'Harrison'], 'birth': [1942, 1940, 1940, 1943]}

How to do it...
1. Read the data using the read_json function. If your JSON is of the form where it is

a dictionary mapping to lists of columns, you can ingest it without much fanfare. This
orientation is called columns in pandas:
>>> beatles = pd.read_json(encoded)

>>> beatles

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

2. One thing to be aware of when reading JSON is that it needs to be in a specific
format for pandas to load it. However, pandas supports data oriented in a few styles.
They are:

 � columns – (default) A mapping of column names to a list of values in the
columns.

 � records – A list of rows. Each row is a dictionary mapping a column to
a value.

 � split – A mapping of columns to column names, index to index values,
and data to a list of each row of data (each row is a list as well).

 � index – A mapping of index value to a row. A row is a dictionary mapping
a column to a value.

 � values – A list of each row of data (each row is a list as well). This does not
include column or index values.

 � table – A mapping of schema to the DataFrame schema, and data to a list
of dictionaries.

Following are examples of these styles. The columns style was the example shown
previously:
>>> records = beatles.to_json(orient="records")

>>> records

'[{"first":"Paul","last":"McCartney","birth":1942},{"first":"John"

Creating and Persisting DataFrames

104

,"last":"Lennon","birth":1940},{"first":"Richard","last":"Starkey"
,"birth":1940},{"first":"George","last":"Harrison","birth":1943}]'

>>> pd.read_json(records, orient="records")

 birth first last

0 1942 Paul McCartney

1 1940 John Lennon

2 1940 Richard Starkey

3 1943 George Harrison

>>> split = beatles.to_json(orient="split")

>>> split

'{"columns":["first","last","birth"],"index":[0,1,2,3],"data":[["P
aul","McCartney",1942],["John","Lennon",1940],["Richard","Starkey"
,1940],["George","Harrison",1943]]}'

>>> pd.read_json(split, orient="split")

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

>>> index = beatles.to_json(orient="index")

>>> index

'{"0":{"first":"Paul","last":"McCartney","birth":1942},"1":{"first
":"John","last":"Lennon","birth":1940},"2":{"first":"Richard","las
t":"Starkey","birth":1940},"3":{"first":"George","last":"Harrison"
,"birth":1943}}'

>>> pd.read_json(index, orient="index")

 birth first last

0 1942 Paul McCartney

1 1940 John Lennon

2 1940 Richard Starkey

3 1943 George Harrison

>>> values = beatles.to_json(orient="values")

Chapter 3

105

>>> values

'[["Paul","McCartney",1942],["John","Lennon",1940],["Richard","Sta
rkey",1940],["George","Harrison",1943]]'

>>> pd.read_json(values, orient="values")

 0 1 2

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

>>> (

... pd.read_json(values, orient="values").rename(

... columns=dict(

... enumerate(["first", "last", "birth"])

...)

...)

...)

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

>>> table = beatles.to_json(orient="table")

>>> table

'{"schema": {"fields":[{"name":"index","type":"integer"},{"name
":"first","type":"string"},{"name":"last","type":"string"},{"n
ame":"birth","type":"integer"}],"primaryKey":["index"],"pandas_
version":"0.20.0"}, "data": [{"index":0,"first":"Paul","last":"M
cCartney","birth":1942},{"index":1,"first":"John","last":"Lennon
","birth":1940},{"index":2,"first":"Richard","last":"Starkey","
birth":1940},{"index":3,"first":"George","last":"Harrison","bir
th":1943}]}'

>>> pd.read_json(table, orient="table")

 first last birth

0 Paul McCartney 1942

1 John Lennon 1940

2 Richard Starkey 1940

3 George Harrison 1943

Creating and Persisting DataFrames

106

How it works...
JSON can be formatted in many ways. Preferably, the JSON you need to consume comes in a
supported orientation. If it does not, I find it easier to use standard Python to create data in a
dictionary that maps column names to values and pass this into the DataFrame constructor.

If you need to generate JSON (say you are creating a web service), I would suggest the
columns or records orientation.

There's more...
If you are working on a web service and need to add additional data to the JSON, just use the
.to_dict method to generate dictionaries. You can add your new data to the dictionary, and
then convert that dictionary to JSON:

>>> output = beat.to_dict()

>>> output

{'fname': {0: 'Paul', 1: 'John'}, 'lname': {0: 'McCartney', 1: 'Lennon'},
'birthyear': {0: 1942, 1: 1940}}

>>> output["version"] = "0.4.1"

>>> json.dumps(output)

'{"fname": {"0": "Paul", "1": "John"}, "lname": {"0": "McCartney", "1":
"Lennon"}, "birthyear": {"0": 1942, "1": 1940}, "version": "0.4.1"}'

Reading HTML tables
You can use pandas to read HTML tables from websites. This makes it easy to ingest tables
such as those found on Wikipedia or other websites.

In this recipe, we will scrape tables from the Wikipedia entry for The Beatles Discography.
In particular, we want to scrape the table in the image that was in Wikipedia during 2019:

Chapter 3

107

Wikipedia table for studio albums

How to do it...
1. Use the read_html function to load all of the tables from https://

en.wikipedia.org/wiki/The_Beatles_discography:
>>> url = https://en.wikipedia.org/wiki/The_Beatles_discography

>>> dfs = pd.read_html(url)

>>> len(dfs)

51

2. Inspect the first DataFrame:
>>> dfs[0]

 The Beatles discography The Beatles discography.1

0 The Beat... The Beat...

1 Studio a... 23

2 Live albums 5

3 Compilat... 53

4 Video al... 15

5 Music vi... 64

6 EPs 21

7 Singles 63

8 Mash-ups 2

9 Box sets 15

https://en.wikipedia.org/wiki/The_Beatles_discography
https://en.wikipedia.org/wiki/The_Beatles_discography

Creating and Persisting DataFrames

108

3. The preceding table is a summary of the count of studio albums, live albums,
compilation albums, and so on. This is not the table we wanted. We could loop
through each of the tables that read_html created, or we could give it a hint to
find a specific table.

The function has the match parameter, which can be a string or a regular expression.
It also has an attrs parameter, that allows you to pass in an HTML tag attribute key
and value (in a dictionary) and will use that to identify the table.

I used the Chrome browser to inspect the HTML to see if there is an attribute on the
table element or a unique string in the table to use.

Here is a portion of the HTML:
<table class="wikitable plainrowheaders" style="text-
align:center;">
 <caption>List of studio albums,<sup id="cite_ref-1"
class="reference">[A]</sup> with
selected chart positions and certifications
 </caption>
 <tbody>
 <tr>
 <th scope="col" rowspan="2" style="width:20em;">Title
 </th>
 <th scope="col" rowspan="2" style="width:20em;">Release
 ...

There are no attributes on the table, but we can use the string, List of studio
albums, to match the table. I'm also going to stick in a value for na_values that I
copied from the Wikipedia page:
>>> url = https://en.wikipedia.org/wiki/The_Beatles_discography

>>> dfs = pd.read_html(

... url, match="List of studio albums", na_values="—"

...)

>>> len(dfs)

1

>>> dfs[0].columns

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype='int64')

4. The columns are messed up. We can try and use the first two rows for the columns,
but they are still messed up:
>>> url = https://en.wikipedia.org/wiki/The_Beatles_discography

>>> dfs = pd.read_html(

... url,

Chapter 3

109

... match="List of studio albums",

... na_values="—",

... header=[0, 1],

...)

>>> len(dfs)

1

>>> dfs[0]

 Title Release ... Peak chart positions
Certifications

 Title Release ... US[8][9]
Certifications

0 Please P... Released... ... NaN BPI:
Gol...

1 With the... Released... ... NaN BPI:
Gol...

2 Introduc... Released... ... 2 RIAA:
Pl...

3 Meet the... Released... ... 1 MC:
Plat...

4 Twist an... Released... ... NaN MC: 3×
P...

..

...

22 The Beat... Released... ... 1 BPI: 2×
...

23 Yellow S... Released... ... 2 BPI:
Gol...

24 Abbey Road Released... ... 1 BPI: 2×
...

25 Let It Be Released... ... 1 BPI:
Gol...

26 "—" deno... "—" deno... ... "—" deno... "—"
deno...

>>> dfs[0].columns

MultiIndex(levels=[['Certifications', 'Peak chart positions',
'Release', 'Title'], ['AUS[3]', 'CAN[4]', 'Certifications',
'FRA[5]', 'GER[6]', 'NOR[7]', 'Release', 'Title', 'UK[1][2]',

Creating and Persisting DataFrames

110

'US[8][9]']],

 codes=[[3, 2, 1, 1, 1, 1, 1, 1, 1, 0], [7, 6, 8, 0, 1, 3, 4, 5,
9, 2]])

This is not something that is easy to fix programmatically. In this case, the easiest
solution is to update the columns manually:
>>> df = dfs[0]

>>> df.columns = [

... "Title",

... "Release",

... "UK",

... "AUS",

... "CAN",

... "FRA",

... "GER",

... "NOR",

... "US",

... "Certifications",

...]

>>> df

 Title Release ... US Certifications

0 Please P... Released... ... NaN BPI: Gol...

1 With the... Released... ... NaN BPI: Gol...

2 Introduc... Released... ... 2 RIAA: Pl...

3 Meet the... Released... ... 1 MC: Plat...

4 Twist an... Released... ... NaN MC: 3× P...

..

22 The Beat... Released... ... 1 BPI: 2× ...

23 Yellow S... Released... ... 2 BPI: Gol...

24 Abbey Road Released... ... 1 BPI: 2× ...

25 Let It Be Released... ... 1 BPI: Gol...

26 "—" deno... "—" deno... ... "—" deno... "—" deno...

5. There is more cleanup that we should do to the data. Any row where the title starts
with Released is another release of the previous row. pandas does not have the
ability to parse rows that have a rowspan more than 1 (which the "release" rows
have). In the Wikipedia page, these rows look like this:
<th scope="row" rowspan="2">

Chapter 3

111

 <i><a href="/wiki/A_Hard_Day%27s_Night_(album)" title="A Hard
Day's Night (album)">A Hard Day's Night</i>
 <img alt="double-dagger" src="//upload.wikimedia.org/wikipedia/
commons/f/f9/Double-dagger-14-plain.png" decoding="async"
width="9" height="14" data-file-width="9" data-file-height="14">
</th>

We will skip these rows. They confuse pandas, and the data pandas puts in these
rows is not correct. We will split the release column into two columns, release_
date and label:
>>> res = (

... df.pipe(

... lambda df_: df_[

... ~df_.Title.str.startswith("Released")

...]

...)

... .assign(

... release_date=lambda df_: pd.to_datetime(

... df_.Release.str.extract(

... r"Released: (.*) Label"

...)[0].str.replace(r"\[E\]", "")

...),

... label=lambda df_: df_.Release.str.extract(

... r"Label: (.*)"

...),

...)

... .loc[

... :,

... [

... "Title",

... "UK",

... "AUS",

... "CAN",

... "FRA",

... "GER",

... "NOR",

... "US",

... "release_date",

Creating and Persisting DataFrames

112

... "label",

...],

...]

...)

>>> res

 Title UK ... release_date label

0 Please P... 1 ... 1963-03-22 Parlopho...

1 With the... 1 ... 1963-11-22 Parlopho...

2 Introduc... NaN ... 1964-01-10 Vee-Jay ...

3 Meet the... NaN ... 1964-01-20 Capitol ...

4 Twist an... NaN ... 1964-02-03 Capitol ...

..

21 Magical ... 31 ... 1967-11-27 Parlopho...

22 The Beat... 1 ... 1968-11-22 Apple

23 Yellow S... 3 ... 1969-01-13 Apple (U...

24 Abbey Road 1 ... 1969-09-26 Apple

25 Let It Be 1 ... 1970-05-08 Apple

How it works...
The read_html function looks through the HTML for table tags and parses the contents
into DataFrames. This can ease the scraping of websites. Unfortunately, as the example
shows, sometimes data in HTML tables may be hard to parse. Rowspans and multiline
headers may confuse pandas. You will want to make sure that you perform a sanity check
on the result.

Sometimes, the table in HTML is simple such that pandas can ingest it with no problems. For
the table we looked at, we needed to chain a few operations onto the output to clean it up.

There's more...
You can also use the attrs parameter to select a table from the page. Next, I select read
data from GitHub's view of a CSV file. Note that I am not reading this from the raw CSV data
but from GitHub's online file viewer. I have inspected the table and noticed that it has a class
attribute with the value csv-data. We will use that to limit the table selected:

>>> url = https://github.com/mattharrison/datasets/blob/master/data/
anscombes.csv

>>> dfs = pd.read_html(url, attrs={"class": "csv-data"})

Chapter 3

113

>>> len(dfs)

1

>>> dfs[0]

 Unnamed: 0 quadrant x y

0 NaN I 10.0 8.04

1 NaN I 14.0 9.96

2 NaN I 6.0 7.24

3 NaN I 9.0 8.81

4 NaN I 4.0 4.26

..

39 NaN IV 8.0 6.58

40 NaN IV 8.0 7.91

41 NaN IV 8.0 8.47

42 NaN IV 8.0 5.25

43 NaN IV 8.0 6.89

Note that GitHub hijacks a td element to show the line number, hence the Unnamed: 0
column. It appears to be using JavaScript to dynamically add line numbers to the web page,
so while the web page shows line numbers, the source code has empty cells, hence the NaN
values in that column. You would want to drop that column as it is useless.

One thing to be aware of is that websites can change. Do not count on your data being there
(or being the same) next week. My recommendation is to save the data after retrieving it.

Sometimes you need to use a different tool. If the read_html function is not able to get your
data from a website, you may need to resort to screen scraping. Luckily, Python has tools for
that too. Simple scraping can be done with the requests library. The Beautiful Soup library
is another tool that makes going through the HTML content easier.

115

4
Beginning

Data Analysis

Introduction
It is important to consider the steps that you, as an analyst, take when you first encounter
a dataset after importing it into your workspace as a DataFrame. Is there a set of tasks that
you usually undertake to examine the data? Are you aware of all the possible data types? This
chapter begins by covering the tasks you might want to undertake when first encountering
a new dataset. The chapter proceeds by answering common questions about things that are
not that simple to do in pandas.

Developing a data analysis routine
Although there is no standard approach when beginning a data analysis, it is typically a
good idea to develop a routine for yourself when first examining a dataset. Similar to everyday
routines that we have for waking up, showering, going to work, eating, and so on, a data
analysis routine helps you to quickly get acquainted with a new dataset. This routine can
manifest itself as a dynamic checklist of tasks that evolves as your familiarity with pandas
and data analysis expands.

Exploratory Data Analysis (EDA) is a term used to describe the process of analyzing datasets.
Typically it does not involve model creation, but summarizing the characteristics of the data
and visualizing them. This is not new and was promoted by John Tukey in his book Exploratory
Data Analysis in 1977.

Beginning Data Analysis

116

Many of these same processes are still applicable and useful to understand a dataset.
Indeed, they can also help with creating machine learning models later.

This recipe covers a small but fundamental part of EDA: the collection of metadata and
descriptive statistics in a routine and systematic way. It outlines a standard set of tasks that
can be undertaken when first importing any dataset as a pandas DataFrame. This recipe may
help form the basis of the routine that you can implement when first examining a dataset.

Metadata describes the dataset or, more aptly, data about the data. Examples of metadata
include the number of columns/rows, column names, data types of each column, the source
of the dataset, the date of collection, the acceptable values for different columns, and so
on. Univariate descriptive statistics are summary statistics about variables (columns) of
the dataset, independent of all other variables.

How to do it…
First, some metadata on the college dataset will be collected, followed by basic summary
statistics of each column:

1. Read in the dataset, and view a sample of rows with the .sample method:
>>> import pandas as pd

>>> import numpy as np

>>> college = pd.read_csv("data/college.csv")

>>> college.sample(random_state=42)

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

3649 Career P... San Antonio ... 20700 14977

2. Get the dimensions of the DataFrame with the .shape attribute:
>>> college.shape

(7535, 27)

3. List the data type of each column, the number of non-missing values, and memory
usage with the .info method:
>>> college.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 7535 entries, 0 to 7534

Data columns (total 27 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 INSTNM 7535 non-null object

Chapter 4

117

 1 CITY 7535 non-null object

 2 STABBR 7535 non-null object

 3 HBCU 7164 non-null float64

 4 MENONLY 7164 non-null float64

 5 WOMENONLY 7164 non-null float64

 6 RELAFFIL 7535 non-null int64

 7 SATVRMID 1185 non-null float64

 8 SATMTMID 1196 non-null float64

 9 DISTANCEONLY 7164 non-null float64

 10 UGDS 6874 non-null float64

 11 UGDS_WHITE 6874 non-null float64

 12 UGDS_BLACK 6874 non-null float64

 13 UGDS_HISP 6874 non-null float64

 14 UGDS_ASIAN 6874 non-null float64

 15 UGDS_AIAN 6874 non-null float64

 16 UGDS_NHPI 6874 non-null float64

 17 UGDS_2MOR 6874 non-null float64

 18 UGDS_NRA 6874 non-null float64

 19 UGDS_UNKN 6874 non-null float64

 20 PPTUG_EF 6853 non-null float64

 21 CURROPER 7535 non-null int64

 22 PCTPELL 6849 non-null float64

 23 PCTFLOAN 6849 non-null float64

 24 UG25ABV 6718 non-null float64

 25 MD_EARN_WNE_P10 6413 non-null object

 26 GRAD_DEBT_MDN_SUPP 7503 non-null object

dtypes: float64(20), int64(2), object(5)

memory usage: 1.6+ MB

4. Get summary statistics for the numerical columns and transpose the DataFrame for
more readable output:
>>> college.describe(include=[np.number]).T

 count mean ... 75% max

HBCU 7164.0 0.014238 ... 0.000000 1.0

MENONLY 7164.0 0.009213 ... 0.000000 1.0

WOMENONLY 7164.0 0.005304 ... 0.000000 1.0

RELAFFIL 7535.0 0.190975 ... 0.000000 1.0

Beginning Data Analysis

118

SATVRMID 1185.0 522.819409 ... 555.000000 765.0

...

PPTUG_EF 6853.0 0.226639 ... 0.376900 1.0

CURROPER 7535.0 0.923291 ... 1.000000 1.0

PCTPELL 6849.0 0.530643 ... 0.712900 1.0

PCTFLOAN 6849.0 0.522211 ... 0.745000 1.0

UG25ABV 6718.0 0.410021 ... 0.572275 1.0

5. Get summary statistics for the object (string) columns:

>>> college.describe(include=[np.object]).T

 count unique top freq

INSTNM 7535 7535 Academy ... 1

CITY 7535 2514 New York 87

STABBR 7535 59 CA 773

MD_EARN_W... 6413 598 PrivacyS... 822

GRAD_DEBT... 7503 2038 PrivacyS... 1510

How it works…
After importing your dataset, a common task is to print out a sample of rows of the
DataFrame for manual inspection with the .sample method. The .shape attribute
returns some metadata; a tuple containing the number of rows and columns.

A method to get more metadata at once is the .info method. It provides each column name,
the number of non-missing values, the data type of each column, and the approximate
memory usage of the DataFrame. Usually, a column in pandas has a single type (however,
it is possible to have a column that has mixed types, and it will be reported as object).
DataFrames, as a whole, might be composed of columns with different data types.

Step 4 and step 5 produce descriptive statistics on different types of columns. By default,
.describe outputs a summary for all the numeric columns and silently drops any non-
numeric columns. You can pass in other options to the include parameter to include counts
and frequencies for a column with non-numeric data types. Technically, the data types are
part of a hierarchy where np.number resides above integers and floats.

We can classify data as being either continuous or categorical. Continuous data is always
numeric and can usually take on an infinite number of possibilities, such as height, weight,
and salary. Categorical data represent discrete values that take on a finite number of
possibilities, such as ethnicity, employment status, and car color. Categorical data can
be represented numerically or with characters.

Chapter 4

119

Categorical columns are usually going to be either of the type np.object or
pd.Categorical. Step 5 ensures that both of these types are represented. In both step
4 and step 5, the output DataFrame is transposed with the .T property. This may ease
readability for DataFrames with many columns as it typically allows more data to fit on the
screen without scrolling.

There's more…
It is possible to specify the exact quantiles returned from the .describe method when used
with numeric columns:

>>> college.describe(

... include=[np.number],

... percentiles=[

... 0.01,

... 0.05,

... 0.10,

... 0.25,

... 0.5,

... 0.75,

... 0.9,

... 0.95,

... 0.99,

...],

...).T

 count mean ... 99% max

HBCU 7164.0 0.014238 ... 1.000000 1.0

MENONLY 7164.0 0.009213 ... 0.000000 1.0

WOMENONLY 7164.0 0.005304 ... 0.000000 1.0

RELAFFIL 7535.0 0.190975 ... 1.000000 1.0

SATVRMID 1185.0 522.819409 ... 730.000000 765.0

...

PPTUG_EF 6853.0 0.226639 ... 0.946724 1.0

CURROPER 7535.0 0.923291 ... 1.000000 1.0

PCTPELL 6849.0 0.530643 ... 0.993908 1.0

PCTFLOAN 6849.0 0.522211 ... 0.986368 1.0

UG25ABV 6718.0 0.410021 ... 0.917383 1.0

Beginning Data Analysis

120

Data dictionaries
A crucial part of data analysis involves creating and maintaining a data dictionary. A data
dictionary is a table of metadata and notes on each column of data. One of the primary
purposes of a data dictionary is to explain the meaning of the column names. The college
dataset uses a lot of abbreviations that are likely to be unfamiliar to an analyst who is
inspecting it for the first time.

A data dictionary for the college dataset is provided in the following college_data_
dictionary.csv file:

>>> pd.read_csv("data/college_data_dictionary.csv")

 column_name description

0 INSTNM Institut...

1 CITY City Loc...

2 STABBR State Ab...

3 HBCU Historic...

4 MENONLY 0/1 Men ...

..

22 PCTPELL Percent ...

23 PCTFLOAN Percent ...

24 UG25ABV Percent ...

25 MD_EARN_... Median E...

26 GRAD_DEB... Median d...

As you can see, it is immensely helpful in deciphering the abbreviated column names.
DataFrames are not the best place to store data dictionaries. A platform such as Excel
or Google Sheets with easy ability to edit values and append columns is a better choice.
Alternatively, they can be described in a Markdown cell in Jupyter. A data dictionary is one
of the first things that you can share as an analyst with collaborators.

It will often be the case that the dataset you are working with originated from a database
whose administrators you will have to contact to get more information. Databases have
representations of their data, called schemas. If possible, attempt to investigate your dataset
with a Subject Matter Expert (SME – people who have expert knowledge of the data).

Reducing memory by changing data types
pandas has precise technical definitions for many data types. However, when you load data
from type-less formats such as CSV, pandas has to infer the type.

Chapter 4

121

This recipe changes the data type of one of the object columns from the college dataset to the
special pandas categorical data type to drastically reduce its memory usage.

How to do it…
1. After reading in our college dataset, we select a few columns of different data types

that will clearly show how much memory may be saved:
>>> college = pd.read_csv("data/college.csv")

>>> different_cols = [

... "RELAFFIL",

... "SATMTMID",

... "CURROPER",

... "INSTNM",

... "STABBR",

...]

>>> col2 = college.loc[:, different_cols]

>>> col2.head()

 RELAFFIL SATMTMID ... INSTNM STABBR

0 0 420.0 ... Alabama ... AL

1 0 565.0 ... Universi... AL

2 1 NaN ... Amridge ... AL

3 0 590.0 ... Universi... AL

4 0 430.0 ... Alabama ... AL

2. Inspect the data types of each column:
>>> col2.dtypes

RELAFFIL int64

SATMTMID float64

CURROPER int64

INSTNM object

STABBR object

dtype: object

3. Find the memory usage of each column with the .memory_usage method:
>>> original_mem = col2.memory_usage(deep=True)

>>> original_mem

Index 128

Beginning Data Analysis

122

RELAFFIL 60280

SATMTMID 60280

CURROPER 60280

INSTNM 660240

STABBR 444565

dtype: int64

4. There is no need to use 64 bits for the RELAFFIL column as it contains only 0 or 1.
Let's convert this column to an 8-bit (1 byte) integer with the .astype method:
>>> col2["RELAFFIL"] = col2["RELAFFIL"].astype(np.int8)

5. Use the .dtypes attribute to confirm the data type change:
>>> col2.dtypes

RELAFFIL int8

SATMTMID float64

CURROPER int64

INSTNM object

STABBR object

dtype: object

6. Find the memory usage of each column again and note the large reduction:
>>> col2.memory_usage(deep=True)

Index 128

RELAFFIL 7535

SATMTMID 60280

CURROPER 60280

INSTNM 660240

STABBR 444565

dtype: int64

7. To save even more memory, you will want to consider changing object data types to
categorical if they have a reasonably low cardinality (number of unique values). Let's
first check the number of unique values for both the object columns:
>>> col2.select_dtypes(include=["object"]).nunique()

INSTNM 7535

STABBR 59

dtype: int64

Chapter 4

123

8. The STABBR column is a good candidate to convert to categorical as less than one
percent of its values are unique:
>>> col2["STABBR"] = col2["STABBR"].astype("category")

>>> col2.dtypes

RELAFFIL int8

SATMTMID float64

CURROPER int64

INSTNM object

STABBR category

dtype: object

9. Compute the memory usage again:
>>> new_mem = col2.memory_usage(deep=True)

>>> new_mem

Index 128

RELAFFIL 7535

SATMTMID 60280

CURROPER 60280

INSTNM 660699

STABBR 13576

dtype: int64

10. Finally, let's compare the original memory usage with our updated memory usage.
The RELAFFIL column is, as expected, an eighth of its original size, while the
STABBR column has shrunk to just three percent of its original size:

>>> new_mem / original_mem

Index 1.000000

RELAFFIL 0.125000

SATMTMID 1.000000

CURROPER 1.000000

INSTNM 1.000695

STABBR 0.030538

dtype: float64

Beginning Data Analysis

124

How it works…
pandas defaults integer and float data types to 64 bits regardless of the maximum
necessary size for the particular DataFrame. Integers, floats, and even Booleans may be
coerced to a different data type with the .astype method and passing it the exact type,
either as a string or specific object, as done in step 4.

The RELAFFIL column is a good choice to cast to a smaller integer type as the data
dictionary explains that its values must be 0 or 1. The memory for RELAFFIL is now an
eighth of CURROPER, which remains as its former type.

Columns that have an object data type, such as INSTNM, are not like the other pandas data
types. For all the other pandas data types, each value in that column is the same data type.
For instance, when a column has the int64 type, every column value is also int64. This is
not true for columns that have the object data type. Each column value can be of any type.
They can have a mix of strings, numerics, datetimes, or even other Python objects such as
lists or tuples. For this reason, the object data type is sometimes referred to as a catch-all
for a column of data that doesn't match any of the other data types. The vast majority of the
time, though, object data type columns will all be strings.

Therefore, the memory of each value in an object data type column is inconsistent. There
is no predefined amount of memory for each value like the other data types. For pandas to
extract the exact amount of memory of an object data type column, the deep parameter
must be set to True in the .memory_usage method.

Object columns are targets for the largest memory savings. pandas has an additional
categorical data type that is not available in NumPy. When converting to category, pandas
internally creates a mapping from integers to each unique string value. Thus, each string only
needs to be kept a single time in memory. As you can see, this change of data type reduced
memory usage by 97%.

You might also have noticed that the index uses an extremely low amount of memory. If no
index is specified during DataFrame creation, as is the case in this recipe, pandas defaults
the index to a RangeIndex. The RangeIndex is very similar to the built-in range function.
It produces values on demand and only stores the minimum amount of information needed
to create an index.

There's more…
To get a better idea of how object data type columns differ from integers and floats, a
single value from each one of these columns can be modified and the resulting memory
usage displayed. The CURROPER and INSTNM columns are of int64 and object types,
respectively:

>>> college.loc[0, "CURROPER"] = 10000000

Chapter 4

125

>>> college.loc[0, "INSTNM"] = (

... college.loc[0, "INSTNM"] + "a"

...)

>>> college[["CURROPER", "INSTNM"]].memory_usage(deep=True)

Index 80

CURROPER 60280

INSTNM 660804

dtype: int64

Memory usage for CURROPER remained the same since a 64-bit integer is more than enough
space for the larger number. On the other hand, the memory usage for INSTNM increased by
105 bytes by just adding a single letter to one value.

Python 3 uses Unicode, a standardized character representation intended to encode all the
world's writing systems. How much memory Unicode strings take on your machine depends
on how Python was built. On this machine, it uses up to 4 bytes per character. pandas
has some overhead (100 bytes) when making the first modification to a character value.
Afterward, increments of 5 bytes per character are sustained.

Not all columns can be coerced to the desired type. Take a look at the MENONLY column,
which, from the data dictionary, appears to contain only 0s or 1s. The actual data type of
this column upon import unexpectedly turns out to be float64. The reason for this is that
there happen to be missing values, denoted by np.nan. There is no integer representation for
missing values for the int64 type (note that the Int64 type found in pandas 0.24+ does support
missing values, but it is not used by default). Any numeric column with even a single missing
value will be turned into a float column. Furthermore, any column of an integer data type will
automatically be coerced to a float if one of the values becomes missing:

>>> college["MENONLY"].dtype

dtype('float64')

>>> college["MENONLY"].astype(np.int8)

Traceback (most recent call last):

 ...

ValueError: Cannot convert non-finite values (NA or inf) to integer

Additionally, it is possible to substitute string names in place of Python objects when
referring to data types. For instance, when using the include parameter in the .describe
DataFrame method, it is possible to pass a list of either the NumPy or pandas objects or their
equivalent string representation. For instance, each of the following produces the same result:

college.describe(include=['int64', 'float64']).T

Beginning Data Analysis

126

college.describe(include=[np.int64, np.float64]).T

college.describe(include=['int', 'float']).T

college.describe(include=['number']).T

The type strings can also be used in combination with the .astype method:

>>> college.assign(

... MENONLY=college["MENONLY"].astype("float16"),

... RELAFFIL=college["RELAFFIL"].astype("int8"),

...)

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_SUPP

0 Alabama ... Normal ... 30300 33888

1 Universi... Birmingham ... 39700 21941.5

2 Amridge ... Montgomery ... 40100 23370

3 Universi... Huntsville ... 45500 24097

4 Alabama ... Montgomery ... 26600 33118.5

...

7530 SAE Inst... Emeryville ... NaN 9500

7531 Rasmusse... Overland... ... NaN 21163

7532 National... Highland... ... NaN 6333

7533 Bay Area... San Jose ... NaN PrivacyS...

7534 Excel Le... San Antonio ... NaN 12125

Lastly, it is possible to see the enormous memory difference between the minimal
RangeIndex and Int64Index, which stores every row index in memory:

>>> college.index = pd.Int64Index(college.index)

>>> college.index.memory_usage() # previously was just 80

60280

Selecting the smallest of the largest
This recipe can be used to create catchy news headlines such as Out of the Top 100
Universities, These 5 have the Lowest Tuition, or From the Top 50 Cities to Live, these 10 are
the Most Affordable.

Chapter 4

127

During analysis, it is possible that you will first need to find a grouping of data that contains
the top n values in a single column and, from this subset, find the bottom m values based on
a different column.

In this recipe, we find the five lowest budget movies from the top 100 scoring movies by taking
advantage of the convenience methods: .nlargest and .nsmallest.

How to do it…
1. Read in the movie dataset, and select the columns: movie_title, imdb_score,

and budget:
>>> movie = pd.read_csv("data/movie.csv")

>>> movie2 = movie[["movie_title", "imdb_score", "budget"]]

>>> movie2.head()

 movie_title imdb_score budget

0 Avatar 7.9 237000000.0

1 Pirates ... 7.1 300000000.0

2 Spectre 6.8 245000000.0

3 The Dark... 8.5 250000000.0

4 Star War... 7.1 NaN

2. Use the .nlargest method to select the top 100 movies by imdb_score:
>>> movie2.nlargest(100, "imdb_score").head()

 movie_title imdb_score budget

 movie_title imdb_score budget

2725 Towering Inferno 9.5 NaN

1920 The Shawshank Redemption 9.3 25000000.0

3402 The Godfather 9.2 6000000.0

2779 Dekalog 9.1 NaN

4312 Kickboxer: Vengeance 9.1 17000000.0

3. Chain the .nsmallest method to return the five lowest budget films among those
with a top 100 score:
>>> (

... movie2.nlargest(100, "imdb_score").nsmallest(

... 5, "budget"

...)

...)

 movie_title imdb_score budget

Beginning Data Analysis

128

4804 Butterfly Girl 8.7 180000.0

4801 Children of Heaven 8.5 180000.0

4706 12 Angry Men 8.9 350000.0

4550 A Separation 8.4 500000.0

4636 The Other Dream Team 8.4 500000.0

How it works…
The first parameter of the .nlargest method, n, must be an integer and selects the number
of rows to be returned. The second parameter, columns, takes a column name as a string.
Step 2 returns the 100 highest-scoring movies. We could have saved this intermediate result
as its own variable but instead, we chain the .nsmallest method to it in step 3, which
returns exactly five rows, sorted by budget.

There's more…
It is possible to pass a list of column names to the columns parameter of the .nlargest
and .nsmallest methods. This would only be useful to break ties in the event that there
were duplicate values sharing the nth ranked spot in the first column in the list.

Selecting the largest of each group by
sorting

One of the most basic and common operations to perform during data analysis is to select
rows containing the largest value of some column within a group. For instance, this would be
like finding the highest-rated film of each year or the highest-grossing film by content rating.
To accomplish this task, we need to sort the groups as well as the column used to rank each
member of the group, and then extract the highest member of each group.

In this recipe, we will find the highest-rated film of each year.

How to do it…
1. Read in the movie dataset and slim it down to just the three columns we care about:

movie_title, title_year, and imdb_score:
>>> movie = pd.read_csv("data/movie.csv")

>>> movie[["movie_title", "title_year", "imdb_score"]]

 movie_title ...

Chapter 4

129

0 Avatar ...

1 Pirates of the Caribbean: At World's End ...

2 Spectre ...

3 The Dark Knight Rises ...

4 Star Wars: Episode VII - The Force Awakens ...

...

4911 Signed Sealed Delivered ...

4912 The Following ...

4913 A Plague So Pleasant ...

4914 Shanghai Calling ...

4915 My Date with Drew ...

2. Use the .sort_values method to sort the DataFrame by title_year. The default
behavior sorts from the smallest to the largest. Use the ascending=True parameter
to invert this behavior:
>>> (

... movie[

... ["movie_title", "title_year", "imdb_score"]

...].sort_values("title_year", ascending=True)

...)

 movie_title ...

4695 Intolerance: Love's Struggle Throughout the Ages ...

4833 Over the Hill to the Poorhouse ...

4767 The Big Parade ...

2694 Metropolis ...

4697 The Broadway Melody ...

...

4683 Heroes ...

4688 Home Movies ...

4704 Revolution ...

4752 Happy Valley ...

4912 The Following ...

3. Notice how only the year was sorted. To sort multiple columns at once, use a list.
Let's look at how to sort both year and score:
>>> (

... movie[

... ["movie_title", "title_year", "imdb_score"]

Beginning Data Analysis

130

...].sort_values(

... ["title_year", "imdb_score"], ascending=False

...)

...)

 movie_title title_year imdb_score

4312 Kickboxer: Vengeance 2016.0 9.1

4277 A Beginner's Guide to Snuff 2016.0 8.7

3798 Airlift 2016.0 8.5

27 Captain America: Civil War 2016.0 8.2

98 Godzilla Resurgence 2016.0 8.2

...

1391 Rush Hour NaN 5.8

4031 Creature NaN 5.0

2165 Meet the Browns NaN 3.5

3246 The Bold and the Beautiful NaN 3.5

2119 The Bachelor NaN 2.9

4. Now, we use the .drop_duplicates method to keep only the first row of every
year:

>>> (

... movie[["movie_title", "title_year", "imdb_score"]]

... .sort_values(

... ["title_year", "imdb_score"], ascending=False

...)

... .drop_duplicates(subset="title_year")

...)

 movie_title title_year imdb_score

4312 Kickboxe... 2016.0 9.1

3745 Running ... 2015.0 8.6

4369 Queen of... 2014.0 8.7

3935 Batman: ... 2013.0 8.4

3 The Dark... 2012.0 8.5

...

2694 Metropolis 1927.0 8.3

4767 The Big ... 1925.0 8.3

4833 Over the... 1920.0 4.8

Chapter 4

131

4695 Intolera... 1916.0 8.0

2725 Towering... NaN 9.5

How it works…
This example shows how I use chaining to build up and test a sequence of pandas operations.
In step 1, we slim the dataset down to concentrate on only the columns of importance.
This recipe would work the same with the entire DataFrame. Step 2 shows how to sort a
DataFrame by a single column, which is not exactly what we wanted. Step 3 sorts multiple
columns at the same time. It works by first sorting all of title_year and then, within each
value of title_year, sorts by imdb_score.

The default behavior of the .drop_duplicates method is to keep the first occurrence of
each unique row, which would not drop any rows as each row is unique. However, the subset
parameter alters it to only consider the column (or list of columns) given to it. In this example,
only one row for each year will be returned. As we sorted by year and score in the last step, the
highest-scoring movie for each year is what we get.

There's more…
As in most things pandas, there is more than one way to do this. If you find yourself
comfortable with grouping operations, you can use the .groupby method to do this as well:

>>> (

... movie[["movie_title", "title_year", "imdb_score"]]

... .groupby("title_year", as_index=False)

... .apply(

... lambda df: df.sort_values(

... "imdb_score", ascending=False

...).head(1)

...)

... .droplevel(0)

... .sort_values("title_year", ascending=False)

...)

 movie_title title_year imdb_score

90 4312 Kickboxe... 2016.0 9.1

89 3745 Running ... 2015.0 8.6

88 4369 Queen of... 2014.0 8.7

87 3935 Batman: ... 2013.0 8.4

Beginning Data Analysis

132

86 3 The Dark... 2012.0 8.5

...

4 4555 Pandora'... 1929.0 8.0

3 2694 Metropolis 1927.0 8.3

2 4767 The Big ... 1925.0 8.3

1 4833 Over the... 1920.0 4.8

0 4695 Intolera... 1916.0 8.0

It is possible to sort one column in ascending order while simultaneously sorting another
column in descending order. To accomplish this, pass in a list of Booleans to the ascending
parameter that corresponds to how you would like each column sorted. The following sorts
title_year and content_rating in descending order and budget in ascending order.
It then finds the lowest budget film for each year and content rating group:

>>> (

... movie[

... [

... "movie_title",

... "title_year",

... "content_rating",

... "budget",

...]

...]

... .sort_values(

... ["title_year", "content_rating", "budget"],

... ascending=[False, False, True],

...)

... .drop_duplicates(

... subset=["title_year", "content_rating"]

...)

...)

 movie_title title_year content_rating budget

4026 Compadres 2016.0 R 3000000.0

4658 Fight to... 2016.0 PG-13 150000.0

4661 Rodeo Girl 2016.0 PG 500000.0

3252 The Wailing 2016.0 Not Rated NaN

4659 Alleluia... 2016.0 NaN 500000.0

...

Chapter 4

133

2558 Lilyhammer NaN TV-MA 34000000.0

807 Sabrina,... NaN TV-G 3000000.0

848 Stargate... NaN TV-14 1400000.0

2436 Carlos NaN Not Rated NaN

2119 The Bach... NaN NaN 3000000.0

By default, .drop_duplicates keeps the very first appearance of a value, but this
behavior may be modified by passing keep='last' to select the last row of each group or
keep=False to drop all duplicates entirely.

Replicating nlargest with sort_values
The previous two recipes work similarly by sorting values in slightly different manners. Finding
the top n values of a column of data is equivalent to sorting the entire column in descending
order and taking the first n values. pandas has many operations that are capable of doing this
in a variety of ways.

In this recipe, we will replicate the Selecting the smallest of the largest recipe with the
.sort_values method and explore the differences between the two.

How to do it…
1. Let's recreate the result from the final step of the Selecting the smallest of the largest

recipe:
>>> movie = pd.read_csv("data/movie.csv")

>>> (

... movie[["movie_title", "imdb_score", "budget"]]

... .nlargest(100, "imdb_score")

... .nsmallest(5, "budget")

...)

 movie_title imdb_score budget

4804 Butterfly Girl 8.7 180000.0

4801 Children of Heaven 8.5 180000.0

4706 12 Angry Men 8.9 350000.0

4550 A Separation 8.4 500000.0

4636 The Other Dream Team 8.4 500000.0

Beginning Data Analysis

134

2. Use .sort_values to replicate the first part of the expression and grab the first 100
rows with the .head method:
>>> (

... movie[["movie_title", "imdb_score", "budget"]]

... .sort_values("imdb_score", ascending=False)

... .head(100)

...)

 movie_title imdb_score budget

2725 Towering... 9.5 NaN

1920 The Shaw... 9.3 25000000.0

3402 The Godf... 9.2 6000000.0

2779 Dekalog 9.1 NaN

4312 Kickboxe... 9.1 17000000.0

...

3799 Anne of ... 8.4 NaN

3777 Requiem ... 8.4 4500000.0

3935 Batman: ... 8.4 3500000.0

4636 The Othe... 8.4 500000.0

2455 Aliens 8.4 18500000.0

3. Now that we have the top 100 scoring movies, we can use .sort_values with
.head again to grab the lowest five by budget:

>>> (

... movie[["movie_title", "imdb_score", "budget"]]

... .sort_values("imdb_score", ascending=False)

... .head(100)

... .sort_values("budget")

... .head(5)

...)

 movie_title imdb_score budget

4815 A Charlie Brown Christmas 8.4 150000.0

4801 Children of Heaven 8.5 180000.0

4804 Butterfly Girl 8.7 180000.0

4706 12 Angry Men 8.9 350000.0

4636 The Other Dream Team 8.4 500000.0

Chapter 4

135

How it works…
The .sort_values method can nearly replicate .nlargest by chaining the .head method
after the operation, as seen in step 2. Step 3 replicates .nsmallest by chaining another
.sort_values method and completes the query by taking just the first five rows with the
.head method.

Take a look at the output from the first DataFrame from step 1 and compare it with the output
from step 3. Are they the same? No! What happened? To understand why the two results are
not equivalent, let's look at the tail of the intermediate steps of each recipe:

>>> (

... movie[["movie_title", "imdb_score", "budget"]]

... .nlargest(100, "imdb_score")

... .tail()

...)

 movie_title imdb_score budget

4023 Oldboy 8.4 3000000.0

4163 To Kill a Mockingbird 8.4 2000000.0

4395 Reservoir Dogs 8.4 1200000.0

4550 A Separation 8.4 500000.0

4636 The Other Dream Team 8.4 500000.0

>>> (

... movie[["movie_title", "imdb_score", "budget"]]

... .sort_values("imdb_score", ascending=False)

... .head(100)

... .tail()

...)

 movie_title imdb_score budget

3799 Anne of ... 8.4 NaN

3777 Requiem ... 8.4 4500000.0

3935 Batman: ... 8.4 3500000.0

4636 The Othe... 8.4 500000.0

2455 Aliens 8.4 18500000.0

The issue arises because more than 100 movies exist with a rating of at least 8.4. Each of the
methods, .nlargest and .sort_values, breaks ties differently, which results in a slightly
different 100-row DataFrame. If you pass in kind='mergsort' to the .sort_values
method, you will get the same result as .nlargest.

Beginning Data Analysis

136

Calculating a trailing stop order price
There are many strategies to trade stocks. One basic type of trade that many investors employ
is the stop order. A stop order is an order placed by an investor to buy or sell a stock that
executes whenever the market price reaches a certain point. Stop orders are useful to both
prevent huge losses and protect gains.

For this recipe, we will only be examining stop orders used to sell currently owned stocks.
In a typical stop order, the price does not change throughout the lifetime of the order. For
instance, if you purchased a stock for $100 per share, you might want to set a stop order
at $90 per share to limit your downside to 10%.

A more advanced strategy would be to continually modify the sale price of the stop order
to track the value of the stock if it increases in value. This is called a trailing stop order.
Concretely, if the same $100 stock increases to $120, then a trailing stop order 10% below
the current market value would move the sale price to $108.

The trailing stop order never moves down and is always tied to the maximum value since
the time of purchase. If the stock fell from $120 to $110, the stop order would still remain
at $108. It would only increase if the price moved above $120.

This recipe requires the use of the third-party package pandas-datareader, which fetches
stock market prices online. It does not come pre-installed with pandas. To install this package,
use the command line and run conda install pandas-datareader or pip install
pandas-datareader. You may need to install the requests_cache library as well.

This recipe determines the trailing stop order price given an initial purchase price for any
stock.

How to do it…
1. To get started, we will work with Tesla Motors (TSLA) stock and presume a purchase

on the first trading day of 2017:
>>> import datetime

>>> import pandas_datareader.data as web

>>> import requests_cache

>>> session = requests_cache.CachedSession(

... cache_name="cache",

... backend="sqlite",

... expire_after=datetime.timedelta(days=90),

...)

Chapter 4

137

>>> tsla = web.DataReader(

... "tsla",

... data_source="yahoo",

... start="2017-1-1",

... session=session,

...)

>>> tsla.head(8)

 High Low ... Volume Adj Close

Date ...

2017-01-03 220.330002 210.960007 ... 5923300 216.990005

2017-01-04 228.000000 214.309998 ... 11213500 226.990005

2017-01-05 227.479996 221.949997 ... 5911700 226.750000

2017-01-06 230.309998 225.449997 ... 5527900 229.009995

2017-01-09 231.919998 228.000000 ... 3979500 231.279999

2017-01-10 232.000000 226.889999 ... 3660000 229.869995

2017-01-11 229.979996 226.679993 ... 3650800 229.729996

2017-01-12 230.699997 225.580002 ... 3790200 229.589996

2. For simplicity, we will work with the closing price of each trading day:
>>> tsla_close = tsla["Close"]

3. Use the .cummax method to track the highest closing price until the current date:
>>> tsla_cummax = tsla_close.cummax()

>>> tsla_cummax.head()

Date

2017-01-03 216.990005

2017-01-04 226.990005

2017-01-05 226.990005

2017-01-06 229.009995

2017-01-09 231.279999

Name: Close, dtype: float64

4. To limit the downside to 10%, we multiply the result by 0.9. This creates the trailing
stop order. We will chain all of the steps together:

>>> (tsla["Close"].cummax().mul(0.9).head())

Date

2017-01-03 195.291005

2017-01-04 204.291005

Beginning Data Analysis

138

2017-01-05 204.291005

2017-01-06 206.108995

2017-01-09 208.151999

Name: Close, dtype: float64

How it works…
The .cummax method works by retaining the maximum value encountered up to and including
the current value. Multiplying this series by 0.9, or whatever cushion you would like to use,
creates the trailing stop order. In this particular example, TSLA increased in value, and thus,
its trailing stop has also increased.

There's more…
This recipe gives just a taste of how useful pandas may be used to trade securities and stops
short of calculating a return for if and when the stop order triggers.

A very similar strategy may be used during a weight-loss program. You can set a warning any
time you have strayed too far away from your minimum weight. pandas provides you with the
cummin method to track the minimum value. If you keep track of your daily weight in a series,
the following code provides a trailing weight loss of 5% above your lowest recorded weight to
date:

weight.cummin() * 1.05

139

5
Exploratory

Data Analysis

Introduction
In this chapter, we will dive more into Exploratory Data Analysis (EDA). This is the process
of sifting through the data and trying to make sense of the individual columns and the
relationships between them.

This activity can be time-consuming, but can also have big payoffs. The better you understand
the data, the more you can take advantage of it. If you intend to make machine learning
models, having insight into the data can lead to more performant models and understanding
why predications are made.

We are going to use a dataset from www.fueleconomy.gov that provides information about
makes and models of cars from 1984 through 2018. Using EDA we will explore many of the
columns and relationships found in this data.

Summary statistics
Summary statistics include the mean, quartiles, and standard deviation. The .describe
method will calculate these measures on all of the numeric columns in a DataFrame.

http://www.fueleconomy.gov

Exploratory Data Analysis

140

How to do it…
1. Load the dataset:

>>> import pandas as pd

>>> import numpy as np

>>> fueleco = pd.read_csv("data/vehicles.csv.zip")

>>> fueleco

 barrels08 barrelsA08 ... phevHwy phevComb

0 15.695714 0.0 ... 0 0

1 29.964545 0.0 ... 0 0

2 12.207778 0.0 ... 0 0

3 29.964545 0.0 ... 0 0

4 17.347895 0.0 ... 0 0

...

39096 14.982273 0.0 ... 0 0

39097 14.330870 0.0 ... 0 0

39098 15.695714 0.0 ... 0 0

39099 15.695714 0.0 ... 0 0

39100 18.311667 0.0 ... 0 0

2. Call individual summary statistics methods such as .mean, .std, and .quantile:
>>> fueleco.mean()

barrels08 17.442712

barrelsA08 0.219276

charge120 0.000000

charge240 0.029630

city08 18.077799

 ...

youSaveSpend -3459.572645

charge240b 0.005869

phevCity 0.094703

phevHwy 0.094269

phevComb 0.094141

Length: 60, dtype: float64

>>> fueleco.std()

barrels08 4.580230

Chapter 5

141

barrelsA08 1.143837

charge120 0.000000

charge240 0.487408

city08 6.970672

 ...

youSaveSpend 3010.284617

charge240b 0.165399

phevCity 2.279478

phevHwy 2.191115

phevComb 2.226500

Length: 60, dtype: float64

>>> fueleco.quantile(

... [0, 0.25, 0.5, 0.75, 1]

...)

 barrels08 barrelsA08 ... phevHwy phevComb

0.00 0.060000 0.000000 ... 0.0 0.0

0.25 14.330870 0.000000 ... 0.0 0.0

0.50 17.347895 0.000000 ... 0.0 0.0

0.75 20.115000 0.000000 ... 0.0 0.0

1.00 47.087143 18.311667 ... 81.0 88.0

3. Call the .describe method:
>>> fueleco.describe()

 barrels08 barrelsA08 ... phevHwy phevComb

count 39101.00... 39101.00... ... 39101.00... 39101.00...

mean 17.442712 0.219276 ... 0.094269 0.094141

std 4.580230 1.143837 ... 2.191115 2.226500

min 0.060000 0.000000 ... 0.000000 0.000000

25% 14.330870 0.000000 ... 0.000000 0.000000

50% 17.347895 0.000000 ... 0.000000 0.000000

75% 20.115000 0.000000 ... 0.000000 0.000000

max 47.087143 18.311667 ... 81.000000 88.000000

4. To get summary statistics on the object columns, use the .include parameter:

>>> fueleco.describe(include=object)

 drive eng_dscr ... modifiedOn startStop

Exploratory Data Analysis

142

count 37912 23431 ... 39101 7405

unique 7 545 ... 68 2

top Front-Wh... (FFS) ... Tue Jan ... N

freq 13653 8827 ... 29438 5176

How it works…
I've done data analysis trainings where the client literally slapped their head after teaching
them about the .describe method. When I asked what the problem was, they replied that
they had spent the last couple of weeks implementing that behavior for their database.

By default, .describe will calculate summary statistics on the numeric columns. You can
pass the include parameter to tell the method to include non-numeric data types. Note
that this will show the count of unique values, the most frequent value (top), and its frequency
counts for the object columns.

There's more…
One tip that often makes more data appear on the screen is transposing a DataFrame. I find
that this is useful for the output of the .describe method:

>>> fueleco.describe().T

 count mean ... 75% max

barrels08 39101.0 17.442712 ... 20.115 47.087143

barrelsA08 39101.0 0.219276 ... 0.000 18.311667

charge120 39101.0 0.000000 ... 0.000 0.000000

charge240 39101.0 0.029630 ... 0.000 12.000000

city08 39101.0 18.077799 ... 20.000 150.000000

...

youSaveSpend 39101.0 -3459.572645 ... -1500.000 5250.000000

charge240b 39101.0 0.005869 ... 0.000 7.000000

phevCity 39101.0 0.094703 ... 0.000 97.000000

phevHwy 39101.0 0.094269 ... 0.000 81.000000

phevComb 39101.0 0.094141 ... 0.000 88.000000

Chapter 5

143

Column types
You can glean information about the data in pandas simply by looking at the types of the
columns. In this recipe, we will explore the column types.

How to do it…
1. Inspect the .dtypes attribute:

>>> fueleco.dtypes

barrels08 float64

barrelsA08 float64

charge120 float64

charge240 float64

city08 int64

 ...

modifiedOn object

startStop object

phevCity int64

phevHwy int64

phevComb int64

Length: 83, dtype: object

2. Summarize the types of columns:

>>> fueleco.dtypes.value_counts()

float64 32

int64 27

object 23

bool 1

dtype: int64

How it works…
When you read a CSV file in pandas, it has to infer the types of the columns. The process looks
something like this:

 f If all of the values in a column look like whole numeric values, convert them to
integers and give the column the type int64

Exploratory Data Analysis

144

 f If the values are float-like, give them the type float64

 f If the values are numeric, float-like, or integer-like, but missing values, assign them to
the type float64 because the value typically used for missing values, np.nan, is a
floating-point type

 f If the values have false or true in them, assign them to Booleans

 f Otherwise, leave the column as strings and give it the object type (these can be
missing values with the float64 type)

Note that if you use the parse_dates, parameter, it is possible that some of the columns
were converted to datetimes. Chapters 12 and 13 show examples of parsing dates.

By just looking at the output of .dtypes I can divine more about the data than just the
data types. I can see if something is a string or missing values. Object types may be strings
or categorical data, but they could also be numeric-like values that need to be nudged
a little so that they are numeric. I typically leave integer columns alone. I tend to treat them
as continuous values. If the values are float values, this indicates that the column could be:

 f All floating-point values with no missing values

 f Floating-point values with missing values

 f Integer values that were missing some values and hence converted to floats

There's more…
When pandas converts columns to floats or integers, it uses the 64-bit versions of those
types. If you know that your integers fail into a certain range (or you are willing to sacrifice
some precision on floats), you can save some memory by converting these columns to
columns that use less memory.

>>> fueleco.select_dtypes("int64").describe().T

 count mean ... 75% max

city08 39101.0 18.077799 ... 20.0 150.0

cityA08 39101.0 0.569883 ... 0.0 145.0

co2 39101.0 72.538989 ... -1.0 847.0

co2A 39101.0 5.543950 ... -1.0 713.0

comb08 39101.0 20.323828 ... 23.0 136.0

...

year 39101.0 2000.635406 ... 2010.0 2018.0

youSaveSpend 39101.0 -3459.572645 ... -1500.0 5250.0

phevCity 39101.0 0.094703 ... 0.0 97.0

phevHwy 39101.0 0.094269 ... 0.0 81.0

phevComb 39101.0 0.094141 ... 0.0 88.0

Chapter 5

145

We can see that the city08 and comb08 columns don't go above 150. The iinfo function
in NumPy will show us the limits for integer types. We can see that we would not want to use
an int8 for this column, but we can use an int16. By converting to that type, the column
will use 25% of the memory:

>>> np.iinfo(np.int8)

iinfo(min=-128, max=127, dtype=int8)

>>> np.iinfo(np.int16)

iinfo(min=-32768, max=32767, dtype=int16)

>>> fueleco[["city08", "comb08"]].info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 2 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 city08 39101 non-null int64

 1 comb08 39101 non-null int64

dtypes: int64(2)

memory usage: 611.1 KB

>>> (

... fueleco[["city08", "comb08"]]

... .assign(

... city08=fueleco.city08.astype(np.int16),

... comb08=fueleco.comb08.astype(np.int16),

...)

... .info(memory_usage="deep")

...)

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 2 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 city08 39101 non-null int16

 1 comb08 39101 non-null int16

dtypes: int16(2)

memory usage: 152.9 KB

Exploratory Data Analysis

146

Note that there is an analogous finfo function in NumPy for retrieving float information.

An option for conserving memory for string columns is to convert them to categories. If each
value for a string column is unique, this will slow down pandas and use more memory, but if
you have low cardinality, you can save a lot of memory. The make column has low cardinality,
but the model column has a higher cardinality, and there is less memory saving for that
column.

Below, we will show pulling out just these two columns. But instead of getting a Series, we will
index with a list with just that column name in it. This will gives us back a DataFrame with a
single column. We will update the column type to categorical and look at the memory usage.
Remember to pass in memory_usage='deep' to get the memory usage for object columns:

>>> fueleco.make.nunique()

134

>>> fueleco.model.nunique()

3816

>>> fueleco[["make"]].info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 make 39101 non-null object

dtypes: object(1)

memory usage: 2.4 MB

>>> (

... fueleco[["make"]]

... .assign(make=fueleco.make.astype("category"))

... .info(memory_usage="deep")

...)

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 make 39101 non-null category

dtypes: category(1)

Chapter 5

147

memory usage: 90.4 KB

>>> fueleco[["model"]].info(memory_usage="deep")

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 model 39101 non-null object

dtypes: object(1)

memory usage: 2.5 MB

>>> (

... fueleco[["model"]]

... .assign(model=fueleco.model.astype("category"))

... .info(memory_usage="deep")

...)

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 39101 entries, 0 to 39100

Data columns (total 1 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 model 39101 non-null category

dtypes: category(1)

memory usage: 496.7 KB

Categorical data
I broadly classify data into dates, continuous values, and categorical values. In this section,
we will explore quantifying and visualizing categorical data.

How to do it…
1. Pick out the columns with data types that are object:

>>> fueleco.select_dtypes(object).columns

Index(['drive', 'eng_dscr', 'fuelType', 'fuelType1', 'make',
'model',

Exploratory Data Analysis

148

 'mpgData', 'trany', 'VClass', 'guzzler', 'trans_dscr',
'tCharger',

 'sCharger', 'atvType', 'fuelType2', 'rangeA', 'evMotor',
'mfrCode',

 'c240Dscr', 'c240bDscr', 'createdOn', 'modifiedOn',
'startStop'],

 dtype='object')

2. Use .nunique to determine the cardinality:
>>> fueleco.drive.nunique()

7

3. Use .sample to see some of the values:
>>> fueleco.drive.sample(5, random_state=42)

4217 4-Wheel ...

1736 4-Wheel ...

36029 Rear-Whe...

37631 Front-Wh...

1668 Rear-Whe...

Name: drive, dtype: object

4. Determine the number and percent of missing values:
>>> fueleco.drive.isna().sum()

1189

>>> fueleco.drive.isna().mean() * 100

3.0408429451932175

5. Use the .value_counts method to summarize a column:
>>> fueleco.drive.value_counts()

Front-Wheel Drive 13653

Rear-Wheel Drive 13284

4-Wheel or All-Wheel Drive 6648

All-Wheel Drive 2401

4-Wheel Drive 1221

2-Wheel Drive 507

Part-time 4-Wheel Drive 198

Name: drive, dtype: int64

Chapter 5

149

6. If there are too many values in the summary, you might want to look at the top 6 and
collapse the remaining values:
>>> top_n = fueleco.make.value_counts().index[:6]

>>> (

... fueleco.assign(

... make=fueleco.make.where(

... fueleco.make.isin(top_n), "Other"

...)

...).make.value_counts()

...)

Other 23211

Chevrolet 3900

Ford 3208

Dodge 2557

GMC 2442

Toyota 1976

BMW 1807

Name: make, dtype: int64

7. Use pandas to plot the counts and visualize them:
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> top_n = fueleco.make.value_counts().index[:6]

>>> (

... fueleco.assign(

... make=fueleco.make.where(

... fueleco.make.isin(top_n), "Other"

...)

...)

... .make.value_counts()

... .plot.bar(ax=ax)

...)

>>> fig.savefig("c5-catpan.png", dpi=300)

Exploratory Data Analysis

150

pandas categorical

8. Use seaborn to plot the counts and visualize them:

>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> top_n = fueleco.make.value_counts().index[:6]

>>> sns.countplot(

... y="make",

... data=(

... fueleco.assign(

... make=fueleco.make.where(

... fueleco.make.isin(top_n), "Other"

...)

...)

...),

...)

>>> fig.savefig("c5-catsns.png", dpi=300)

Chapter 5

151

Seaborn categorical

How it works…
When we are examining a categorical variable, we want to know how many unique values
there are. If this is a large value, the column might not be categorical, but either free text or
a numeric column that pandas didn't know how to store as numeric because it came across
a non-valid number.

The .sample method lets us look at a few of the values. With most columns, it is important to
determine how many are missing. It looks like there are over 1,000 rows, or about 3% of the
values, that are missing. Typically, we need to talk to an SME to determine why these values
are missing and whether we need to impute them or drop them.

Here is some code to look at the rows where the drive is missing:

>>> fueleco[fueleco.drive.isna()]

 barrels08 barrelsA08 ... phevHwy phevComb

7138 0.240000 0.0 ... 0 0

8144 0.312000 0.0 ... 0 0

8147 0.270000 0.0 ... 0 0

Exploratory Data Analysis

152

18215 15.695714 0.0 ... 0 0

18216 14.982273 0.0 ... 0 0

...

23023 0.240000 0.0 ... 0 0

23024 0.546000 0.0 ... 0 0

23026 0.426000 0.0 ... 0 0

23031 0.426000 0.0 ... 0 0

23034 0.204000 0.0 ... 0 0

My favorite method for inspecting categorical columns is the .value_counts method. This
is my goto method and I usually start with it, as I can divine answers to many of the other
questions with the output of this method. By default, it does not show missing values, but
you can use the dropna parameter to fix that:

>>> fueleco.drive.value_counts(dropna=False)

Front-Wheel Drive 13653

Rear-Wheel Drive 13284

4-Wheel or All-Wheel Drive 6648

All-Wheel Drive 2401

4-Wheel Drive 1221

NaN 1189

2-Wheel Drive 507

Part-time 4-Wheel Drive 198

Name: drive, dtype: int64

Finally, you can visualize this output using pandas or seaborn. A bar plot is an appropriate plot
to do this. However, if this is a higher cardinality column, you might have too many bars for
an effective plot. You can limit the number of columns as we do in step 6, or use the order
parameter for countplot to limit them with seaborn.

I use pandas for quick and dirty plotting because it is typically a method call away. However,
the seaborn library has various tricks up its sleeve that we will see in later recipes that are not
easy to do in pandas.

There's more…
Some columns report object data types, but they are not really categorical. In this dataset,
the rangeA column has an object data type. However, if we use my favorite categorical
method, .value_counts, to examine it, we see that it is not really categorical, but a numeric
column posing as a category.

Chapter 5

153

This is because, as seen in the output of .value_counts, there are slashes (/) and dashes
(-) in some of the entries and pandas did not know how to convert those values to numbers,
so it left the whole column as a string column.

>>> fueleco.rangeA.value_counts()

290 74

270 56

280 53

310 41

277 38

 ..

328 1

250/370 1

362/537 1

310/370 1

340-350 1

Name: rangeA, Length: 216, dtype: int64

Another way to find offending characters is to use the .str.extract method with a regular
expression:

>>> (

... fueleco.rangeA.str.extract(r"([^0-9.])")

... .dropna()

... .apply(lambda row: "".join(row), axis=1)

... .value_counts()

...)

/ 280

- 71

Name: rangeA, dtype: int64

This is actually a column that has two types: float and string. The data type is reported as
object because that type can hold heterogenous typed columns. The missing values are
stored as NaN and the non-missing values are strings:

>>> set(fueleco.rangeA.apply(type))

{<class 'str'>, <class 'float'>}

Here is the count of missing values:

>>> fueleco.rangeA.isna().sum()

37616

Exploratory Data Analysis

154

According to the fueleconomy.gov website, the rangeA value represents the range for the
second fuel type of dual fuel vehicles (E85, electricity, CNG, and LPG). Using pandas, we can
replace the missing values with zero, replace dashes with slashes, then split and take the
mean value of each row (in the case of a dash/slash):

>>> (

... fueleco.rangeA.fillna("0")

... .str.replace("-", "/")

... .str.split("/", expand=True)

... .astype(float)

... .mean(axis=1)

...)

0 0.0

1 0.0

2 0.0

3 0.0

4 0.0

 ...

39096 0.0

39097 0.0

39098 0.0

39099 0.0

39100 0.0

Length: 39101, dtype: float64

We can also treat numeric columns as categories by binning them. There are two powerful
functions in pandas to aid binning, cut and qcut. We can use cut to cut into equal-width
bins, or bin widths that we specify. For the rangeA column, most of the values were empty
and we replaced them with 0, so 10 equal-width bins look like this:

>>> (

... fueleco.rangeA.fillna("0")

... .str.replace("-", "/")

... .str.split("/", expand=True)

... .astype(float)

... .mean(axis=1)

... .pipe(lambda ser_: pd.cut(ser_, 10))

... .value_counts()

...)

Chapter 5

155

(-0.45, 44.95] 37688

(269.7, 314.65] 559

(314.65, 359.6] 352

(359.6, 404.55] 205

(224.75, 269.7] 181

(404.55, 449.5] 82

(89.9, 134.85] 12

(179.8, 224.75] 9

(44.95, 89.9] 8

(134.85, 179.8] 5

dtype: int64

Alternatively, qcut (quantile cut) will cut the entries into bins with the same size. Because
the rangeA column is heavily skewed, and most of the entries are 0, we can't quantize 0 into
multiple bins, so it fails. But it does (somewhat) work with city08. I say somewhat because
the values for city08 are whole numbers and so they don't evenly bin into 10 buckets, but
the sizes are close:

>>> (

... fueleco.rangeA.fillna("0")

... .str.replace("-", "/")

... .str.split("/", expand=True)

... .astype(float)

... .mean(axis=1)

... .pipe(lambda ser_: pd.qcut(ser_, 10))

... .value_counts()

...)

Traceback (most recent call last):

 ...

ValueError: Bin edges must be unique: array([0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,

 0. , 449.5]).

>>> (

... fueleco.city08.pipe(

... lambda ser: pd.qcut(ser, q=10)

...).value_counts()

...)

Exploratory Data Analysis

156

(5.999, 13.0] 5939

(19.0, 21.0] 4477

(14.0, 15.0] 4381

(17.0, 18.0] 3912

(16.0, 17.0] 3881

(15.0, 16.0] 3855

(21.0, 24.0] 3676

(24.0, 150.0] 3235

(13.0, 14.0] 2898

(18.0, 19.0] 2847

Name: city08, dtype: int64

Continuous data
My broad definition of continuous data is data that is stored as a number, either an integer or
a float. There is some gray area between categorical and continuous data. For example, the
grade level could be represented as a number (ignoring Kindergarten, or using 0 to represent
it). A grade column, in this case, could be both categorical and continuous, so the techniques
in this section and the previous section could both apply to it.

We will examine a continuous column from the fuel economy dataset in this section. The
city08 column lists the miles per gallon that are expected when driving a car at the lower
speeds found in a city.

How to do it…
1. Pick out the columns that are numeric (typically int64 or float64):

>>> fueleco.select_dtypes("number")

 barrels08 barrelsA08 ... phevHwy phevComb

0 15.695714 0.0 ... 0 0

1 29.964545 0.0 ... 0 0

2 12.207778 0.0 ... 0 0

3 29.964545 0.0 ... 0 0

4 17.347895 0.0 ... 0 0

...

39096 14.982273 0.0 ... 0 0

39097 14.330870 0.0 ... 0 0

Chapter 5

157

39098 15.695714 0.0 ... 0 0

39099 15.695714 0.0 ... 0 0

39100 18.311667 0.0 ... 0 0

2. Use .sample to see some of the values:
>>> fueleco.city08.sample(5, random_state=42)

4217 11

1736 21

36029 16

37631 16

1668 17

Name: city08, dtype: int64

3. Determine the number and percent of missing values:
>>> fueleco.city08.isna().sum()

0

>>> fueleco.city08.isna().mean() * 100

0.0

4. Get the summary statistics:
>>> fueleco.city08.describe()

count 39101.000000

mean 18.077799

std 6.970672

min 6.000000

25% 15.000000

50% 17.000000

75% 20.000000

max 150.000000

Name: city08, dtype: float64

5. Use pandas to plot a histogram:
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fueleco.city08.hist(ax=ax)

>>> fig.savefig(

... "c5-conthistpan.png", dpi=300

...)

Exploratory Data Analysis

158

pandas histogram

6. This plot looks very skewed, so we will increase the number of bins in the histogram
to see if the skew is hiding behaviors (as skew makes bins wider):
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fueleco.city08.hist(ax=ax, bins=30)

>>> fig.savefig(

... "c5-conthistpanbins.png", dpi=300

...)

Chapter 5

159

pandas histogram

7. Use seaborn to create a distribution plot, which includes a histogram, a kernel
density estimation (KDE), and a rug plot:

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> sns.distplot(fueleco.city08, rug=True, ax=ax)

>>> fig.savefig(

... "c5-conthistsns.png", dpi=300

...)

Exploratory Data Analysis

160

Seaborn histogram

How it works…
It is good to get a feel for how numbers behave. Looking at a sample of the data will let you
know what some of the values are. We also want to know whether values are missing. Recall
that pandas will ignore missing values when we perform operations on columns.

The summary statistics provided by .describe are very useful. This is probably my favorite
method for inspecting continuous values. I like to make sure I check the minimum and
maximum values to make sure that they make sense. It would be strange if there was
a negative value as a minimum for the miles per gallon column. The quartiles also give
us an indication of how skewed the data is. Because the quartiles are reliable indicators
of the tendencies of the data, they are not affected by outliers.

Another thing to be aware of is infinite values, either positive or negative. This column does
not have infinite values, but these can cause some math operations or plots to fail. If you have
infinite values, you need to determine how to handle them. Clipping and removing them are
common options that are easy with pandas.

I'm a huge fan of plotting, and both pandas and seaborn make it easy to visualize the
distribution of continuous data. Take advantage of plots because, as the cliché goes, a
picture tells a thousand words. I've found that platitude to be true in my adventures with data.

Chapter 5

161

There's more…
The seaborn library has many options for summarizing continuous data. In addition to the
distplot function, there are functions for creating box plots, boxen plots, and violin plots.

A boxen plot is an enhanced box plot. The R folks created a plot called a letter value plot, and
when the seaborn author replicated it, the name was changed to boxen. The median value is
the black line. It steps half of the way from the median 50 to 0 and 100. So the tallest block
shows the range from 25-75 quantiles. The next box on the low end goes from 25 to half of
that value (or 12.5), so the 12.5-25 quantile. This pattern repeats, so the next box is the 6.25-
12.5 quantile, and so on.

A violin plot is basically a histogram that has a copy flipped over on the other side. If you have
a bi-model histogram, it tends to look like a violin, hence the name:

>>> fig, axs = plt.subplots(nrows=3, figsize=(10, 8))

>>> sns.boxplot(fueleco.city08, ax=axs[0])

>>> sns.violinplot(fueleco.city08, ax=axs[1])

>>> sns.boxenplot(fueleco.city08, ax=axs[2])

>>> fig.savefig("c5-contothersns.png", dpi=300)

A boxplot, violin plot, and boxen plot created with seaborn

Exploratory Data Analysis

162

If you are concerned with whether the data is normal, you can quantify this with numbers and
visualizations using the SciPy library.

The Kolmogorov-Smirnov test can evaluate whether a distribution is normal. It provides
us with a p-value. If this value is significant (< 0.05), then the data is not normal:

>>> from scipy import stats

>>> stats.kstest(fueleco.city08, cdf="norm")

KstestResult(statistic=0.9999999990134123, pvalue=0.0)

We can plot a probability plot to see whether the values are normal. If the samples track the
line, then the data is normal:

>>> from scipy import stats

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> stats.probplot(fueleco.city08, plot=ax)

>>> fig.savefig("c5-conprob.png", dpi=300)

A probability plot shows us if the values track the normal line

Chapter 5

163

Comparing continuous values across
categories

The previous sections discussed looking at a single column. This section will show how to
compare continuous variables in different categories. We will look at mileage numbers in
different brands: Ford, Honda, Tesla, and BMW.

How to do it…
1. Make a mask for the brands we want and then use a group by operation to look at

the mean and standard deviation for the city08 column for each group of cars:
>>> mask = fueleco.make.isin(

... ["Ford", "Honda", "Tesla", "BMW"]

...)

>>> fueleco[mask].groupby("make").city08.agg(

... ["mean", "std"]

...)

 mean std

make

BMW 17.817377 7.372907

Ford 16.853803 6.701029

Honda 24.372973 9.154064

Tesla 92.826087 5.538970

2. Visualize the city08 values for each make with seaborn:

>>> g = sns.catplot(

... x="make", y="city08", data=fueleco[mask], kind="box"

...)

>>> g.ax.figure.savefig("c5-catbox.png", dpi=300)

Exploratory Data Analysis

164

Box plots for each make

How it works…
If the summary statistics change for the different makes, that is a strong indicator that
the makes have different characteristics. The central tendency (mean or median) and the
variance (or standard deviation) are good measures to compare. We can see that Honda gets
better city mileage than both BMW and Ford but has more variance, while Tesla is better than
all of them and has the tightest variance.

Using a visualization library like seaborn lets us quickly see the differences in the categories.
The difference between the four car makes is drastic, but you can see that there are outliers
for the non-Tesla makes that appear to have better mileage than Tesla.

Chapter 5

165

There's more…
One drawback of a boxplot is that while it indicates the spread of the data, it does not reveal
how many samples are in each make. You might naively think that each boxplot has the same
number of samples. We can quantify that this is not the case with pandas:

>>> mask = fueleco.make.isin(

... ["Ford", "Honda", "Tesla", "BMW"]

...)

>>> (fueleco[mask].groupby("make").city08.count())

make

BMW 1807

Ford 3208

Honda 925

Tesla 46

Name: city08, dtype: int64

Another option is to do a swarm plot on top of the box plots:

>>> g = sns.catplot(

... x="make", y="city08", data=fueleco[mask], kind="box"

...)

>>> sns.swarmplot(

... x="make",

... y="city08",

... data=fueleco[mask],

... color="k",

... size=1,

... ax=g.ax,

...)

>>> g.ax.figure.savefig(

... "c5-catbox2.png", dpi=300

...)

Exploratory Data Analysis

166

A seaborn boxplot with a swarm plot layered on top

Additionally, the catplot function has many more tricks up its sleeves. We are showing two
dimensions right now, city mileage and make. We can add more dimensions to the plot.

You can facet the grid by another feature. You can break each of these new plots into its own
graph by using the col parameter:

>>> g = sns.catplot(

... x="make",

... y="city08",

... data=fueleco[mask],

... kind="box",

... col="year",

... col_order=[2012, 2014, 2016, 2018],

... col_wrap=2,

...)

>>> g.axes[0].figure.savefig(

... "c5-catboxcol.png", dpi=300

...)

Chapter 5

167

A seaborn boxplot with hues for makes and faceted by year

Alternatively, you can embed the new dimension in the same plot by using the hue parameter:

>>> g = sns.catplot(

... x="make",

... y="city08",

... data=fueleco[mask],

... kind="box",

... hue="year",

... hue_order=[2012, 2014, 2016, 2018],

Exploratory Data Analysis

168

...)

>>> g.ax.figure.savefig(

... "c5-catboxhue.png", dpi=300

...)

A seaborn boxplot for every make colored by year

If you are in Jupyter, you can style the output of the groupby call to highlight the values at the
extremes. Use the .style.background_gradient method to do this:

>>> mask = fueleco.make.isin(

... ["Ford", "Honda", "Tesla", "BMW"]

...)

>>> (

... fueleco[mask]

... .groupby("make")

... .city08.agg(["mean", "std"])

... .style.background_gradient(cmap="RdBu", axis=0)

...)

Chapter 5

169

Using the pandas style functionality to highlight minimum and maximum values from the mean and standard
deviation

Comparing two continuous columns
Evaluating how two continuous columns relate to one another is the essence of regression.
But it goes beyond that. If you have two columns with a high correlation to one another, often,
you may drop one of them as a redundant column. In this section, we will look at EDA for pairs
of continuous columns.

How to do it…
1. Look at the covariance of the two numbers if they are on the same scale:

>>> fueleco.city08.cov(fueleco.highway08)

46.33326023673625

>>> fueleco.city08.cov(fueleco.comb08)

47.41994667819079

>>> fueleco.city08.cov(fueleco.cylinders)

-5.931560263764761

2. Look at the Pearson correlation between the two numbers:
>>> fueleco.city08.corr(fueleco.highway08)

0.932494506228495

>>> fueleco.city08.corr(fueleco.cylinders)

-0.701654842382788

Exploratory Data Analysis

170

3. Visualize the correlations in a heatmap:
>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> corr = fueleco[

... ["city08", "highway08", "cylinders"]

...].corr()

>>> mask = np.zeros_like(corr, dtype=np.bool)

>>> mask[np.triu_indices_from(mask)] = True

>>> sns.heatmap(

... corr,

... mask=mask,

... fmt=".2f",

... annot=True,

... ax=ax,

... cmap="RdBu",

... vmin=-1,

... vmax=1,

... square=True,

...)

>>> fig.savefig(

... "c5-heatmap.png", dpi=300, bbox_inches="tight"

...)

Chapter 5

171

A seaborn heatmap

4. Use pandas to scatter plot the relationships:
>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> fueleco.plot.scatter(

... x="city08", y="highway08", alpha=0.1, ax=ax

...)

>>> fig.savefig(

... "c5-scatpan.png", dpi=300, bbox_inches="tight"

...)

Exploratory Data Analysis

172

A pandas scatter plot to view the relationships between city and highway mileage

>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> fueleco.plot.scatter(

... x="city08", y="cylinders", alpha=0.1, ax=ax

...)

>>> fig.savefig(

... "c5-scatpan-cyl.png", dpi=300, bbox_inches="tight"

...)

Chapter 5

173

Another pandas scatter to view the relationship between mileage and cylinders

5. Fill in some missing values. From the cylinder plot, we can see that some of the high-
end values for mileage are missing. This is because these cars tend to be electric
and not have cylinders. We will fix that by filling those values in with 0:
>>> fueleco.cylinders.isna().sum()

145

>>> fig, ax = plt.subplots(figsize=(8, 8))

>>> (

... fueleco.assign(

... cylinders=fueleco.cylinders.fillna(0)

...).plot.scatter(

... x="city08", y="cylinders", alpha=0.1, ax=ax

...)

...)

>>> fig.savefig(

Exploratory Data Analysis

174

... "c5-scatpan-cyl0.png", dpi=300, bbox_inches="tight"

...)

Another pandas scatter to view the relationship between mileage and cylinders,
with missing numbers for cylinders filled in with 0

6. Use seaborn to add a regression line to the relationships:

>>> res = sns.lmplot(

... x="city08", y="highway08", data=fueleco

...)

>>> res.fig.savefig(

... "c5-lmplot.png", dpi=300, bbox_inches="tight"

...)

Chapter 5

175

A seaborn scatter plot with a regression line

How it works…
Pearson correlation tells us how one value impacts another. It is between -1 and 1. In this
case, we can see that there is a strong correlation between city mileage and highway mileage.
As you get better city mileage, you tend to get better highway mileage.

Covariance lets us know how these values vary together. Covariance is useful for comparing
multiple continuous columns that have similar correlations. For example, correlation is scale-
invariant, but covariance is not. If we compare city08 to two times highway08, they have
the same correlation, but the covariance changes.

>>> fueleco.city08.corr(fueleco.highway08 * 2)

0.932494506228495

>>> fueleco.city08.cov(fueleco.highway08 * 2)

92.6665204734725

Exploratory Data Analysis

176

A heatmap is a great way to look at correlations in aggregate. We can look for the most blue
and most red cells to find the strongest correlations. Make sure you set the vmin and vmax
parameters to -1 and 1, respectively, so that the coloring is correct.

Scatter plots are another way to visualize the relationships between continuous variables. It
lets us see the trends that pop out. One tip that I like to give students is to make sure you set
the alpha parameter to a value less than or equal to .5. This makes the points transparent
and tells a different story than scatter plots with markers that are completely opaque.

There's more…
If we have more variables that we want to compare, we can use seaborn to add more
dimensions to a scatter plot. Using the relplot function, we can color the dots by year and
size them by the number of barrels the vehicle consumes. We have gone from two dimensions
to four!

>>> res = sns.relplot(

... x="city08",

... y="highway08",

... data=fueleco.assign(

... cylinders=fueleco.cylinders.fillna(0)

...),

... hue="year",

... size="barrels08",

... alpha=0.5,

... height=8,

...)

>>> res.fig.savefig(

... "c5-relplot2.png", dpi=300, bbox_inches="tight"

...)

Chapter 5

177

A seaborn scatter plot showing the mileage relationships colored by year
and sized by the number of barrels of gas a car uses

Note that we can also add in categorical dimensions as well for hue. We can also facet by
column for categorical values:

>>> res = sns.relplot(

... x="city08",

... y="highway08",

... data=fueleco.assign(

... cylinders=fueleco.cylinders.fillna(0)

...),

... hue="year",

... size="barrels08",

... alpha=0.5,

... height=8,

... col="make",

Exploratory Data Analysis

178

... col_order=["Ford", "Tesla"],

...)

>>> res.fig.savefig(

... "c5-relplot3.png", dpi=300, bbox_inches="tight"

...)

A seaborn scatter plot showing the mileage relationships colored by year,
sized by the number of barrels of gas a car uses, and faceted by make

Pearson correlation is intended to show the strength of a linear relationship. If the two
continuous columns do not have a linear relationship, another option is to use Spearman
correlation. This number also varies from -1 to 1. It measures whether the relationship is
monotonic (and doesn't presume that it is linear). It uses the rank of each number rather than
the number. If you are not sure whether there is a linear relationship between your columns,
this is a better metric to use.

>>> fueleco.city08.corr(

... fueleco.barrels08, method="spearman"

...)

-0.9743658646193255

Comparing categorical values with
categorical values

In this section, we will focus on dealing with multiple categorical values. One thing to keep in
mind is that continuous columns can be converted into categorical columns by binning the
values.

Chapter 5

179

In this section, we will look at makes and vehicle class.

How to do it…
1. Lower the cardinality. Limit the VClass column to six values, in a simple class

column, SClass. Only use Ford, Tesla, BMW, and Toyota:
>>> def generalize(ser, match_name, default):

... seen = None

... for match, name in match_name:

... mask = ser.str.contains(match)

... if seen is None:

... seen = mask

... else:

... seen |= mask

... ser = ser.where(~mask, name)

... ser = ser.where(seen, default)

... return ser

>>> makes = ["Ford", "Tesla", "BMW", "Toyota"]

>>> data = fueleco[fueleco.make.isin(makes)].assign(

... SClass=lambda df_: generalize(

... df_.VClass,

... [

... ("Seaters", "Car"),

... ("Car", "Car"),

... ("Utility", "SUV"),

... ("Truck", "Truck"),

... ("Van", "Van"),

... ("van", "Van"),

... ("Wagon", "Wagon"),

...],

... "other",

...)

...)

Exploratory Data Analysis

180

2. Summarize the counts of vehicle classes for each make:
>>> data.groupby(["make", "SClass"]).size().unstack()

SClass Car SUV ... Wagon other

make ...

BMW 1557.0 158.0 ... 92.0 NaN

Ford 1075.0 372.0 ... 155.0 234.0

Tesla 36.0 10.0 ... NaN NaN

Toyota 773.0 376.0 ... 132.0 123.0

3. Use the crosstab function instead of the chain of pandas commands:
>>> pd.crosstab(data.make, data.SClass)

SClass Car SUV ... Wagon other

make ...

BMW 1557 158 ... 92 0

Ford 1075 372 ... 155 234

Tesla 36 10 ... 0 0

Toyota 773 376 ... 132 123

4. Add more dimensions:
>>> pd.crosstab(

... [data.year, data.make], [data.SClass, data.VClass]

...)

SClass Car ...
other

VClass Compact Cars Large Cars ... Special Purpose Vehicle
4WD

year make ...

1984 BMW 6 0 ... 0

 Ford 33 3 ... 21

 Toyota 13 0 ... 3

1985 BMW 7 0 ... 0

 Ford 31 2 ... 9

...

2017 Tesla 0 8 ... 0

 Toyota 3 0 ... 0

2018 BMW 37 12 ... 0

 Ford 0 0 ... 0

 Toyota 4 0 ... 0

Chapter 5

181

5. Use Cramér's V measure (https://stackoverflow.
com/questions/46498455/categorical-features-
correlation/46498792#46498792) to indicate the categorical correlation:
>>> import scipy.stats as ss

>>> import numpy as np

>>> def cramers_v(x, y):

... confusion_matrix = pd.crosstab(x, y)

... chi2 = ss.chi2_contingency(confusion_matrix)[0]

... n = confusion_matrix.sum().sum()

... phi2 = chi2 / n

... r, k = confusion_matrix.shape

... phi2corr = max(

... 0, phi2 - ((k - 1) * (r - 1)) / (n - 1)

...)

... rcorr = r - ((r - 1) ** 2) / (n - 1)

... kcorr = k - ((k - 1) ** 2) / (n - 1)

... return np.sqrt(

... phi2corr / min((kcorr - 1), (rcorr - 1))

...)

>>> cramers_v(data.make, data.SClass)

0.2859720982171866

The .corr method accepts a callable as well, so an alternative way to invoke this is
the following:
>>> data.make.corr(data.SClass, cramers_v)

0.2859720982171866

6. Visualize the cross tabulation as a bar plot:
>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> (

... data.pipe(

... lambda df_: pd.crosstab(df_.make, df_.SClass)

...).plot.bar(ax=ax)

...)

>>> fig.savefig("c5-bar.png", dpi=300, bbox_inches="tight")

https://stackoverflow.com/questions/46498455/categorical-features-correlation/46498792#46498792
https://stackoverflow.com/questions/46498455/categorical-features-correlation/46498792#46498792
https://stackoverflow.com/questions/46498455/categorical-features-correlation/46498792#46498792

Exploratory Data Analysis

182

A pandas bar plot

7. Visualize the cross tabulation as a bar chart using seaborn:
>>> res = sns.catplot(

... kind="count", x="make", hue="SClass", data=data

...)

>>> res.fig.savefig(

... "c5-barsns.png", dpi=300, bbox_inches="tight"

...)

Chapter 5

183

A seaborn bar plot

8. Visualize the relative sizes of the groups by normalizing the cross tabulation and
making a stacked bar chart:

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> (

... data.pipe(

... lambda df_: pd.crosstab(df_.make, df_.SClass)

...)

... .pipe(lambda df_: df_.div(df_.sum(axis=1), axis=0))

... .plot.bar(stacked=True, ax=ax)

...)

>>> fig.savefig(

... "c5-barstacked.png", dpi=300, bbox_inches="tight"

...)

Exploratory Data Analysis

184

pandas bar plot

How it works…
I reduced the cardinality of the VClass column by using the generalize function that I
created. I did this because bar plots need spacing; they need to breathe. I typically will limit
the number of bars to fewer than 30. The generalize function is useful for cleaning up
data, and you might want to refer back to it in your own data analyses.

We can summarize the counts of categorical columns by creating a cross-tabulation. You can
build this up using group by semantics and unstacking the result, or take advantage of the
built-in function in pandas, crosstab. Note that crosstab fills in missing numbers with 0
and converts the types to integers. This is because the .unstack method potentially creates
sparsity (missing values), and integers (the int64 type) don't support missing values, so the
types are converted to floats.

Chapter 5

185

You can add arbitrary depths to the index or columns to create hierarchies in the cross-
tabulation.

There exists a number, Cramér's V, for quantifying the relationship between two categorical
columns. It ranges from 0 to 1. If it is 0, the values do not hold their value relative to the other
column. If it is 1, the values change with respect to each other.

For example, if we compare the make column to the trany column, this value comes out
larger:

>>> cramers_v(data.make, data.trany)

0.6335899102918267

What that tells us is that as the make changes from Ford to Toyota, the trany column should
change as well. Compare this to the value for the make versus the model. Here, the value is
very close to 1. Intuitively, that should make sense, as model could be derived from make.

>>> cramers_v(data.make, data.model)

0.9542350243671587

Finally, we can use various bar plots to view the counts or the relative sizes of the counts.
Note that if you use seaborn, you can add multiple dimensions by setting hue or col.

Using the pandas profiling library
There is a third-party library, pandas Profiling (https://pandas-profiling.github.
io/pandas-profiling/docs/), that creates reports for each column. These reports
are similar to the output of the .describe method, but include plots and other descriptive
statistics.

In this section, we will use the pandas Profiling library on the fuel economy data. Use pip
install pandas-profiling to install the library.

How to do it…
1. Run the profile_report function to create an HTML report:

>>> import pandas_profiling as pp

>>> pp.ProfileReport(fueleco)

https://pandas-profiling.github.io/pandas-profiling/docs/
https://pandas-profiling.github.io/pandas-profiling/docs/

Exploratory Data Analysis

186

pandas profiling summary

pandas profiling details

Chapter 5

187

How it works…
The pandas Profiling library generates an HTML report. If you are using Jupyter, it will create it
inline. If you want to save this report to a file (or if you are not using Jupyter), you can use the
.to_file method:

>>> report = pp.ProfileReport(fueleco)

>>> report.to_file("fuel.html")

This is a great library for EDA. Just make sure that you go through the process of
understanding the data. Because this can overwhelm you with the sheer amount of output, it
can be tempting to skim over it, rather than to dig into it. Even though this library is excellent
for starting EDA, it doesn't do intra-column comparisons (other than correlation), as some of
the examples in this chapter have shown.

189

6
Selecting

Subsets of Data

Introduction
Every dimension of data in a Series or DataFrame is labeled in the Index object. It is this Index
that separates pandas data structures from NumPy's n-dimensional array. Indexes provide
meaningful labels for each row and column of data, and pandas users can select data through
the use of these labels. Additionally, pandas allows its users to select data according to the
position of the rows and columns. This dual selection capability, one using names and the
other using the position, makes for powerful yet confusing syntax to select subsets of data.

Selecting data by label or position is not unique to pandas. Python dictionaries and lists are
built-in data structures that select their data in exactly one of these ways. Both dictionaries and
lists have precise instructions and limited use cases for what you can index with. A dictionary's
key (its label) must be an immutable object, such as a string, integer, or tuple. Lists must either
use integers (the position) or slice objects for selection. Dictionaries can only select one object
at a time by passing the key to the indexing operator. In this way, pandas is combining the
ability to select data using integers, as with lists, and labels, as with dictionaries.

Selecting Series data
Series and DataFrames are complex data containers that have multiple attributes that use
an index operation to select data in different ways. In addition to the index operator itself, the
.iloc and .loc attributes are available and use the index operator in their own unique ways.

Selecting Subsets of Data

190

Series and DataFrames allow selection by position (like Python lists) and by label (like Python
dictionaries). When we index off of the .iloc attribute, pandas selects only by position and
works similarly to Python lists. The .loc attribute selects only by index label, which is similar
to how Python dictionaries work.

The .loc and .iloc attributes are available on both Series and DataFrames. This recipe
shows how to select Series data by position with .iloc and by label with .loc. These
indexers accept scalar values, lists, and slices.

The terminology can get confusing. An index operation is when you put brackets, [], following
a variable. For instance, given a Series s, you can select data in the following ways: s[item]
and s.loc[item]. The first performs the index operation directly on the Series. The second
performs the index operation on the .loc attribute.

How to do it…
1. Read in the college dataset with the institution name as the index, and select a single

column as a Series using an index operation:
>>> import pandas as pd

>>> import numpy as np

>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> city = college["CITY"]

>>> city

INSTNM

Alabama A & M University
Normal

University of Alabama at Birmingham
Birmingham

Amridge University
Montgomery

University of Alabama in Huntsville
Huntsville

Alabama State University
Montgomery

...

SAE Institute of Technology San Francisco
Emeryville

Rasmussen College - Overland Park
Overland...

Chapter 6

191

National Personal Training Institute of Cleveland
Highland...

Bay Area Medical Academy - San Jose Satellite Location
San Jose

Excel Learning Center-San Antonio South
San Antonio

Name: CITY, Length: 7535, dtype: object

2. Pull out a scalar value from the Series directly:
>>> city["Alabama A & M University"]

'Normal'

3. Pull out a scalar value using the .loc attribute by name:
>>> city.loc["Alabama A & M University"]

'Normal'

4. Pull out a scalar value using the .iloc attribute by position:
>>> city.iloc[0]

'Normal'

5. Pull out several values by indexing. Note that if we pass in a list to the index
operation, pandas will now return a Series instead of a scalar:
>>> city[

... [

... "Alabama A & M University",

... "Alabama State University",

...]

...]

INSTNM

Alabama A & M University Normal

Alabama State University Montgomery

Name: CITY, dtype: object

6. Repeat the above using .loc:
>>> city.loc[

... [

... "Alabama A & M University",

... "Alabama State University",

...]

...]

Selecting Subsets of Data

192

INSTNM

Alabama A & M University Normal

Alabama State University Montgomery

Name: CITY, dtype: object

7. Repeat the above using .iloc:
>>> city.iloc[[0, 4]]

INSTNM

Alabama A & M University Normal

Alabama State University Montgomery

Name: CITY, dtype: object

8. Use a slice to pull out many values:
>>> city[

... "Alabama A & M University":"Alabama State University"

...]

INSTNM

Alabama A & M University Normal

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

University of Alabama in Huntsville Huntsville

Alabama State University Montgomery

Name: CITY, dtype: object

9. Use a slice to pull out many values by position:
>>> city[0:5]

INSTNM

Alabama A & M University Normal

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

University of Alabama in Huntsville Huntsville

Alabama State University Montgomery

Name: CITY, dtype: object

10. Use a slice to pull out many values with .loc:
>>> city.loc[

... "Alabama A & M University":"Alabama State University"

...]

Chapter 6

193

INSTNM

Alabama A & M University Normal

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

University of Alabama in Huntsville Huntsville

Alabama State University Montgomery

Name: CITY, dtype: object

11. Use a slice to pull out many values with .iloc:
>>> city.iloc[0:5]

INSTNM

Alabama A & M University Normal

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

University of Alabama in Huntsville Huntsville

Alabama State University Montgomery

Name: CITY, dtype: object

12. Use a Boolean array to pull out certain values:

>>> alabama_mask = city.isin(["Birmingham", "Montgomery"])

>>> city[alabama_mask]

INSTNM

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

Alabama State University Montgomery

Auburn University at Montgomery Montgomery

Birmingham Southern College Birmingham

 ...

Fortis Institute-Birmingham Birmingham

Hair Academy Montgomery

Brown Mackie College-Birmingham Birmingham

Nunation School of Cosmetology Birmingham

Troy University-Montgomery Campus Montgomery

Name: CITY, Length: 26, dtype: object

Selecting Subsets of Data

194

How it works…
If you have a Series, you can pull out the data using index operations. Depending on what
you index with, you might get different types as output. If you index with a scalar on a Series,
you will get back a scalar value. If you index with a list or a slice, you will get back a Series.

Looking at the examples, it appears that indexing directly off of the Series provides the best
of both worlds: you can index by position or label. I would caution against using it at all.
Remember, the Zen of Python states, "Explicit is better than implicit." Both .iloc and .loc
are explicit, but indexing directly off of the Series is not explicit; it requires us to think about
what we are indexing with and what type of index we have.

Consider this toy Series that uses integer values for the index:

>>> s = pd.Series([10, 20, 35, 28], index=[5, 2, 3, 1])

>>> s

5 10

2 20

3 35

1 28

dtype: int64

>>> s[0:4]

5 10

2 20

3 35

1 28

dtype: int64

>>> s[5]

10

>>> s[1]

28

When you index with a slice directly on a Series, it uses position, but otherwise it goes
by label. This is confusing to the future you and future readers of your code. Remember,
optimizing for readability is better than optimizing for easy-to-write code. The takeaway is
to use the .iloc and .loc indexers.

Chapter 6

195

Remember that when you slice by position, pandas uses the half-open interval. This interval
is probably something you learned back in high school and promptly forgot. The half-open
interval includes the first index, but not the end index. However, when you slice by label,
pandas uses the closed interval and includes both the start and end index. This behavior
is inconsistent with Python in general, but is practical for labels.

There's more…
All of the examples in this section could be performed directly on the original DataFrame by
using .loc or .iloc. We can pass in a tuple (without parentheses) of row and column labels
or positions, respectively:

>>> college.loc["Alabama A & M University", "CITY"]

'Normal'

>>> college.iloc[0, 0]

'Normal'

>>> college.loc[

... [

... "Alabama A & M University",

... "Alabama State University",

...],

... "CITY",

...]

INSTNM

Alabama A & M University Normal

Alabama State University Montgomery

Name: CITY, dtype: object

>>> college.iloc[[0, 4], 0]

INSTNM

Alabama A & M University Normal

Alabama State University Montgomery

Name: CITY, dtype: object

>>> college.loc[

Selecting Subsets of Data

196

... "Alabama A & M University":"Alabama State University",

... "CITY",

...]

INSTNM

Alabama A & M University Normal

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

University of Alabama in Huntsville Huntsville

Alabama State University Montgomery

Name: CITY, dtype: object

>>> college.iloc[0:5, 0]

INSTNM

Alabama A & M University Normal

University of Alabama at Birmingham Birmingham

Amridge University Montgomery

University of Alabama in Huntsville Huntsville

Alabama State University Montgomery

Name: CITY, dtype: object

Care needs to be taken when using slicing off of .loc. If the start index appears after the
stop index, then an empty Series is returned without an exception:

>>> city.loc[

... "Reid State Technical College":"Alabama State University"

...]

Series([], Name: CITY, dtype: object)

Selecting DataFrame rows
The most explicit and preferred way to select DataFrame rows is with .iloc and .loc.
They are both capable of selecting by rows or by rows and columns.

This recipe shows you how to select rows from a DataFrame using the .iloc and .loc
indexers:

1. Read in the college dataset, and set the index as the institution name:
>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

Chapter 6

197

...)

>>> college.sample(5, random_state=42)

 CITY STABBR ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Career Po... San Antonio TX ... 20700
14977

Ner Israe... Baltimore MD ... PrivacyS...
PrivacyS...

Reflectio... Decatur IL ... NaN
PrivacyS...

Capital A... Baton Rouge LA ... 26400
PrivacyS...

West Virg... Montgomery WV ... 43400
23969

<BLANKLINE>

[5 rows x 26 columns]

2. To select an entire row at that position, pass an integer to .iloc:
>>> college.iloc[60]

CITY Anchorage

STABBR AK

HBCU 0

MENONLY 0

WOMENONLY 0

 ...

PCTPELL 0.2385

PCTFLOAN 0.2647

UG25ABV 0.4386

MD_EARN_WNE_P10 42500

GRAD_DEBT_MDN_SUPP 19449.5

Name: University of Alaska Anchorage, Length: 26, dtype: object

Because Python is zero-based, this is actually the 61st row. Note that pandas
represents this row as a Series.

3. To get the same row as the preceding step, pass the index label to .loc:
>>> college.loc["University of Alaska Anchorage"]

CITY Anchorage

STABBR AK

Selecting Subsets of Data

198

HBCU 0

MENONLY 0

WOMENONLY 0

 ...

PCTPELL 0.2385

PCTFLOAN 0.2647

UG25ABV 0.4386

MD_EARN_WNE_P10 42500

GRAD_DEBT_MDN_SUPP 19449.5

Name: University of Alaska Anchorage, Length: 26, dtype: object

4. To select a disjointed set of rows as a DataFrame, pass a list of integers to .iloc:
>>> college.iloc[[60, 99, 3]]

 CITY STABBR ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Universit... Anchorage AK ... 42500 19449.5

Internati... Tempe AZ ... 22200 10556

Universit... Huntsville AL ... 45500 24097

<BLANKLINE>

[3 rows x 26 columns]

Because we passed in a list of row positions, this returns a DataFrame.

5. The same DataFrame from step 4 may be reproduced with .loc by passing it a list of
the institution names:
>>> labels = [

... "University of Alaska Anchorage",

... "International Academy of Hair Design",

... "University of Alabama in Huntsville",

...]

>>> college.loc[labels]

 CITY STABBR ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Universit... Anchorage AK ... 42500 19449.5

Internati... Tempe AZ ... 22200 10556

Universit... Huntsville AL ... 45500 24097

<BLANKLINE>

[3 rows x 26 columns]

Chapter 6

199

6. Use slice notation with .iloc to select contiguous rows of the data:
>>> college.iloc[99:102]

 CITY STABBR ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

INSTNM ...

Internati... Tempe AZ ... 22200 10556

GateWay C... Phoenix AZ ... 29800 7283

Mesa Comm... Mesa AZ ... 35200 8000

<BLANKLINE>

[3 rows x 26 columns]

7. Slice notation also works with .loc and is a closed interval (it includes both the start
label and the stop label):
>>> start = "International Academy of Hair Design"

>>> stop = "Mesa Community College"

>>> college.loc[start:stop]

 CITY STABBR ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

INSTNM ...

Internati... Tempe AZ ... 22200 10556

GateWay C... Phoenix AZ ... 29800 7283

Mesa Comm... Mesa AZ ... 35200 8000

<BLANKLINE>

[3 rows x 26 columns]

How it works…
When we pass a scalar value, a list of scalars, or a slice to .iloc or .loc, this causes
pandas to scan the index for the appropriate rows and return them. If a single scalar value
is passed, a Series is returned. If a list or slice is passed, then a DataFrame is returned.

There's more…
In step 5, the list of index labels can be selected directly from the DataFrame returned in step
4 without the need for copying and pasting:

>>> college.iloc[[60, 99, 3]].index.tolist()

['University of Alaska Anchorage', 'International Academy of Hair
Design', 'University of Alabama in Huntsville']

Selecting Subsets of Data

200

Selecting DataFrame rows and columns
simultaneously

There are many ways to select rows and columns. The easiest method to select one or more
columns from a DataFrame is to index off of the DataFrame. However, this approach has
a limitation. Indexing directly on a DataFrame does not allow you to select both rows and
columns simultaneously. To select rows and columns, you will need to pass both valid row
and column selections separated by a comma to either .iloc or .loc.

The generic form to select rows and columns will look like the following code:

df.iloc[row_idxs, column_idxs]

df.loc[row_names, column_names]

Where row_idxs and column_idxs can be scalar integers, lists of integers, or integer
slices. While row_names and column_names can be the scalar names, lists of names,
or names slices, row_names can also be a Boolean array.

In this recipe, each step shows a simultaneous row and column selection using both .iloc
and .loc.

How to do it…
1. Read in the college dataset, and set the index as the institution name. Select the first

three rows and the first four columns with slice notation:
>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college.iloc[:3, :4]

 CITY STABBR HBCU MENONLY

INSTNM

Alabama A... Normal AL 1.0 0.0

Universit... Birmingham AL 0.0 0.0

Amridge U... Montgomery AL 0.0 0.0

>>> college.loc[:"Amridge University", :"MENONLY"]

 CITY STABBR HBCU MENONLY

INSTNM

Alabama A... Normal AL 1.0 0.0

Universit... Birmingham AL 0.0 0.0

Amridge U... Montgomery AL 0.0 0.0

Chapter 6

201

2. Select all the rows of two different columns:
>>> college.iloc[:, [4, 6]].head()

 WOMENONLY SATVRMID

INSTNM

Alabama A & M University 0.0 424.0

University of Alabama at Birmingham 0.0 570.0

Amridge University 0.0 NaN

University of Alabama in Huntsville 0.0 595.0

Alabama State University 0.0 425.0

>>> college.loc[:, ["WOMENONLY", "SATVRMID"]].head()

 WOMENONLY SATVRMID

INSTNM

Alabama A & M University 0.0 424.0

University of Alabama at Birmingham 0.0 570.0

Amridge University 0.0 NaN

University of Alabama in Huntsville 0.0 595.0

Alabama State University 0.0 425.0

3. Select disjointed rows and columns:
>>> college.iloc[[100, 200], [7, 15]]

 SATMTMID UGDS_NHPI

INSTNM

GateWay Community College NaN 0.0029

American Baptist Seminary of the West NaN NaN

>>> rows = [

... "GateWay Community College",

... "American Baptist Seminary of the West",

...]

>>> columns = ["SATMTMID", "UGDS_NHPI"]

>>> college.loc[rows, columns]

 SATMTMID UGDS_NHPI

INSTNM

GateWay Community College NaN 0.0029

American Baptist Seminary of the West NaN NaN

Selecting Subsets of Data

202

4. Select a single scalar value:
>>> college.iloc[5, -4]

0.401

>>> college.loc["The University of Alabama", "PCTFLOAN"]

0.401

5. Slice the rows and select a single column:

>>> college.iloc[90:80:-2, 5]

INSTNM

Empire Beauty School-Flagstaff 0

Charles of Italy Beauty College 0

Central Arizona College 0

University of Arizona 0

Arizona State University-Tempe 0

Name: RELAFFIL, dtype: int64

>>> start = "Empire Beauty School-Flagstaff"

>>> stop = "Arizona State University-Tempe"

>>> college.loc[start:stop:-2, "RELAFFIL"]

INSTNM

Empire Beauty School-Flagstaff 0

Charles of Italy Beauty College 0

Central Arizona College 0

University of Arizona 0

Arizona State University-Tempe 0

Name: RELAFFIL, dtype: int64

How it works…
One of the keys to selecting rows and columns at the same time is to understand the use of
the comma in the brackets. The selection to the left of the comma always selects rows based
on the row index. The selection to the right of the comma always selects columns based on
the column index.

It is not necessary to make a selection for both rows and columns simultaneously. Step 2
shows how to select all the rows and a subset of columns. The colon (:) represents a slice
object that returns all the values for that dimension.

Chapter 6

203

There's more…
To select only rows (along with all the columns), it is not necessary to use a colon following
a comma. The default behavior is to select all the columns if there is no comma present.
The previous recipe selected rows in exactly this manner. You can, however, use a colon
to represent a slice of all the columns. The following lines of code are equivalent:

college.iloc[:10]

college.iloc[:10, :]

Selecting data with both integers and labels
Sometimes, you want the functionality of both .iloc and .loc, to select data by both
position and label. In earlier versions of pandas, .ix was available to select data by both
position and label. While this conveniently worked for those specific situations, it was
ambiguous by nature and was a source of confusion for many pandas users. The .ix indexer
has subsequently been deprecated and thus should be avoided.

Before the .ix deprecation, it was possible to select the first five rows and the columns of the
college dataset from UGDS_WHITE through UGDS_UNKN using college.ix[:5, 'UGDS_
WHITE':'UGDS_UNKN']. This is now impossible to do directly using .loc or .iloc. The
following recipe shows how to find the integer location of the columns and then use .iloc
to complete the selection.

How to do it…
1. Read in the college dataset and assign the institution name (INSTNM) as the index:

>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

2. Use the Index method .get_loc to find the integer position of the desired columns:
>>> col_start = college.columns.get_loc("UGDS_WHITE")

>>> col_end = college.columns.get_loc("UGDS_UNKN") + 1

>>> col_start, col_end

(10, 19)

3. Use col_start and col_end to select columns by position using .iloc:

>>> college.iloc[:5, col_start:col_end]

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

Selecting Subsets of Data

204

INSTNM ...

Alabama A... 0.0333 0.9353 ... 0.0059 0.0138

Universit... 0.5922 0.2600 ... 0.0179 0.0100

Amridge U... 0.2990 0.4192 ... 0.0000 0.2715

Universit... 0.6988 0.1255 ... 0.0332 0.0350

Alabama S... 0.0158 0.9208 ... 0.0243 0.0137

<BLANKLINE>

[5 rows x 9 columns]

How it works…
Step 2 first retrieves the column index through the .columns attribute. Indexes have a .get_
loc method, which accepts an index label and returns its integer location. We find both the
start and end integer locations for the columns that we wish to slice. We add one because
slicing with .iloc uses the half-open interval and is exclusive of the last item. Step 3 uses
slice notation with the row and column positions.

There's more…
We can do a very similar operation to use positions to get the labels for .loc to work. The
following shows how to select the 10th through 15th (inclusive) rows, along with columns
UGDS_WHITE through UGDS_UNKN:

>>> row_start = college.index[10]

>>> row_end = college.index[15]

>>> college.loc[row_start:row_end, "UGDS_WHITE":"UGDS_UNKN"]

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Birmingha... 0.7983 0.1102 ... 0.0000 0.0051

Chattahoo... 0.4661 0.4372 ... 0.0000 0.0139

Concordia... 0.0280 0.8758 ... 0.0466 0.0000

South Uni... 0.3046 0.6054 ... 0.0019 0.0326

Enterpris... 0.6408 0.2435 ... 0.0012 0.0069

James H F... 0.6979 0.2259 ... 0.0007 0.0009

<BLANKLINE>

[6 rows x 9 columns]

Chapter 6

205

Doing this same operation with .ix (which is removed from pandas 1.0, so don't do this)
would look like this (in versions prior to 1.0):

>>> college.ix[10:16, "UGDS_WHITE":"UGDS_UNKN"]

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Birmingha... 0.7983 0.1102 ... 0.0000 0.0051

Chattahoo... 0.4661 0.4372 ... 0.0000 0.0139

Concordia... 0.0280 0.8758 ... 0.0466 0.0000

South Uni... 0.3046 0.6054 ... 0.0019 0.0326

Enterpris... 0.6408 0.2435 ... 0.0012 0.0069

James H F... 0.6979 0.2259 ... 0.0007 0.0009

<BLANKLINE>

[6 rows x 9 columns]

It is possible to achieve the same results by chaining .loc and .iloc together, but chaining
indexers is typically a bad idea. It can be slower, and it is also undetermined whether it returns
a view or a copy (which is not problematic when viewing the data, but can be when updating
data. You might see the infamous SettingWithCopyWarning warning):

>>> college.iloc[10:16].loc[:, "UGDS_WHITE":"UGDS_UNKN"]

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Birmingha... 0.7983 0.1102 ... 0.0000 0.0051

Chattahoo... 0.4661 0.4372 ... 0.0000 0.0139

Concordia... 0.0280 0.8758 ... 0.0466 0.0000

South Uni... 0.3046 0.6054 ... 0.0019 0.0326

Enterpris... 0.6408 0.2435 ... 0.0012 0.0069

James H F... 0.6979 0.2259 ... 0.0007 0.0009

<BLANKLINE>

[6 rows x 9 columns]

Slicing lexicographically
The .loc attribute typically selects data based on the exact string label of the index. However,
it also allows you to select data based on the lexicographic order of the values in the index.
Specifically, .loc allows you to select all rows with an index lexicographically using slice
notation. This only works if the index is sorted.

Selecting Subsets of Data

206

In this recipe, you will first sort the index and then use slice notation inside the .loc indexer to
select all rows between two strings.

How to do it…
1. Read in the college dataset, and set the institution name as the index:

>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

2. Attempt to select all colleges with names lexicographically between Sp and Su:
>>> college.loc["Sp":"Su"]

Traceback (most recent call last):

 ...

ValueError: index must be monotonic increasing or decreasing

During handling of the above exception, another exception
occurred:

Traceback (most recent call last):

 ...

KeyError: 'Sp'

3. As the index is not sorted, the preceding command fails. Let's go ahead and sort the
index:
>>> college = college.sort_index()

4. Now, let's rerun the same command from step 2:

>>> college.loc["Sp":"Su"]

 CITY STABBR ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Spa Tech ... Ipswich MA ... 21500 6333

Spa Tech ... Plymouth MA ... 21500 6333

Spa Tech ... Westboro MA ... 21500 6333

Spa Tech ... Westbrook ME ... 21500 6333

Spalding ... Louisville KY ... 41700 25000

...

Chapter 6

207

Studio Ac... Chandler AZ ... NaN 6333

Studio Je... New York NY ... PrivacyS... PrivacyS...

Stylemast... Longview WA ... 17000 13320

Styles an... Selmer TN ... PrivacyS... PrivacyS...

Styletren... Rock Hill SC ... PrivacyS... 9495.5

<BLANKLINE>

[201 rows x 26 columns]

How it works…
The normal behavior of .loc is to make selections of data based on the exact labels passed
to it. It raises a KeyError when these labels are not found in the index. However, one special
exception to this behavior exists whenever the index is lexicographically sorted, and a slice is
passed to it. Selection is now possible between the start and stop labels of the slice, even if
those values are not found in the index.

There's more…
With this recipe, it is easy to select colleges between two letters of the alphabet. For instance,
to select all colleges that begin with the letters D through S, you would use college.
loc['D':'T']. Slicing like this is still closed and includes the last index, so this would
technically return a college with the exact name T.

This type of slicing also works when the index is sorted in the opposite direction. You can
determine in which direction the index is sorted with the index attribute .is_monotonic_
increasing or .is_monotonic_decreasing. Either of these must be True in order for
lexicographic slicing to work. For instance, the following code lexicographically sorts the index
from Z to A:

>>> college = college.sort_index(ascending=False)

>>> college.index.is_monotonic_decreasing

True

>>> college.loc["E":"B"]

 CITY ...

INSTNM ...

Dyersburg State Community College Dyersburg ...

Dutchess Community College Poughkeepsie ...

Dutchess BOCES-Practical Nursing Program Poughkeepsie ...

Durham Technical Community College Durham ...

Selecting Subsets of Data

208

Durham Beauty Academy Durham ...

...

Bacone College Muskogee ...

Babson College Wellesley ...

BJ's Beauty & Barber College Auburn ...

BIR Training Center Chicago ...

B M Spurr School of Practical Nursing Glen Dale ...

209

7
Filtering Rows

Introduction
Filtering data from a dataset is one of the most common and basic operations. There are
numerous ways to filter (or subset) data in pandas with Boolean indexing. Boolean indexing
(also known as Boolean selection) can be a confusing term, but in pandas-land, it refers to
selecting rows by providing a Boolean array, a pandas Series with the same index, but a True
or False for each row. The name comes from NumPy, where similar filtering logic works, so
while it is really a Series with Boolean values in it, it is also referred to as a Boolean array.

We will begin by creating Boolean Series and calculating statistics on them and then move on
to creating more complex conditionals before using Boolean indexing in a wide variety of ways
to filter data.

Calculating Boolean statistics
It can be informative to calculate basic summary statistics on Boolean arrays. Each value
of a Boolean array, the True or False, evaluates to 1 or 0 respectively, so all the Series
methods that work with numerical values also work with Booleans.

In this recipe, we create a Boolean array by applying a condition to a column of data and then
calculate summary statistics from it.

Filtering Rows

210

How to do it…
1. Read in the movie dataset, set the index to the movie title, and inspect the first few

rows of the duration column:
>>> import pandas as pd

>>> import numpy as np

>>> movie = pd.read_csv(

... "data/movie.csv", index_col="movie_title"

...)

>>> movie[["duration"]].head()

 Duration

movie_title

Avatar 178.0

Pirates of the Caribbean: At World's End 169.0

Spectre 148.0

The Dark Knight Rises 164.0

Star Wars: Episode VII - The Force Awakens NaN

2. Determine whether the duration of each movie is longer than two hours by using the
greater than comparison operator with the duration column:
>>> movie_2_hours = movie["duration"] > 120

>>> movie_2_hours.head(10)

movie_title

Avatar True

Pirates of the Caribbean: At World's End True

Spectre True

The Dark Knight Rises True

Star Wars: Episode VII - The Force Awakens False

John Carter True

Spider-Man 3 True

Tangled False

Avengers: Age of Ultron True

Harry Potter and the Half-Blood Prince True

Name: duration, dtype: bool

3. We can now use this Series to determine the number of movies that are longer than
two hours:
>>> movie_2_hours.sum()

1039

Chapter 7

211

4. To find the percentage of movies in the dataset longer than two hours, use the .mean
method:
>>> movie_2_hours.mean() * 100

21.13506916192026

5. Unfortunately, the output from step 4 is misleading. The duration column has a few
missing values. If you look back at the DataFrame output from step 1, you will see
that the last row is missing a value for duration. The Boolean condition in step 2
returns False for this. We need to drop the missing values first, then evaluate the
condition and take the mean:
>>> movie["duration"].dropna().gt(120).mean() * 100

21.199755152009794

6. Use the .describe method to output summary statistics on the Boolean array:

>>> movie_2_hours.describe()

count 4916

unique 2

top False

freq 3877

Name: duration, dtype: object

How it works…
Most DataFrames will not have columns of Booleans like our movie dataset. The most
straightforward method to produce a Boolean array is to apply a conditional operator to one
of the columns. In step 2, we use the greater than comparison operator to test whether the
duration of each movie was more than 120 minutes. Steps 3 and 4 calculate two important
quantities from a Boolean Series, its sum and mean. These methods are possible as Python
evaluates False and True as 0 and 1, respectively.

You can prove to yourself that the mean of a Boolean array represents the percentage of True
values. To do this, use the .value_counts method to count with the normalize parameter
set to True to get its distribution:

>>> movie_2_hours.value_counts(normalize=True)

False 0.788649

True 0.211351

Name: duration, dtype: float64

Filtering Rows

212

Step 5 alerts us to the incorrect result from step 4. Even though the duration column
had missing values, the Boolean condition evaluated all these comparisons against missing
values as False. Dropping these missing values allows us to calculate the correct statistic.
This is done in one step through method chaining.

Important takeaway: You want to make sure you have dealt with missing values before making
calculations!

Step 6 shows that pandas applies the .describe method to Boolean arrays the same
way it applies it to a column of objects or strings, by displaying frequency information. This
is a natural way to think about Boolean arrays, rather than displaying quantiles.

If you wanted quantile information, you could cast the Series into integers:

>>> movie_2_hours.astype(int).describe()

count 4916.000000

mean 0.211351

std 0.408308

min 0.000000

25% 0.000000

50% 0.000000

75% 0.000000

max 1.000000

Name: duration, dtype: float64

There's more…
It is possible to compare two columns from the same DataFrame to produce a Boolean Series.
For instance, we could determine the percentage of movies that have actor 1 with more
Facebook likes than actor 2. To do this, we would select both of these columns and then drop
any of the rows that had missing values for either movie. Then we would make the comparison
and calculate the mean:

>>> actors = movie[

... ["actor_1_facebook_likes", "actor_2_facebook_likes"]

...].dropna()

>>> (

... actors["actor_1_facebook_likes"]

... > actors["actor_2_facebook_likes"]

...).mean()

0.9777687130328371

Chapter 7

213

Constructing multiple Boolean conditions
In Python, Boolean expressions use the built-in logical operators and, or, and not. These
keywords do not work with Boolean indexing in pandas and are respectively replaced with
&, |, and ~. Additionally, when combining expressions, each expression must be wrapped in
parentheses, or an error will be raised (due to operator precedence).

Constructing a filter for your dataset might require combining multiple Boolean expressions
together to pull out the rows you need. In this recipe, we construct multiple Boolean
expressions before combining them to find all the movies that have an imdb_score greater
than 8, a content_rating of PG-13, and a title_year either before 2000 or after 2009.

How to do it…
1. Load in the movie dataset and set the title as the index:

>>> movie = pd.read_csv(

... "data/movie.csv", index_col="movie_title"

...)

2. Create a variable to hold each filter as a Boolean array:
>>> criteria1 = movie.imdb_score > 8

>>> criteria2 = movie.content_rating == "PG-13"

>>> criteria3 = (movie.title_year < 2000) | (

... movie.title_year > 2009

...)

3. Combine all the filters into a single Boolean array:

>>> criteria_final = criteria1 & criteria2 & criteria3

>>> criteria_final.head()

movie_title

Avatar False

Pirates of the Caribbean: At World's End False

Spectre False

The Dark Knight Rises True

Star Wars: Episode VII - The Force Awakens False

dtype: bool

Filtering Rows

214

How it works…
All values in a Series can be compared against a scalar value using the standard comparison
operators (<, >, ==, !=, <=, and >=). The expression movie.imdb_score > 8 yields
a Boolean array where all imdb_score values exceeding 8 are True and those less than
or equal to 8 are False. The index of this Boolean array has the same index as the movie
DataFrame.

The criteria3 variable is created by combining two Boolean arrays. Each expression
must be enclosed in parentheses to function properly. The pipe character, |, is used to create
a logical or condition between each of the values in both Series.

All three criteria need to be True to match the requirements of the recipe. They are each
combined using the ampersand character, &, which creates a logical and condition between
each Series value.

There's more…
A consequence of pandas using different syntax for the logical operators is that operator
precedence is no longer the same. The comparison operators have a higher precedence than
and, or, and not. However, the operators that pandas uses (the bitwise operators &, |, and ~)
have a higher precedence than the comparison operators, hence the need for parentheses.
An example can help clear this up. Take the following expression:

>>> 5 < 10 and 3 > 4

False

In the preceding expression, 5 < 10 evaluates first, followed by 3 > 4, and finally, the and
evaluates. Python progresses through the expression as follows:

>>> 5 < 10 and 3 > 4

False

>>> True and 3 > 4

False

>>> True and False

False

>>> False

False

Let's take a look at what would happen if the expression in criteria3 was written as
follows:

>>> movie.title_year < 2000 | movie.title_year > 2009

Chapter 7

215

Traceback (most recent call last):

 ...

TypeError: ufunc 'bitwise_or' not supported for the input types, and the
inputs could not be safely coerced to any supported types according to
the casting rule ''safe''

During handling of the above exception, another exception occurred:

Traceback (most recent call last):

 ...

TypeError: cannot compare a dtyped [float64] array with a scalar of type
[bool]

As the bitwise operators have higher precedence than the comparison operators, 2000 |
movie.title_year is evaluated first, which is nonsensical and raises an error. Therefore,
we need parentheses to enforce operator precedence.

Why can't pandas use and, or, and not? When these keywords are evaluated, Python attempts
to find the truthiness of the objects as a whole. As it does not make sense for a Series as a
whole to be either True or False – only each element – pandas raises an error.

All objects in Python have a Boolean representation, which is often referred to as truthiness.
For instance, all integers except 0 are considered True. All strings except the empty string
are True. All non-empty sets, tuples, dictionaries, and lists are True. In general, to evaluate
the truthiness of a Python object, pass it to the bool function. An empty DataFrame or Series
does not evaluate as True or False, and instead, an error is raised.

Filtering with Boolean arrays
Both Series and DataFrame can be filtered with Boolean arrays. You can index this directly off
of the object or off of the .loc attribute.

This recipe constructs two complex filters for different rows of movies. The first filters movies
with an imdb_score greater than 8, a content_rating of PG-13, and a title_year
either before 2000 or after 2009. The second filter consists of those with an imdb_score
less than 5, a content_rating of R, and a title_year between 2000 and 2010. Finally,
we will combine these filters.

Filtering Rows

216

How to do it…
1. Read in the movie dataset, set the index to movie_title, and create the first set of

criteria:
>>> movie = pd.read_csv(

... "data/movie.csv", index_col="movie_title"

...)

>>> crit_a1 = movie.imdb_score > 8

>>> crit_a2 = movie.content_rating == "PG-13"

>>> crit_a3 = (movie.title_year < 2000) | (

... movie.title_year > 2009

...)

>>> final_crit_a = crit_a1 & crit_a2 & crit_a3

2. Create criteria for the second set of movies:
>>> crit_b1 = movie.imdb_score < 5

>>> crit_b2 = movie.content_rating == "R"

>>> crit_b3 = (movie.title_year >= 2000) & (

... movie.title_year <= 2010

...)

>>> final_crit_b = crit_b1 & crit_b2 & crit_b3

3. Combine the two sets of criteria using the pandas or operator. This yields a Boolean
array of all movies that are members of either set:
>>> final_crit_all = final_crit_a | final_crit_b

>>> final_crit_all.head()

movie_title

Avatar False

Pirates of the Caribbean: At World's End False

Spectre False

The Dark Knight Rises True

Star Wars: Episode VII - The Force Awakens False

dtype: bool

4. Once you have your Boolean array, you pass it to the index operator to filter the data:
>>> movie[final_crit_all].head()

 color ... movie/likes

Chapter 7

217

movie_title ...

The Dark Knight Rises Color ... 164000

The Avengers Color ... 123000

Captain America: Civil War Color ... 72000

Guardians of the Galaxy Color ... 96000

Interstellar Color ... 349000

5. We can also filter off of the .loc attribute:
>>> movie.loc[final_crit_all].head()

 color ... movie/likes

movie_title ...

The Dark Knight Rises Color ... 164000

The Avengers Color ... 123000

Captain America: Civil War Color ... 72000

Guardians of the Galaxy Color ... 96000

Interstellar Color ... 349000

6. In addition, we can specify columns to select with the .loc attribute:

>>> cols = ["imdb_score", "content_rating", "title_year"]

>>> movie_filtered = movie.loc[final_crit_all, cols]

>>> movie_filtered.head(10)

 imdb_score content_rating title_year

movie_title

The Dark ... 8.5 PG-13 2012.0

The Avengers 8.1 PG-13 2012.0

Captain A... 8.2 PG-13 2016.0

Guardians... 8.1 PG-13 2014.0

Interstellar 8.6 PG-13 2014.0

Inception 8.8 PG-13 2010.0

The Martian 8.1 PG-13 2015.0

Town & Co... 4.4 R 2001.0

Sex and t... 4.3 R 2010.0

Rollerball 3.0 R 2002.0

Filtering Rows

218

How it works…
In step 1 and step 2, each set of criteria is built from simpler Boolean arrays. It is not
necessary to create a different variable for each Boolean expression as done here, but it
does make it far easier to read and debug any logic mistakes. As we desire both sets of
movies, step 3 uses the pandas logical or operator to combine them.

In step 4, we pass the Series of Booleans created from step 3 directly to the index operator.
Only the movies with True values from final_crit_all are selected.

Filtering also works with the .loc attribute, as seen in step 6, by simultaneously selecting
rows (using the Boolean array) and columns. This slimmed DataFrame is far easier to check
manually as to whether the logic was implemented correctly.

The .iloc attribute does not support Boolean arrays! If you pass in a Boolean Series to it,
an exception will get raised. However, it does work with NumPy arrays, so if you call the .to_
numpy() method, you can filter with it:

>>> movie.iloc[final_crit_all]

Traceback (most recent call last):

 ...

ValueError: iLocation based boolean indexing cannot use an indexable
as a mask

>>> movie.iloc[final_crit_all.to_numpy()]

 color ... movie/likes

movie_title ...

The Dark Knight Rises Color ... 164000

The Avengers Color ... 123000

Captain America: Civil War Color ... 72000

Guardians of the Galaxy Color ... 96000

Interstellar Color ... 349000

...

The Young Unknowns Color ... 4

Bled Color ... 128

Hoop Dreams Color ... 0

Death Calls Color ... 16

The Legend of God's Gun Color ... 13

Chapter 7

219

There's more…
As was stated earlier, it is possible to use one long Boolean expression in place of several
other shorter ones. To replicate the final_crit_a variable from step 1 with one long line
of code, we can do the following:

>>> final_crit_a2 = (

... (movie.imdb_score > 8)

... & (movie.content_rating == "PG-13")

... & (

... (movie.title_year < 2000)

... | (movie.title_year > 2009)

...)

...)

>>> final_crit_a2.equals(final_crit_a)

True

Comparing row filtering and index filtering
It is possible to replicate specific cases of Boolean selection by taking advantage of the index.

In this recipe, we use the college dataset to select all institutions from a particular state with
both Boolean indexing and index selection and then compare each of their performances
against one another.

Personally, I prefer to filter by columns (using Boolean arrays) rather than on the index.
Column filtering is more powerful as you can use other logical operators and filter on multiple
columns.

How to do it…
1. Read in the college dataset and use Boolean indexing to select all institutions from

the state of Texas (TX):
>>> college = pd.read_csv("data/college.csv")

>>> college[college["STABBR"] == "TX"].head()

 INSTNM ... GRAD_/_SUPP

3610 Abilene Christian University ... 25985

3611 Alvin Community College ... 6750

3612 Amarillo College ... 10950

Filtering Rows

220

3613 Angelina College ... PrivacySuppressed

3614 Angelo State University ... 21319.5

2. To repeat this using index selection, move the STABBR column into the index. We can
then use label-based selection with the .loc indexer:
>>> college2 = college.set_index("STABBR")

>>> college2.loc["TX"].head()

 INSTNM ... GRAD_/_SUPP

3610 Abilene Christian University ... 25985

3611 Alvin Community College ... 6750

3612 Amarillo College ... 10950

3613 Angelina College ... PrivacySuppressed

3614 Angelo State University ... 21319.5

3. Let's compare the speed of both methods:
>>> %timeit college[college['STABBR'] == 'TX']

1.75 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

>>> %timeit college2.loc['TX']

882 µs ± 69.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

4. Boolean indexing takes two times as long as index selection. As setting the index
does not come for free, let's time that operation as well:

>>> %timeit college2 = college.set_index('STABBR')

2.01 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 100 loops
each)

How it works…
Step 1 creates a Boolean Series by determining which rows of data have STABBR equal to
TX. This Series is passed to the indexing operator, which selects the data. This process may
be replicated by moving that same column to the index and using basic label-based index
selection with .loc. Selection via the index is much faster than Boolean selection.

However, if you need to filter on multiple columns, you will have the overhead (and confusing
code) from repeatedly switching the index. Again, my recommendation is not to switch the
index, just to filter by it.

Chapter 7

221

There's more…
This recipe only selects a single state. It is possible to select multiple states with both Boolean
and index selection. Let's select Texas (TX), California (CA), and New York (NY). With Boolean
selection, you can use the .isin method, but with indexing, just pass a list to .loc:

>>> states = ["TX", "CA", "NY"]

>>> college[college["STABBR"].isin(states)]

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_SUPP

192 Academy ... San Fran... ... 36000 35093

193 ITT Tech... Rancho C... ... 38800 25827.5

194 Academy ... Oakland ... NaN PrivacyS...

195 The Acad... Huntingt... ... 28400 9500

196 Avalon S... Alameda ... 21600 9860

...

7528 WestMed ... Merced ... NaN 15623.5

7529 Vantage ... El Paso ... NaN 9500

7530 SAE Inst... Emeryville ... NaN 9500

7533 Bay Area... San Jose ... NaN PrivacyS...

7534 Excel Le... San Antonio ... NaN 12125

>>> college2.loc[states]

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_SUPP

STABBR ...

TX Abilene ... Abilene ... 40200 25985

TX Alvin Co... Alvin ... 34500 6750

TX Amarillo... Amarillo ... 31700 10950

TX Angelina... Lufkin ... 26900 PrivacyS...

TX Angelo S... San Angelo ... 37700 21319.5

...

NY Briarcli... Patchogue ... 38200 28720.5

NY Jamestow... Salamanca ... NaN 12050

NY Pratt Ma... New York ... 40900 26691

NY Saint Jo... Patchogue ... 52000 22143.5

NY Franklin... Brooklyn ... 20000 PrivacyS...

Filtering Rows

222

There is quite a bit more to the story than what this recipe explains. pandas implements the
index differently based on whether the index is unique or sorted. See the following recipe for
more details.

Selecting with unique and sorted indexes
Index selection performance drastically improves when the index is unique or sorted. The
prior recipe used an unsorted index that contained duplicates, which makes for relatively
slow selections.

In this recipe, we use the college dataset to form unique or sorted indexes to increase the
performance of index selection. We will continue to compare the performance to Boolean
indexing as well.

If you are only selecting from a single column and that is a bottleneck for you, this recipe can
save you ten times the effort

How to do it…
1. Read in the college dataset, create a separate DataFrame with STABBR as the index,

and check whether the index is sorted:
>>> college = pd.read_csv("data/college.csv")

>>> college2 = college.set_index("STABBR")

>>> college2.index.is_monotonic

False

2. Sort the index from college2 and store it as another object:
>>> college3 = college2.sort_index()

>>> college3.index.is_monotonic

True

3. Time the selection of the state of Texas (TX) from all three DataFrames:
>>> %timeit college[college['STABBR'] == 'TX']

1.75 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

>>> %timeit college2.loc['TX']

1.09 ms ± 232 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

Chapter 7

223

>>> %timeit college3.loc['TX']

304 µs ± 17.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

4. The sorted index performs nearly an order of magnitude faster than Boolean
selection. Let's now turn toward unique indexes. For this, we use the institution name
as the index:
>>> college_unique = college.set_index("INSTNM")

>>> college_unique.index.is_unique

True

5. Let's select Stanford University with Boolean indexing. Note that this returns a
DataFrame:
>>> college[college["INSTNM"] == "Stanford University"]

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

4217 Stanford... Stanford ... 86000 12782

6. Let's select Stanford University with index selection. Note that this returns a Series:
>>> college_unique.loc["Stanford University"]

CITY Stanford

STABBR CA

HBCU 0

MENONLY 0

WOMENONLY 0

 ...

PCTPELL 0.1556

PCTFLOAN 0.1256

UG25ABV 0.0401

MD_EARN_WNE_P10 86000

GRAD_DEBT_MDN_SUPP 12782

Name: Stanford University, Length: 26, dtype: object

7. If we want a DataFrame rather than a Series, we need to pass in a list of index values
into .loc:
>>> college_unique.loc[["Stanford University"]]

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

4217 Stanford... Stanford ... 86000 12782

Filtering Rows

224

8. They both produce the same data, just with different objects. Let's time each
approach:

>>> %timeit college[college['INSTNM'] == 'Stanford University']

1.92 ms ± 396 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

>>> %timeit college_unique.loc[['Stanford University']]

988 µs ± 122 µs per loop (mean ± std. dev. of 7 runs, 1000 loops
each)

How it works…
When the index is not sorted and contains duplicates, as with college2, pandas will need to
check every single value in the index to make the correct selection. When the index is sorted,
as with college3, pandas takes advantage of an algorithm called binary search to improve
search performance.

In the second half of the recipe, we use a unique column as the index. pandas implements
unique indexes with a hash table, which makes for even faster selection. Each index location
can be looked up in nearly the same time regardless of its length.

There's more…
Boolean selection gives much more flexibility than index selection as it is possible to condition
on any number of columns. In this recipe, we used a single column as the index. It is possible
to concatenate multiple columns together to form an index. For instance, in the following
code, we set the index equal to the concatenation of the city and state columns:

>>> college.index = (

... college["CITY"] + ", " + college["STABBR"]

...)

>>> college = college.sort_index()

>>> college.head()

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

ARTESIA, CA Angeles ... ARTESIA ... NaN 16850

Aberdeen, SD Presenta... Aberdeen ... 35900 25000

Aberdeen, SD Northern... Aberdeen ... 33600 24847

Aberdeen, WA Grays Ha... Aberdeen ... 27000 11490

Abilene, TX Hardin-S... Abilene ... 38700 25864

Chapter 7

225

From here, we can select all colleges from a particular city and state combination without
Boolean indexing. Let's select all colleges from Miami, FL:

>>> college.loc["Miami, FL"].head()

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_SUPP

Miami, FL New Prof... Miami ... 18700 8682

Miami, FL Manageme... Miami ... PrivacyS... 12182

Miami, FL Strayer ... Miami ... 49200 36173.5

Miami, FL Keiser U... Miami ... 29700 26063

Miami, FL George T... Miami ... 38600 PrivacyS...

We can compare the speed of this compound index selection with Boolean indexing. There is
almost an order of magnitude difference:

>>> %%timeit

>>> crit1 = college["CITY"] == "Miami"

>>> crit2 = college["STABBR"] == "FL"

>>> college[crit1 & crit2]

3.05 ms ± 66.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit college.loc['Miami, FL']

369 µs ± 130 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Translating SQL WHERE clauses
Many pandas users will have experience of interacting with a database using Structured
Query Language (SQL). SQL is a standard to define, manipulate, and control data stored in a
database

SQL is an important language for data scientists to know. Much of the world's data is stored
in databases that require SQL to retrieve and manipulate it SQL syntax is fairly simple and
easy to learn. There are many different SQL implementations from companies such as Oracle,
Microsoft, IBM, and more.

Within a SQL SELECT statement, the WHERE clause is very common and filters data. This
recipe will write pandas code that is equivalent to a SQL query that selects a certain subset
of the employee dataset.

Suppose we are given a task to find all the female employees who work in the police or fire
departments who have a base salary of between 80 and 120 thousand dollars.

Filtering Rows

226

The following SQL statement would answer this query for us:

SELECT

 UNIQUE_ID,

 DEPARTMENT,

 GENDER,

 BASE_SALARY

FROM

 EMPLOYEE

WHERE

 DEPARTMENT IN ('Houston Police Department-HPD',

 'Houston Fire Department (HFD)') AND

 GENDER = 'Female' AND

 BASE_SALARY BETWEEN 80000 AND 120000;

This recipe assumes that you have a dump of the EMPLOYEE database in a CSV file and that
you want to replicate the above query using pandas.

How to do it…
1. Read in the employee dataset as a DataFrame:

>>> employee = pd.read_csv("data/employee.csv")

2. Before filtering out the data, it is helpful to do some manual inspection of each of the
filtered columns to know the exact values that will be used in the filter:
>>> employee.dtypes

UNIQUE_ID int64

POSITION_TITLE object

DEPARTMENT object

BASE_SALARY float64

RACE object

EMPLOYMENT_TYPE object

GENDER object

EMPLOYMENT_STATUS object

HIRE_DATE object

JOB_DATE object

dtype: object

Chapter 7

227

>>> employee.DEPARTMENT.value_counts().head()

Houston Police Department-HPD 638

Houston Fire Department (HFD) 384

Public Works & Engineering-PWE 343

Health & Human Services 110

Houston Airport System (HAS) 106

Name: DEPARTMENT, dtype: int64

>>> employee.GENDER.value_counts()

Male 1397

Female 603

Name: GENDER, dtype: int64

>>> employee.BASE_SALARY.describe()

count 1886.000000

mean 55767.931601

std 21693.706679

min 24960.000000

25% 40170.000000

50% 54461.000000

75% 66614.000000

max 275000.000000

Name: BASE_SALARY, dtype: float64

3. Write a single statement for each of the criteria. Use the isin method to test equality
to one of many values:
>>> depts = [

... "Houston Police Department-HPD",

... "Houston Fire Department (HFD)",

...]

>>> criteria_dept = employee.DEPARTMENT.isin(depts)

>>> criteria_gender = employee.GENDER == "Female"

>>> criteria_sal = (employee.BASE_SALARY >= 80000) & (

... employee.BASE_SALARY <= 120000

...)

Filtering Rows

228

4. Combine all the Boolean arrays:
>>> criteria_final = (

... criteria_dept & criteria_gender & criteria_sal

...)

5. Use Boolean indexing to select only the rows that meet the final criteria:

>>> select_columns = [

... "UNIQUE_ID",

... "DEPARTMENT",

... "GENDER",

... "BASE_SALARY",

...]

>>> employee.loc[criteria_final, select_columns].head()

 UNIQUE_ID DEPARTMENT GENDER BASE_SALARY

61 61 Houston ... Female 96668.0

136 136 Houston ... Female 81239.0

367 367 Houston ... Female 86534.0

474 474 Houston ... Female 91181.0

513 513 Houston ... Female 81239.0

How it works…
Before any filtering is done, you will need to know the exact string names that you want to filter
by. The .value_counts method is one way to get both the exact string name and number of
occurrences of string values.

The .isin method is equivalent to the SQL IN operator and accepts a list of all possible
values that you would like to keep. It is possible to use a series of OR conditions to replicate
this expression, but it would not be as efficient or idiomatic.

The criteria for salary, criteria_sal, is formed by combining two simple inequality
expressions. All the criteria are combined with the pandas and operator, &, to yield a single
Boolean array as the filter.

There's more…
For many operations, pandas has multiple ways to do the same thing. In the preceding recipe,
the criteria for salary uses two separate Boolean expressions. Similar to SQL, Series have a
.between method, with the salary criteria equivalently written as follows. We will stick in an
underscore in the hardcoded numbers to help with legibility:

Chapter 7

229

''' {.sourceCode .pycon}

>>> criteria_sal = employee.BASE_SALARY.between(

... 80_000, 120_000

...)

'''

Another useful application of .isin is to provide a sequence of values automatically
generated by some other pandas statements. This would avoid any manual investigating to
find the exact string names to store in a list. Conversely, let's try to exclude the rows from the
top five most frequently occurring departments:

>>> top_5_depts = employee.DEPARTMENT.value_counts().index[

... :5

...]

>>> criteria = ~employee.DEPARTMENT.isin(top_5_depts)

>>> employee[criteria]

 UNIQUE_ID POSITION_TITLE ... HIRE_DATE JOB_DATE

0 0 ASSISTAN... ... 2006-06-12 2012-10-13

1 1 LIBRARY 2000-07-19 2010-09-18

4 4 ELECTRICIAN ... 1989-06-19 1994-10-22

18 18 MAINTENA... ... 2008-12-29 2008-12-29

32 32 SENIOR A... ... 1991-02-11 2016-02-13

...

1976 1976 SENIOR S... ... 2015-07-20 2016-01-30

1983 1983 ADMINIST... ... 2006-10-16 2006-10-16

1985 1985 TRUCK DR... ... 2013-06-10 2015-08-01

1988 1988 SENIOR A... ... 2013-01-23 2013-03-02

1990 1990 BUILDING... ... 1995-10-14 2010-03-20

The SQL equivalent of this would be as follows:

SELECT *

 FROM

 EMPLOYEE

 WHERE

 DEPARTMENT not in

 (

 SELECT

 DEPARTMENT

Filtering Rows

230

FROM (SELECT

DEPARTMENT,

 COUNT(1) as CT

 FROM

 EMPLOYEE

 GROUP BY

 DEPARTMENT

 ORDER BY

 CT DESC

 LIMIT 5

));

Notice the use of the pandas not operator, ~, which negates all Boolean values of a Series.

Improving the readability of Boolean
indexing with the query method

Boolean indexing is not necessarily the most pleasant syntax to read or write, especially when
using a single line to write a complex filter. pandas has an alternative string-based syntax
through the DataFrame query method that can provide more clarity.

This recipe replicates the earlier recipe in this chapter, Translating SQL WHERE clauses, but
instead takes advantage of the .query method of the DataFrame. The goal here is to filter
the employee data for female employees from the police or fire departments who earn a
salary of between 80 and 120 thousand dollars.

How to do it…
1. Read in the employee data, assign the chosen departments, and import columns to

variables:
>>> employee = pd.read_csv("data/employee.csv")

>>> depts = [

... "Houston Police Department-HPD",

Chapter 7

231

... "Houston Fire Department (HFD)",

...]

>>> select_columns = [

... "UNIQUE_ID",

... "DEPARTMENT",

... "GENDER",

... "BASE_SALARY",

...]

2. Build the query string and execute the method. Note that the .query method does
not like triple quoted strings spanning multiple lines, hence the ugly concatenation:

>>> qs = (

... "DEPARTMENT in @depts "

... " and GENDER == 'Female' "

... " and 80000 <= BASE_SALARY <= 120000"

...)

>>> emp_filtered = employee.query(qs)

>>> emp_filtered[select_columns].head()

 UNIQUE_ID DEPARTMENT GENDER BASE_SALARY

61 61 Houston ... Female 96668.0

136 136 Houston ... Female 81239.0

367 367 Houston ... Female 86534.0

474 474 Houston ... Female 91181.0

513 513 Houston ... Female 81239.0

How it works…
Strings passed to the .query method are going to look more like plain English than normal
pandas code. It is possible to reference Python variables using the at symbol (@), as with
depts. All DataFrame column names are available in the query namespace by referencing
their names without extra quotes. If a string is needed, such as Female, inner quotes will
need to wrap it.

Another nice feature of the query syntax is the ability to combine Boolean operators using
and, or, and not.

Filtering Rows

232

There's more…
Instead of manually typing in a list of department names, we could have programmatically
created it. For instance, if we wanted to find all the female employees who were not a member
of the top 10 departments by frequency, we can run the following code:

>>> top10_depts = (

... employee.DEPARTMENT.value_counts()

... .index[:10]

... .tolist()

...)

>>> qs = "DEPARTMENT not in @top10_depts and GENDER == 'Female'"

>>> employee_filtered2 = employee.query(qs)

>>> employee_filtered2.head()

 UNIQUE_ID POSITION_TITLE ... HIRE_DATE JOB_DATE

0 0 ASSISTAN... ... 2006-06-12 2012-10-13

73 73 ADMINIST... ... 2011-12-19 2013-11-23

96 96 ASSISTAN... ... 2013-06-10 2013-06-10

117 117 SENIOR A... ... 1998-03-20 2012-07-21

146 146 SENIOR S... ... 2014-03-17 2014-03-17

Preserving Series size with the .where
method

When you filter with Boolean arrays, the resulting Series or DataFrame is typically smaller.
The .where method preserves the size of your Series or DataFrame and either sets the
values that don't meet the criteria to missing or replaces them with something else. Instead
of dropping all these values, it is possible to keep them.

When you combine this functionality with the other parameter, you can create functionality
similar to coalesce found in databases.

In this recipe, we pass the .where method Boolean conditions to put a floor and ceiling on
the minimum and maximum number of Facebook likes for actor 1 in the movie dataset.

Chapter 7

233

How to do it…
1. Read the movie dataset, set the movie title as the index, and select all the values in

the actor_1_facebook_likes column that are not missing:
>>> movie = pd.read_csv(

... "data/movie.csv", index_col="movie_title"

...)

>>> fb_likes = movie["actor_1_facebook_likes"].dropna()

>>> fb_likes.head()

movie_title

Avatar 1000.0

Pirates of the Caribbean: At World's End 40000.0

Spectre 11000.0

The Dark Knight Rises 27000.0

Star Wars: Episode VII - The Force Awakens 131.0

Name: actor_1_facebook_likes, dtype: float64

2. Let's use the describe method to get a sense of the distribution:
>>> fb_likes.describe()

count 4909.000000

mean 6494.488491

std 15106.986884

min 0.000000

25% 607.000000

50% 982.000000

75% 11000.000000

max 640000.000000

Name: actor_1_facebook_likes, dtype: float64

3. Additionally, we may plot a histogram of this Series to visually inspect the distribution.
The code below calls plt.subplots to specify the figure size, but is not needed in
general:
>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fb_likes.hist(ax=ax)

Filtering Rows

234

>>> fig.savefig(

... "c7-hist.png", dpi=300

...)

Default pandas histogram

4. This visualization makes it difficult to get a sense of the distribution. On the other
hand, the summary statistics from step 2 appear to be telling us that the data is
highly skewed to the right with a few very large observations (more than an order of
magnitude greater than the median). Let's create criteria to test whether the number
of likes is fewer than 20,000:
>>> criteria_high = fb_likes < 20_000

>>> criteria_high.mean().round(2)

0.91

5. About 91% of the movies have an actor 1 with fewer than 20,000 likes. We will now
use the .where method, which accepts a Boolean array. The default behavior is to
return a Series the same size as the original, but which has all the False locations
replaced with a missing value:
>>> fb_likes.where(criteria_high).head()

movie_title

Avatar 1000.0

Pirates of the Caribbean: At World's End NaN

Spectre 11000.0

Chapter 7

235

The Dark Knight Rises NaN

Star Wars: Episode VII - The Force Awakens 131.0

Name: actor_1_facebook_likes, dtype: float64

6. The second parameter to the .where method, other, allows you to control
the replacement value. Let's change all the missing values to 20,000:
>>> fb_likes.where(criteria_high, other=20000).head()

movie_title

Avatar 1000.0

Pirates of the Caribbean: At World's End 20000.0

Spectre 11000.0

The Dark Knight Rises 20000.0

Star Wars: Episode VII - The Force Awakens 131.0

Name: actor_1_facebook_likes, dtype: float64

7. Similarly, we can create criteria to put a floor on the minimum number of likes.
Here, we chain another .where method and replace the values not satisfying
the condition to 300:
>>> criteria_low = fb_likes > 300

>>> fb_likes_cap = fb_likes.where(

... criteria_high, other=20_000

...).where(criteria_low, 300)

>>> fb_likes_cap.head()

movie_title

Avatar 1000.0

Pirates of the Caribbean: At World's End 20000.0

Spectre 11000.0

The Dark Knight Rises 20000.0

Star Wars: Episode VII - The Force Awakens 300.0

Name: actor_1_facebook_likes, dtype: float64

8. The lengths of the original Series and the modified Series are the same:
>>> len(fb_likes), len(fb_likes_cap)

(4909, 4909)

9. Let's make a histogram with the modified Series. With the data in a much tighter
range, it should produce a better plot:

>>> fig, ax = plt.subplots(figsize=(10, 8))

>>> fb_likes_cap.hist(ax=ax)

Filtering Rows

236

>>> fig.savefig(

... "c7-hist2.png", dpi=300

...)

A pandas histogram with a tighter range

How it works…
The .where method again preserves the size and shape of the calling object and does not
modify the values where the passed Boolean is True. It was important to drop the missing
values in step 1 as the .where method would have eventually replaced them with a valid
number in future steps.

The summary statistics in step 2 give us some idea of where it would make sense to cap our
data. The histogram from step 3, on the other hand, appears to clump all the data into one
bin. The data has too many outliers for a plain histogram to make a good plot. The .where
method allows us to place a ceiling and floor on our data, which results in a histogram with
less variance.

Chapter 7

237

There's more…
pandas actually has built-in methods, .clip, .clip_lower, and .clip_upper, that
replicate this operation. The .clip method can set a floor and ceiling at the same time:

>>> fb_likes_cap2 = fb_likes.clip(lower=300, upper=20000)

>>> fb_likes_cap2.equals(fb_likes_cap)

True

Masking DataFrame rows
The .mask method performs the complement of the .where method. By default, it creates
missing values wherever the Boolean condition is True. In essence, it is literally masking, or
covering up, values in your dataset.

In this recipe, we will mask all rows of the movie dataset that were made after 2010 and then
filter all the rows with missing values.

How to do it…
1. Read the movie dataset, set the movie title as the index, and create the criteria:

>>> movie = pd.read_csv(

... "data/movie.csv", index_col="movie_title"

...)

>>> c1 = movie["title_year"] >= 2010

>>> c2 = movie["title_year"].isna()

>>> criteria = c1 | c2

2. Use the .mask method on a DataFrame to remove the values for all the values
in rows with movies that were made from 2010. Any movie that originally had
a missing value for title_year is also masked:
>>> movie.mask(criteria).head()

 color ...

movie_title ...

Avatar Color ...

Pirates of the Caribbean: At World's End Color ...

Spectre NaN ...

The Dark Knight Rises NaN ...

Star Wars: Episode VII - The Force Awakens NaN ...

Filtering Rows

238

3. Notice how all the values in the third, fourth, and fifth rows from the preceding
DataFrame are missing. Chain the .dropna method to remove rows that have
all values missing:
>>> movie_mask = movie.mask(criteria).dropna(how="all")

>>> movie_mask.head()

 color ...

movie_title ...

Avatar Color ...

Pirates of the Caribbean: At World's End Color ...

Spider-Man 3 Color ...

Harry Potter and the Half-Blood Prince Color ...

Superman Returns Color ...

4. The operation in step 3 is just a complex way of doing basic Boolean indexing. We can
check whether the two methods produce the same DataFrame:
>>> movie_boolean = movie[movie["title_year"] < 2010]

>>> movie_mask.equals(movie_boolean)

False

5. The .equals method informs us that they are not equal. Something is wrong.
Let's do some sanity checking and see whether they are the same shape:
>>> movie_mask.shape == movie_boolean.shape

True

6. When we used the preceding .mask method, it created many missing values. Missing
values are float data types, so any column that was an integer type that got
missing values was converted to a float type. The .equals method returns False
if the data types of the columns are different, even if the values are the same. Let's
check the equality of the data types to see whether this scenario happened:
>>> movie_mask.dtypes == movie_boolean.dtypes

color True

director_name True

num_critic_for_reviews True

duration True

director_facebook_likes True

 ...

title_year True

actor_2_facebook_likes True

imdb_score True

Chapter 7

239

aspect_ratio True

movie_facebook_likes False

Length: 27, dtype: bool

7. It turns out that a couple of columns don't have the same data type. pandas has an
alternative for these situations. In its testing module, which is primarily used by
developers, there is a function, assert_frame_equal, that allows you to check
the equality of Series and DataFrames without also checking the equality of the data
types:

>>> from pandas.testing import assert_frame_equal

>>> assert_frame_equal(

... movie_boolean, movie_mask, check_dtype=False

...)

How it works…
By default, the .mask method fills in rows where the Boolean array is True with NaN. The
first parameter to the .mask method is a Boolean array. Because the .mask method is
called from a DataFrame, all of the values in each row where the condition is True change
to missing. Step 3 uses this masked DataFrame to drop the rows that contain all missing
values. Step 4 shows how to do this same procedure with index operations.

During data analysis, it is important to continually validate results. Checking the equality of
a Series and a DataFrame is one approach to validation. Our first attempt, in step 4, yielded
an unexpected result. Some basic sanity checking, such as ensuring that the number of rows
and columns are the same, or that the row and column names are the same, are good checks
before going deeper.

Step 6 compares the data types of the two Series. It is here where we uncover the reason
why the DataFrames were not equivalent. The .equals method checks that both the values
and data types are the same. The assert_frame_equal function from step 7 has many
available parameters to test equality in a variety of ways. Notice that there is no output after
calling assert_frame_equal. This method returns None when two DataFrames are equal
and raises an error when they are not.

There's more…
Let's compare the speed difference between masking and dropping missing rows and filtering
with Boolean arrays. Filtering is about an order of magnitude faster in this case:

>>> %timeit movie.mask(criteria).dropna(how='all')

11.2 ms ± 144 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Filtering Rows

240

>>> %timeit movie[movie['title_year'] < 2010]

1.07 ms ± 34.9 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

Selecting with Booleans, integer location,
and labels

Previously, we covered a wide range of recipes on selecting different subsets of data through
the .iloc and .loc attributes. Both of these select rows and columns simultaneously by
either integer location or label.

In this recipe, we will filter both rows and columns with the .iloc and .loc attributes.

How to do it…
1. Read in the movie dataset, set the index as the title, and then create a Boolean array

matching all movies with a content rating of G and an IMDB score less than 4:
>>> movie = pd.read_csv(

... "data/movie.csv", index_col="movie_title"

...)

>>> c1 = movie["content_rating"] == "G"

>>> c2 = movie["imdb_score"] < 4

>>> criteria = c1 & c2

2. Let's first pass these criteria to .loc to filter the rows:
>>> movie_loc = movie.loc[criteria]

>>> movie_loc.head()

 color ... movie/likes

movie_title ...

The True Story of Puss'N Boots Color ... 90

Doogal Color ... 346

Thomas and the Magic Railroad Color ... 663

Barney's Great Adventure Color ... 436

Justin Bieber: Never Say Never Color ... 62000

3. Let's check whether this DataFrame is exactly equal to the one generated directly
from the indexing operator:
>>> movie_loc.equals(movie[criteria])

True

Chapter 7

241

4. Now, let's attempt the same Boolean indexing with the .iloc indexer:
>>> movie_iloc = movie.iloc[criteria]

Traceback (most recent call last):

 ...

ValueError: iLocation based boolean indexing cannot use an
indexable as a mask

5. It turns out that we cannot directly use a Series of Booleans because of the index.
We can, however, use an ndarray of Booleans. To get the array, use the .to_
numpy() method:
>>> movie_iloc = movie.iloc[criteria.to_numpy()]

>>> movie_iloc.equals(movie_loc)

True

6. Although not very common, it is possible to do Boolean indexing to select particular
columns. Here, we select all the columns that have a data type of 64-bit integers:
>>> criteria_col = movie.dtypes == np.int64

>>> criteria_col.head()

color False

director_name False

num_critic_for_reviews False

duration False

director_facebook_likes False

dtype: bool

>>> movie.loc[:, criteria_col].head()

 num_voted_users cast_total_facebook_likes movie_
facebook_likes

movie_title

Avatar 886204 4834
33000

Pirates o... 471220 48350
0

Spectre 275868 11700
85000

The Dark ... 1144337 106759
164000

Star Wars... 8 143
0

Filtering Rows

242

7. As criteria_col is a Series, which always has an index, you must use the
underlying ndarray to make it work with .iloc. The following produces the same
result as step 6:
>>> movie.iloc[:, criteria_col.to_numpy()].head()

 num_voted_users cast_total_facebook_likes movie_
facebook_likes

movie_title

Avatar 886204 4834
33000

Pirates o... 471220 48350
0

Spectre 275868 11700
85000

The Dark ... 1144337 106759
164000

Star Wars... 8 143
0

8. When using .loc, you can use a Boolean array to select rows, and specify
the columns you want with a list of labels. Remember, you need to put a comma
between the row and column selections. Let's keep the same row criteria and select
the content_rating, imdb_score, title_year, and gross columns:
>>> cols = [

... "content_rating",

... "imdb_score",

... "title_year",

... "gross",

...]

>>> movie.loc[criteria, cols].sort_values("imdb_score")

 content_rating imdb_score title_year gross

movie_title

Justin Bi... G 1.6 2011.0 73000942.0

Sunday Sc... G 2.5 2008.0 NaN

Doogal G 2.8 2006.0 7382993.0

Barney's ... G 2.8 1998.0 11144518.0

The True ... G 2.9 2009.0 NaN

Thomas an... G 3.6 2000.0 15911333.0

Chapter 7

243

9. You can create this same operation with .iloc, but you need to specify the position
of the columns:

>>> col_index = [movie.columns.get_loc(col) for col in cols]

>>> col_index

[20, 24, 22, 8]

>>> movie.iloc[criteria.to_numpy(), col_index].sort_values(

... "imdb_score"

...)

 content_rating imdb_score title_year gross

movie_title

Justin Bi... G 1.6 2011.0 73000942.0

Sunday Sc... G 2.5 2008.0 NaN

Doogal G 2.8 2006.0 7382993.0

Barney's ... G 2.8 1998.0 11144518.0

The True ... G 2.9 2009.0 NaN

Thomas an... G 3.6 2000.0 15911333.0

How it works…
Both the .iloc and .loc attributes have some support filtering with Boolean arrays (with the
caveat that .iloc cannot be passed a Series but the underlying ndarray.) Let's take a look at
the one-dimensional ndarray underlying criteria:

>>> a = criteria.to_numpy()

>>> a[:5]

array([False, False, False, False, False])

>>> len(a), len(criteria)

(4916, 4916)

The array is the same length as the Series, which is the same length as the movie DataFrame.
The integer location for the Boolean array aligns with the integer location of the DataFrame,
and the filter happens as expected. These arrays also work with the .loc attribute as well,
but they are a necessity with .iloc.

Steps 6 and 7 show how to filter by columns instead of by rows. The colon, :, is needed to
indicate the selection of all the rows. The comma following the colon separates the row and
column selections. However, there is actually a much easier way to select columns with
integer data types and that is through the .select_dtypes method:

>>> movie.select_dtypes(int)

Filtering Rows

244

 num_voted_users cast_total_facebook_likes

movie_title

Avatar 886204 4834

Pirates o... 471220 48350

Spectre 275868 11700

The Dark ... 1144337 106759

Star Wars... 8 143

...

Signed Se... 629 2283

The Follo... 73839 1753

A Plague ... 38 0

Shanghai ... 1255 2386

My Date w... 4285 163

Steps 8 and 9 show how to do row and column selections simultaneously. The rows were
specified by a Boolean array and the columns were specified with a list of columns. You place
a comma between the row and column selections. Step 9 uses a list comprehension to loop
through all the desired column names to find their integer location with the index method
.get_loc.

245

8
Index Alignment

Introduction
When Series or DataFrames are combined, each dimension of the data automatically aligns
on each axis first before any computation happens. This silent and automatic alignment of
axes can confuse the uninitiated, but it gives flexibility to the power user. This chapter explores
the Index object in-depth before showcasing a variety of recipes that take advantage of its
automatic alignment.

Examining the Index object
As was discussed previously, each axis of a Series and a DataFrame has an Index object that
labels the values. There are many different types of Index objects, but they all share common
behavior. All Index objects, except for the MultiIndex, are single-dimensional data structures
that combine the functionality of Python sets and NumPy ndarrays.

In this recipe, we will examine the column index of the college dataset and explore much
of its functionality.

How to do it…
1. Read in the college dataset, and create a variable columns that holds the column

index:
>>> import pandas as pd

>>> import numpy as np

Index Alignment

246

>>> college = pd.read_csv("data/college.csv")

>>> columns = college.columns

>>> columns

Index(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY',
'RELAFFIL',

 'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS', 'UGDS_
WHITE',

 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 'UGDS_AIAN',
'UGDS_NHPI',

 'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_EF',
'CURROPER', 'PCTPELL',

 'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_
SUPP'],

 dtype='object')

2. Use the .values attribute to access the underlying NumPy array:
>>> columns.values

array(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY',

 'RELAFFIL', 'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS',

 'UGDS_WHITE', 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN',
'UGDS_AIAN',

 'UGDS_NHPI', 'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_
EF',

 'CURROPER', 'PCTPELL', 'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_
P10',

 'GRAD_DEBT_MDN_SUPP'], dtype=object)

3. Select items from the index by position with a scalar, list, or slice:
>>> columns[5]

'WOMENONLY'

>>> columns[[1, 8, 10]]

Index(['CITY', 'SATMTMID', 'UGDS'], dtype='object')

>>> columns[-7:-4]

Index(['PPTUG_EF', 'CURROPER', 'PCTPELL'], dtype='object')

4. Indexes share many of the same methods as Series and DataFrames:
>>> columns.min(), columns.max(), columns.isnull().sum()

('CITY', 'WOMENONLY', 0)

5. You can use basic arithmetic and comparison operators on Index objects:
>>> columns + "_A"

Chapter 8

247

Index(['INSTNM_A', 'CITY_A', 'STABBR_A', 'HBCU_A', 'MENONLY_A',

'WOMENONLY_A',

 'RELAFFIL_A', 'SATVRMID_A', 'SATMTMID_A', 'DISTANCEONLY_A',
'UGDS_A',

 'UGDS_WHITE_A', 'UGDS_BLACK_A', 'UGDS_HISP_A', 'UGDS_
ASIAN_A',

 'UGDS_AIAN_A', 'UGDS_NHPI_A', 'UGDS_2MOR_A', 'UGDS_NRA_A',

 'UGDS_UNKN_A', 'PPTUG_EF_A', 'CURROPER_A', 'PCTPELL_A',
'PCTFLOAN_A',

 'UG25ABV_A', 'MD_EARN_WNE_P10_A', 'GRAD_DEBT_MDN_SUPP_A'],

 dtype='object')

>>> columns > "G"

array([True, False, True, True, True, True, True, True,
True,

 False, True, True, True, True, True, True, True,
True,

 True, True, True, False, True, True, True, True,
True])

6. Trying to change an Index value after its creation fails. Indexes are immutable
objects:

>>> columns[1] = "city"

Traceback (most recent call last):

 ...

TypeError: Index does not support mutable operations

How it works…
As you can see from many of the Index object operations, it appears to have quite a bit in
common with both Series and ndarrays. One of the most significant differences comes in
step 6. Indexes are immutable and their values cannot be changed once created.

There's more…
Indexes support the set operations—union, intersection, difference, and symmetric difference:

>>> c1 = columns[:4]

>>> c1

Index Alignment

248

Index(['INSTNM', 'CITY', 'STABBR', 'HBCU'], dtype='object')

>>> c2 = columns[2:6]

>>> c2

Index(['STABBR', 'HBCU', 'MENONLY', 'WOMENONLY'], dtype='object')

>>> c1.union(c2) # or 'c1 | c2'

Index(['CITY', 'HBCU', 'INSTNM', 'MENONLY', 'STABBR', 'WOMENONLY'],

dtype='object')

>>> c1.symmetric_difference(c2) # or 'c1 ^ c2'

Index(['CITY', 'INSTNM', 'MENONLY', 'WOMENONLY'], dtype='object')

Indexes have many of the same operations as Python sets, and are similar to Python sets in
another vital way. They are (usually) implemented using hash tables, which make for extremely
fast access when selecting rows or columns from a DataFrame. Because the values need to
be hashable, the values for the Index object need to be immutable types, such as a string,
integer, or tuple, just like the keys in a Python dictionary.

Indexes support duplicate values, and if there happens to be a duplicate in any Index, then
a hash table can no longer be used for its implementation, and object access becomes
much slower.

Producing Cartesian products
Whenever a Series or DataFrame operates with another Series or DataFrame, the indexes
(both the row index and column index) of each object align first before any operation begins.
This index alignment happens behind the scenes and can be very surprising for those new to
pandas. This alignment always creates a Cartesian product between the indexes unless the
indexes are identical.

A Cartesian product is a mathematical term that usually appears in set theory. A Cartesian
product between two sets is all the combinations of pairs of both sets. For example, the 52
cards in a standard playing card deck represent a Cartesian product between the 13 ranks
(A, 2, 3,…, Q, K) and the four suits.

Producing a Cartesian product isn't always the intended outcome, but it's essential to be
aware of how and when it occurs so as to avoid unintended consequences. In this recipe, two
Series with overlapping but non-identical indexes are added together, yielding a surprising
result. We will also show what happens if they have the same index.

Chapter 8

249

How to do it…
Follow these steps to create a Cartesian product:

1. Construct two Series that have indexes that are different but contain some of the
same values:
>>> s1 = pd.Series(index=list("aaab"), data=np.arange(4))

>>> s1

a 0

a 1

a 2

b 3

dtype: int64

>>> s2 = pd.Series(index=list("cababb"), data=np.arange(6))

>>> s2

c 0

a 1

b 2

a 3

b 4

b 5

dtype: int64

2. Add the two Series together to produce a Cartesian product. For each a index value
in s1, we add every a in s2:

>>> s1 + s2

a 1.0

a 3.0

a 2.0

a 4.0

a 3.0

a 5.0

b 5.0

b 7.0

b 8.0

c NaN

dtype: float64

Index Alignment

250

How it works…
Each a label in s1 pairs up with each a label in s2. This pairing produces six a labels, three
b labels, and one c label in the resulting Series. A Cartesian product happens between all
identical index labels.

As the element with label c is unique to the Series s2, pandas defaults its value to missing,
as there is no label for it to align to in s1. pandas defaults to a missing value whenever an
index label is unique to one object. This has the unfortunate consequence of changing the
data type of the Series to a float, whereas each Series had only integers as values. The type
change occurred because NumPy's missing value object, np.nan, only exists for floats but
not for integers. Series and DataFrame columns must have homogeneous numeric data
types. Therefore, each value in the column was converted to a float. Changing types makes
little difference for this small dataset, but for larger datasets, this can have a significant
memory impact.

There's more…
The Cartesian product is not created when the indexes are unique or contain both the same
exact elements and elements in the same order. When the index values are unique or they
are the same and have the same order, a Cartesian product is not created, and the indexes
instead align by their position. Notice here that each element aligned exactly by position and
that the data type remained an integer:

>>> s1 = pd.Series(index=list("aaabb"), data=np.arange(5))

>>> s2 = pd.Series(index=list("aaabb"), data=np.arange(5))

>>> s1 + s2

a 0

a 2

a 4

b 6

b 8

dtype: int64

If the elements of the index are identical, but the order is different between the Series, the
Cartesian product occurs. Let's change the order of the index in s2 and rerun the same
operation:

>>> s1 = pd.Series(index=list("aaabb"), data=np.arange(5))

>>> s2 = pd.Series(index=list("bbaaa"), data=np.arange(5))

>>> s1 + s2

a 2

a 3

Chapter 8

251

a 4

a 3

a 4

 ..

a 6

b 3

b 4

b 4

b 5

Length: 13, dtype: int64

Be aware of this as pandas has two drastically different outcomes for this same operation.
Another instance where this can happen is during a groupby operation. If you do a groupby
with multiple columns and one is of the type categorical, you will get a Cartesian product
where each outer index will have every inner index value.

Finally, we will add two Series that have index values in a different order but do not have
duplicate values. When we add these, we do not get a Cartesian product:

>>> s3 = pd.Series(index=list("ab"), data=np.arange(2))

>>> s4 = pd.Series(index=list("ba"), data=np.arange(2))

>>> s3 + s4

a 1

b 1

dtype: int64

In this recipe, each Series had a different number of elements. Typically, array-like data
structures in Python and other languages do not allow operations to take place when the
operating dimensions do not contain the same number of elements. pandas allows this to
happen by aligning the indexes first before completing the operation.

In the previous chapter, I showed that you can set a column to the index and then filter on
them. My preference is to leave the index alone and filter on the columns. This section gives
another example of when you need to be very careful with the index.

Exploding indexes
The previous recipe walked through a trivial example of two small Series being added together
with unequal indexes. This recipe is more of an "anti-recipe" of what not to do. The Cartesian
product of index alignment can produce comically incorrect results when dealing with larger
amounts of data.

Index Alignment

252

In this recipe, we add two larger Series that have indexes with only a few unique values but in
different orders. The result will explode the number of values in the indexes.

How to do it…
1. Read in the employee data and set the index to the RACE column:

>>> employee = pd.read_csv(

... "data/employee.csv", index_col="RACE"

...)

>>> employee.head()

 UNIQUE_ID POSITION_TITLE ... HIRE_DATE JOB_
DATE

RACE ...

Hispanic/... 0 ASSISTAN... ... 2006-06-12 2012-10-
13

Hispanic/... 1 LIBRARY 2000-07-19 2010-09-
18

White 2 POLICE O... ... 2015-02-03 2015-02-
03

White 3 ENGINEER... ... 1982-02-08 1991-05-
25

White 4 ELECTRICIAN ... 1989-06-19 1994-10-
22

2. Select the BASE_SALARY column as two different Series. Check to see whether this
operation created two new objects:
>>> salary1 = employee["BASE_SALARY"]

>>> salary2 = employee["BASE_SALARY"]

>>> salary1 is salary2

True

3. The salary1 and salary2 variables are referring to the same object. This means
that any change to one will change the other. To ensure that you receive a brand new
copy of the data, use the .copy method:
>>> salary2 = employee["BASE_SALARY"].copy()

>>> salary1 is salary2

False

4. Let's change the order of the index for one of the Series by sorting it:
>>> salary1 = salary1.sort_index()

>>> salary1.head()

Chapter 8

253

RACE

American Indian or Alaskan Native 78355.0

American Indian or Alaskan Native 26125.0

American Indian or Alaskan Native 98536.0

American Indian or Alaskan Native NaN

American Indian or Alaskan Native 55461.0

Name: BASE_SALARY, dtype: float64

>>> salary2.head()

RACE

Hispanic/Latino 121862.0

Hispanic/Latino 26125.0

White 45279.0

White 63166.0

White 56347.0

Name: BASE_SALARY, dtype: float64

5. Let's add these salary Series together:
>>> salary_add = salary1 + salary2

>>> salary_add.head()

RACE

American Indian or Alaskan Native 138702.0

American Indian or Alaskan Native 156710.0

American Indian or Alaskan Native 176891.0

American Indian or Alaskan Native 159594.0

American Indian or Alaskan Native 127734.0

Name: BASE_SALARY, dtype: float64

6. The operation completed successfully. Let's create one more Series of salary1
added to itself and then output the lengths of each Series. We just exploded the
index from 2,000 values to more than one million:

>>> salary_add1 = salary1 + salary1

>>> len(salary1), len(salary2), len(salary_add), len(

... salary_add1

...)

(2000, 2000, 1175424, 2000)

Index Alignment

254

How it works…
Step 2 appears at first to create two unique objects, but in fact, it creates a single object that
is referred to by two different variable names. The expression employee['BASE_SALARY'],
technically creates a view, and not a brand new copy. This is verified with the is operator.

In pandas, a view is not a new object but just a reference to another object, usually some
subset of a DataFrame. This shared object can be a cause for many issues.

To ensure that the variables reference completely different objects, we use the .copy
method and then verify that they are different objects with the is operator. Step 4 uses the
.sort_index method to sort the Series by race. Note that this Series has the same index
entries, but they are now in a different order than salary1. Step 5 adds these different
Series together to produce the sum. By inspecting the head, it is still not clear what has been
produced.

Step 6 adds salary1 to itself to show a comparison between the two different Series
additions. The lengths of all the Series in this recipe are printed and we clearly see that
salary_add has now exploded to over one million values. A Cartesian product took place
because the indexes were not unique and in the same order. This recipe shows a more
dramatic example of what happens when the indexes differ.

There's more…
We can verify the number of values of salary_add by doing a little mathematics. As a
Cartesian product takes place between all of the same index values, we can sum the square
of their counts. Even missing values in the index produce Cartesian products with themselves:

>>> index_vc = salary1.index.value_counts(dropna=False)

>>> index_vc

Black or African American 700

White 665

Hispanic/Latino 480

Asian/Pacific Islander 107

NaN 35

American Indian or Alaskan Native 11

Others 2

Name: RACE, dtype: int64

>>> index_vc.pow(2).sum()

1175424

Chapter 8

255

Filling values with unequal indexes
When two Series are added together using the plus operator and one of the index labels does
not appear in the other, the resulting value is always missing. pandas has the .add method,
which provides an option to fill the missing value. Note that these Series do not include
duplicate entries, hence there is no need to worry about a Cartesian product exploding the
number of entries.

In this recipe, we add together multiple Series from the baseball dataset with unequal (but
unique) indexes using the .add method with the fill_value parameter to ensure that
there are no missing values in the result.

How to do it…
1. Read in the three baseball datasets and set playerID as the index:

>>> baseball_14 = pd.read_csv(

... "data/baseball14.csv", index_col="playerID"

...)

>>> baseball_15 = pd.read_csv(

... "data/baseball15.csv", index_col="playerID"

...)

>>> baseball_16 = pd.read_csv(

... "data/baseball16.csv", index_col="playerID"

...)

>>> baseball_14.head()

 yearID stint teamID lgID ... HBP SH SF GIDP

playerID ...

altuvjo01 2014 1 HOU AL ... 5.0 1.0 5.0 20.0

cartech02 2014 1 HOU AL ... 5.0 0.0 4.0 12.0

castrja01 2014 1 HOU AL ... 9.0 1.0 3.0 11.0

corpoca01 2014 1 HOU AL ... 3.0 1.0 2.0 3.0

dominma01 2014 1 HOU AL ... 5.0 2.0 7.0 23.0

2. Use the .difference method on the index to discover which index labels are in
baseball_14 and not in baseball_15, and vice versa:
>>> baseball_14.index.difference(baseball_15.index)

Index(['corpoca01', 'dominma01', 'fowlede01', 'grossro01',
'guzmaje01',

 'hoeslj01', 'krausma01', 'preslal01', 'singljo02'],

Index Alignment

256

 dtype='object', name='playerID')

>>> baseball_15.index.difference(baseball_14.index)

Index(['congeha01', 'correca01', 'gattiev01', 'gomezca01',
'lowrije01',

 'rasmuco01', 'tuckepr01', 'valbulu01'],

 dtype='object', name='playerID')

3. There are quite a few players unique to each index. Let's find out how many hits each
player has in total over the three-year period. The H column contains the number of
hits:
>>> hits_14 = baseball_14["H"]

>>> hits_15 = baseball_15["H"]

>>> hits_16 = baseball_16["H"]

>>> hits_14.head()

playerID

altuvjo01 225

cartech02 115

castrja01 103

corpoca01 40

dominma01 121

Name: H, dtype: int64

4. Let's first add together two Series using the plus operator:
>>> (hits_14 + hits_15).head()

playerID

altuvjo01 425.0

cartech02 193.0

castrja01 174.0

congeha01 NaN

corpoca01 NaN

Name: H, dtype: float64

5. Even though players congeha01 and corpoca01 have values for 2015, their result
is missing. Let's use the .add method with the fill_value parameter to avoid
missing values:
>>> hits_14.add(hits_15, fill_value=0).head()

playerID

altuvjo01 425.0

Chapter 8

257

cartech02 193.0

castrja01 174.0

congeha01 46.0

corpoca01 40.0

Name: H, dtype: float64

6. We add hits from 2016 by chaining the add method once more:
>>> hits_total = hits_14.add(hits_15, fill_value=0).add(

... hits_16, fill_value=0

...)

>>> hits_total.head()

playerID

altuvjo01 641.0

bregmal01 53.0

cartech02 193.0

castrja01 243.0

congeha01 46.0

Name: H, dtype: float64

7. Check for missing values in the result:

>>> hits_total.hasnans

False

How it works…
The .add method works in a similar way to the plus operator, but allows for more flexibility
by providing the fill_value parameter to take the place of a non-matching index. In this
problem, it makes sense to default the non-matching index value to 0, but you could have
used any other number.

There will be occasions when each Series contains index labels that correspond to missing
values. In this specific instance, when the two Series are added, the index label will still
correspond to a missing value regardless of whether the fill_value parameter is used.
To clarify this, take a look at the following example where the index label a corresponds to a
missing value in each Series:

>>> s = pd.Series(

... index=["a", "b", "c", "d"],

... data=[np.nan, 3, np.nan, 1],

...)

Index Alignment

258

>>> s

a NaN

b 3.0

c NaN

d 1.0

dtype: float64

>>> s1 = pd.Series(

... index=["a", "b", "c"], data=[np.nan, 6, 10]

...)

>>> s1

a NaN

b 6.0

c 10.0

dtype: float64

>>> s.add(s1, fill_value=5)

a NaN

b 9.0

c 15.0

d 6.0

dtype: float64

There's more…
This recipe shows how to add Series with only a single index together. It is also possible to
add DataFrames together. Adding two DataFrames together will align both the index and
columns before computation and insert missing values for non-matching indexes. Let's start
by selecting a few of the columns from the 2014 baseball dataset:

>>> df_14 = baseball_14[["G", "AB", "R", "H"]]

>>> df_14.head()

 G AB R H

playerID

altuvjo01 158 660 85 225

cartech02 145 507 68 115

castrja01 126 465 43 103

Chapter 8

259

corpoca01 55 170 22 40

dominma01 157 564 51 121

Let's also select a few of the same and a few different columns from the 2015 baseball
dataset:

>>> df_15 = baseball_15[["AB", "R", "H", "HR"]]

>>> df_15.head()

 AB R H HR

playerID

altuvjo01 638 86 200 15

cartech02 391 50 78 24

castrja01 337 38 71 11

congeha01 201 25 46 11

correca01 387 52 108 22

Adding the two DataFrames together creates missing values wherever rows or column labels
cannot align. You can use the .style attribute and call the .highlight_null method to
see where the missing values are:

Highlight null values when using the plus operator

Index Alignment

260

Only the rows where playerID appears in both DataFrames will be available. Similarly, the
columns AB, H, and R are the only ones that appear in both DataFrames. Even if we use the
.add method with the fill_value parameter specified, we still might have missing values.
This is because some combinations of rows and columns never existed in our input data; for
example, the intersection of playerID congeha01 and column G. That player only appeared in
the 2015 dataset that did not have the G column. Therefore, that value was missing:

Highlight null values when using the .add method

Adding columns from different DataFrames
All DataFrames can add new columns to themselves. However, as usual, whenever
a DataFrame is adding a new column from another DataFrame or Series, the indexes align
first, and then the new column is created.

This recipe uses the employee dataset to append a new column containing the maximum
salary of that employee's department.

Chapter 8

261

How to do it…
1. Import the employee data and select the DEPARTMENT and BASE_SALARY columns

in a new DataFrame:
>>> employee = pd.read_csv("data/employee.csv")

>>> dept_sal = employee[["DEPARTMENT", "BASE_SALARY"]]

2. Sort this smaller DataFrame by salary within each department:
>>> dept_sal = dept_sal.sort_values(

... ["DEPARTMENT", "BASE_SALARY"],

... ascending=[True, False],

...)

3. Use the .drop_duplicates method to keep the first row of each DEPARTMENT:
>>> max_dept_sal = dept_sal.drop_duplicates(

... subset="DEPARTMENT"

...)

>>> max_dept_sal.head()

 DEPARTMENT BASE_SALARY

 DEPARTMENT BASE_SALARY

1494 Admn. & Regulatory Affairs 140416.0

149 City Controller's Office 64251.0

236 City Council 100000.0

647 Convention and Entertainment 38397.0

1500 Dept of Neighborhoods (DON) 89221.0

4. Put the DEPARTMENT column into the index for each DataFrame:
>>> max_dept_sal = max_dept_sal.set_index("DEPARTMENT")

>>> employee = employee.set_index("DEPARTMENT")

5. Now that the indexes contain matching values, we can add a new column to the
employee DataFrame:
>>> employee = employee.assign(

... MAX_DEPT_SALARY=max_dept_sal["BASE_SALARY"]

...)

>>> employee

 UNIQUE_ID ... MAX_D/ALARY

DEPARTMENT ...

Municipal Courts Department 0 ... 121862.0

Index Alignment

262

Library 1 ... 107763.0

Houston Police Department-HPD 2 ... 199596.0

Houston Fire Department (HFD) 3 ... 210588.0

General Services Department 4 ... 89194.0

...

Houston Police Department-HPD 1995 ... 199596.0

Houston Fire Department (HFD) 1996 ... 210588.0

Houston Police Department-HPD 1997 ... 199596.0

Houston Police Department-HPD 1998 ... 199596.0

Houston Fire Department (HFD) 1999 ... 210588.0

6. We can validate our results with the query method to check whether there exist any
rows where BASE_SALARY is greater than MAX_DEPT_SALARY:
>>> employee.query("BASE_SALARY > MAX_DEPT_SALARY")

Empty DataFrame

Columns: [UNIQUE_ID, POSITION_TITLE, BASE_SALARY, RACE,
EMPLOYMENT_TYPE, GENDER, EMPLOYMENT_STATUS, HIRE_DATE, JOB_DATE,
MAX_DEPT_SALARY]

Index: []

7. Refactor our code into a chain:

>>> employee = pd.read_csv("data/employee.csv")

>>> max_dept_sal = (

... employee

... [["DEPARTMENT", "BASE_SALARY"]]

... .sort_values(

... ["DEPARTMENT", "BASE_SALARY"],

... ascending=[True, False],

...)

... .drop_duplicates(subset="DEPARTMENT")

... .set_index("DEPARTMENT")

...)

>>> (

... employee

... .set_index("DEPARTMENT")

... .assign(

... MAX_DEPT_SALARY=max_dept_sal["BASE_SALARY"]

Chapter 8

263

...)

...)

 UNIQUE_ID POSITION_TITLE ... JOB_DATE MAX_DEPT_
SALARY

DEPARTMENT ...

Municipal... 0 ASSISTAN... ... 2012-10-13
121862.0

Library 1 LIBRARY 2010-09-18
107763.0

Houston P... 2 POLICE O... ... 2015-02-03
199596.0

Houston F... 3 ENGINEER... ... 1991-05-25
210588.0

General S... 4 ELECTRICIAN ... 1994-10-22
89194.0

...

...

Houston P... 1995 POLICE O... ... 2015-06-09
199596.0

Houston F... 1996 COMMUNIC... ... 2013-10-06
210588.0

Houston P... 1997 POLICE O... ... 2015-10-13
199596.0

Houston P... 1998 POLICE O... ... 2011-07-02
199596.0

Houston F... 1999 FIRE FIG... ... 2010-07-12
210588.0

How it works…
Steps 2 and 3 find the maximum salary for each department. For automatic index alignment
to work properly, we set each DataFrame index as the department. Step 5 works because
each row index from the left DataFrame, employee, aligns with one, and only one, index from
the right DataFrame, max_dept_sal. If max_dept_sal has duplicates of any departments
in its index, then we will get a Cartesian product.

For instance, let's see what happens when we use a DataFrame on the right-hand side of the
equality that has repeated index values. We use the .sample DataFrame method to randomly
choose 10 rows without replacement:

>>> random_salary = dept_sal.sample(

... n=10, random_state=42

Index Alignment

264

...).set_index("DEPARTMENT")

>>> random_salary

 BASE_SALARY

DEPARTMENT

Public Works & Engineering-PWE 34861.0

Houston Airport System (HAS) 29286.0

Houston Police Department-HPD 31907.0

Houston Police Department-HPD 66614.0

Houston Police Department-HPD 42000.0

Houston Police Department-HPD 43443.0

Houston Police Department-HPD 66614.0

Public Works & Engineering-PWE 52582.0

Finance 93168.0

Houston Police Department-HPD 35318.0

Notice how there are several repeated departments in the index. When we attempt to create
a new column, an error is raised alerting us that there are duplicates. At least one index label
in the employee DataFrame is joining with two or more index labels from random_salary:

>>> employee["RANDOM_SALARY"] = random_salary["BASE_SALARY"]

Traceback (most recent call last):

...

ValueError: cannot reindex from a duplicate axis

There's more…
During alignment, if there is nothing for the DataFrame index to align to, the resulting value
will be missing. Let's create an example where this happens. We will use only the first three
rows of the max_dept_sal Series to create a new column:

>>> (

... employee

... .set_index("DEPARTMENT")

... .assign(

... MAX_SALARY2=max_dept_sal["BASE_SALARY"].head(3)

...)

... .MAX_SALARY2

... .value_counts(dropna=False)

...)

Chapter 8

265

NaN 1955

140416.0 29

100000.0 11

64251.0 5

Name: MAX_SALARY2, dtype: int64

The operation completed successfully but filled in salaries for only three of the departments.
All the other departments that did not appear in the first three rows of the max_dept_sal
Series resulted in a missing value.

My preference is to use the following code rather than the code in step 7. This code uses the
.groupby method combined with the .transform method, which is discussed in a later
chapter. This code reads much cleaner to me. It is shorter and does not mess with reassigning
the index:

>>> max_sal = (

... employee

... .groupby("DEPARTMENT")

... .BASE_SALARY

... .transform("max")

...)

>>> (employee.assign(MAX_DEPT_SALARY=max_sal))

UNIQUE_ID POSITION_TITLE ... JOB_DATE MAX_DEPT_SALARY

0 0 ASSISTAN... ... 2012-10-13 121862.0

1 1 LIBRARY 2010-09-18 107763.0

2 2 POLICE O... ... 2015-02-03 199596.0

3 3 ENGINEER... ... 1991-05-25 210588.0

4 4 ELECTRICIAN ... 1994-10-22 89194.0

...

1995 1995 POLICE O... ... 2015-06-09 199596.0

1996 1996 COMMUNIC... ... 2013-10-06 210588.0

1997 1997 POLICE O... ... 2015-10-13 199596.0

1998 1998 POLICE O... ... 2011-07-02 199596.0

1999 1999 FIRE FIG... ... 2010-07-12 210588.0

This works because .transform preserves the original index. If you did a .groupby that
creates a new index, you can use the .merge method to combine the data. We just need to
tell it to merge on DEPARTMENT for the left side and the index for the right side:

>>> max_sal = (

... employee

Index Alignment

266

... .groupby("DEPARTMENT")

... .BASE_SALARY

... .max()

...)

>>> (

... employee.merge(

... max_sal.rename("MAX_DEPT_SALARY"),

... how="left",

... left_on="DEPARTMENT",

... right_index=True,

...)

...)

UNIQUE_ID POSITION_TITLE ... JOB_DATE MAX_DEPT_SALARY

0 0 ASSISTAN... ... 2012-10-13 121862.0

1 1 LIBRARY 2010-09-18 107763.0

2 2 POLICE O... ... 2015-02-03 199596.0

3 3 ENGINEER... ... 1991-05-25 210588.0

4 4 ELECTRICIAN ... 1994-10-22 89194.0

...

1995 1995 POLICE O... ... 2015-06-09 199596.0

1996 1996 COMMUNIC... ... 2013-10-06 210588.0

1997 1997 POLICE O... ... 2015-10-13 199596.0

1998 1998 POLICE O... ... 2011-07-02 199596.0

1999 1999 FIRE FIG... ... 2010-07-12 210588.0

Highlighting the maximum value from each
column

The college dataset has many numeric columns describing different metrics about each
school. Many people are interested in schools that perform the best for specific metrics.

This recipe discovers the school that has the maximum value for each numeric column and
styles the DataFrame to highlight the information.

Chapter 8

267

How to do it…
1. Read the college dataset with the institution name as the index:

>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college.dtypes

CITY object

STABBR object

HBCU float64

MENONLY float64

WOMENONLY float64

 ...

PCTPELL float64

PCTFLOAN float64

UG25ABV float64

MD_EARN_WNE_P10 object

GRAD_DEBT_MDN_SUPP object

Length: 26, dtype: object

2. All the other columns besides CITY and STABBR appear to be numeric. Examining
the data types from the preceding step reveals unexpectedly that the MD_EARN_WNE_
P10 and GRAD_DEBT_MDN_SUPP columns are of the object type and not numeric.
To help get a better idea of what kinds of values are in these columns, let's examine
a sample from them:
>>> college.MD_EARN_WNE_P10.sample(10, random_state=42)

INSTNM

Career Point College 20700

Ner Israel Rabbinical College PrivacyS...

Reflections Academy of Beauty NaN

Capital Area Technical College 26400

West Virginia University Institute of Technology 43400

Mid-State Technical College 32000

Strayer University-Huntsville Campus 49200

National Aviation Academy of Tampa Bay 45000

University of California-Santa Cruz 43000

Lexington Theological Seminary NaN

Name: MD_EARN_WNE_P10, dtype: object

Index Alignment

268

>>> college.GRAD_DEBT_MDN_SUPP.sample(10, random_state=42)

INSTNM

Career Point College 14977

Ner Israel Rabbinical College PrivacyS...

Reflections Academy of Beauty PrivacyS...

Capital Area Technical College PrivacyS...

West Virginia University Institute of Technology 23969

Mid-State Technical College 8025

Strayer University-Huntsville Campus 36173.5

National Aviation Academy of Tampa Bay 22778

University of California-Santa Cruz 19884

Lexington Theological Seminary PrivacyS...

Name: GRAD_DEBT_MDN_SUPP, dtype: object

3. These values are strings, but we would like them to be numeric. I like to use the
.value_counts method in this case to see whether it reveals any characters that
forced the column to be non-numeric:
>>> college.MD_EARN_WNE_P10.value_counts()

PrivacySuppressed 822

38800 151

21500 97

49200 78

27400 46

 ...

66700 1

163900 1

64400 1

58700 1

64100 1

Name: MD_EARN_WNE_P10, Length: 598, dtype: int64

>>> set(college.MD_EARN_WNE_P10.apply(type))

{<class 'float'>, <class 'str'>}

>>> college.GRAD_DEBT_MDN_SUPP.value_counts()

PrivacySuppressed 1510

9500 514

Chapter 8

269

27000 306

25827.5 136

25000 124

 ...

16078.5 1

27763.5 1

6382 1

27625 1

11300 1

Name: GRAD_DEBT_MDN_SUPP, Length: 2038, dtype: int64

4. The culprit appears to be that some schools have privacy concerns about these two
columns of data. To force these columns to be numeric, use the pandas function to_
numeric. If we use the errors='coerce' parameter, it will convert those values
to NaN:
>>> cols = ["MD_EARN_WNE_P10", "GRAD_DEBT_MDN_SUPP"]

>>> for col in cols:

... college[col] = pd.to_numeric(

... college[col], errors="coerce"

...)

>>> college.dtypes.loc[cols]

MD_EARN_WNE_P10 float64

GRAD_DEBT_MDN_SUPP float64

dtype: object

5. Use the .select_dtypes method to filter for only numeric columns. This will
exclude STABBR and CITY columns, where a maximum value doesn't make sense
with this problem:
>>> college_n = college.select_dtypes("number")

>>> college_n.head()

 HBCU MENONLY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

INSTNM ...

Alabama A... 1.0 0.0 ... 30300.0 33888.0

Universit... 0.0 0.0 ... 39700.0 21941.5

Amridge U... 0.0 0.0 ... 40100.0 23370.0

Universit... 0.0 0.0 ... 45500.0 24097.0

Alabama S... 1.0 0.0 ... 26600.0 33118.5

Index Alignment

270

6. Several columns have binary only (0 or 1) values that will not provide useful
information for maximum values. To find these columns, we can create a Boolean
Series and find all the columns that have two unique values with the .nunique
method:
>>> binary_only = college_n.nunique() == 2

>>> binary_only.head()

HBCU True

MENONLY True

WOMENONLY True

RELAFFIL True

SATVRMID False

dtype: bool

7. Use the Boolean array to create a list of binary columns:
>>> binary_cols = binary_only[binary_only].index

>>> binary_cols

Index(['HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL', 'DISTANCEONLY',
'CURROPER'], dtype='object')

8. Since we are looking for the maximum values, we can drop the binary columns using
the .drop method:
>>> college_n2 = college_n.drop(columns=binary_cols)

>>> college_n2.head()

 SATVRMID SATMTMID ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Alabama A... 424.0 420.0 ... 30300.0
33888.0

Universit... 570.0 565.0 ... 39700.0
21941.5

Amridge U... NaN NaN ... 40100.0
23370.0

Universit... 595.0 590.0 ... 45500.0
24097.0

Alabama S... 425.0 430.0 ... 26600.0
33118.5

Chapter 8

271

9. Now we can use the .idxmax method to find the index label of the maximum value
for each column:
>>> max_cols = college_n2.idxmax()

>>> max_cols

SATVRMID California Institute of Technology

SATMTMID California Institute of Technology

UGDS University of Phoenix-Arizona

UGDS_WHITE Mr Leon's School of Hair Design-Moscow

UGDS_BLACK Velvatex College of Beauty Culture

 ...

PCTPELL MTI Business College Inc

PCTFLOAN ABC Beauty College Inc

UG25ABV Dongguk University-Los Angeles

MD_EARN_WNE_P10 Medical College of Wisconsin

GRAD_DEBT_MDN_SUPP Southwest University of Visual Arts-Tucson

Length: 18, dtype: object

10. Call the .unique method on the max_cols Series. This returns an ndarray of the
index values in college_n2 that has the maximum values:
>>> unique_max_cols = max_cols.unique()

>>> unique_max_cols[:5]

array(['California Institute of Technology',

 'University of Phoenix-Arizona',

 "Mr Leon's School of Hair Design-Moscow",

 'Velvatex College of Beauty Culture',

 'Thunderbird School of Global Management'], dtype=object)

Index Alignment

272

11. Use the values of max_cols to select only those rows that have schools with a
maximum value and then use the .style attribute to highlight these values:
college_n2.loc[unique_max_cols].style.highlight_max()

Display maximum column values

12. Refactor the code to make it easier to read:

>>> def remove_binary_cols(df):

... binary_only = df.nunique() == 2

... cols = binary_only[binary_only].index.tolist()

... return df.drop(columns=cols)

>>> def select_rows_with_max_cols(df):

... max_cols = df.idxmax()

... unique = max_cols.unique()

... return df.loc[unique]

>>> (

... college

... .assign(

... MD_EARN_WNE_P10=pd.to_numeric(

... college.MD_EARN_WNE_P10, errors="coerce"

Chapter 8

273

...),

... GRAD_DEBT_MDN_SUPP=pd.to_numeric(

... college.GRAD_DEBT_MDN_SUPP, errors="coerce"

...),

...)

... .select_dtypes("number")

... .pipe(remove_binary_cols)

... .pipe(select_rows_with_max_cols)

...)

 SATVRMID SATMTMID ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Californi... 765.0 785.0 ... 77800.0
11812.5

Universit... NaN NaN ... NaN
33000.0

Mr Leon's... NaN NaN ... NaN
15710.0

Velvatex ... NaN NaN ... NaN
NaN

Thunderbi... NaN NaN ... 118900.0
NaN

...

...

MTI Busin... NaN NaN ... 23000.0
9500.0

ABC Beaut... NaN NaN ... NaN
16500.0

Dongguk U... NaN NaN ... NaN
NaN

Medical C... NaN NaN ... 233100.0
NaN

Southwest... NaN NaN ... 27200.0
49750.0

How it works…
The .idxmax method is a useful method, especially when the index is meaningfully labeled.
It was unexpected that both MD_EARN_WNE_P10 and GRAD_DEBT_MDN_SUPP were of the
object data type. When loading CSV files, pandas lists the column as an object type
(even though it might contain both number and string types) if the column contains at
least one string.

Index Alignment

274

By examining a specific column value in step 2, we were able to discover that we had strings
in these columns. In step 3, we use the .value_counts method to reveal offending
characters. We uncover the PrivacySuppressed values that are causing havoc.

pandas can force all strings that contain only numeric characters to numeric data types with
the to_numeric function. We do this in step 4. To override the default behavior of raising
an error when to_numeric encounters a string that cannot be converted, you must pass
coerce to the errors parameter. This forces all non-numeric character strings to become
missing values (np.nan).

Several columns do not have useful or meaningful maximum values. They were removed in
step 5 through step 8. The .select_dtypes method can be beneficial for wide DataFrames
with many columns.

In step 9, .idxmax iterates through all the columns to find the index of the maximum value
for each column. It outputs the results as a Series. The school with both the highest SAT math
and verbal scores is California Institute of Technology, while Dongguk University Los Angeles
has the highest number of students older than 25.

Although the information provided by .idxmax is convenient, it does not yield the
corresponding maximum value. To do this, we gather all the unique school names from the
values of the max_cols Series in step 10.

Next, in step 11, we index off a .loc to select rows based on the index label, which was set
to school names when loading the CSV in the first step. This filters for only schools that have
a maximum value. DataFrames have a .style attribute that itself has some methods to
alter the appearance of the displayed DataFrame. Highlighting the maximum value makes
the result much clearer.

Finally, we refactor the code to make it a clean pipeline.

There's more…
By default, the .highlight_max method highlights the maximum value of each column.
We can use the axis parameter to highlight the maximum value of each row instead. Here,
we select just the race percentage columns of the college dataset and highlight the race with
the highest percentage for each school:

>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college_ugds = college.filter(like="UGDS_").head()

Chapter 8

275

Display maximum column values

Replicating idxmax with method chaining
A good exercise is to attempt an implementation of a built-in DataFrame method on your own.
This type of replication can give you a deeper understanding of other pandas methods that
you normally wouldn't have come across. .idxmax is a challenging method to replicate using
only the methods covered thus far in the book.

This recipe slowly chains together basic methods to eventually find all the row index values
that contain a maximum column value.

How to do it…
1. Load in the college dataset and execute the same operations as the previous recipe

to get only the numeric columns that are of interest:
>>> def remove_binary_cols(df):

... binary_only = df.nunique() == 2

... cols = binary_only[binary_only].index.tolist()

... return df.drop(columns=cols)

>>> college_n = (

... college

... .assign(

... MD_EARN_WNE_P10=pd.to_numeric(

... college.MD_EARN_WNE_P10, errors="coerce"

...),

... GRAD_DEBT_MDN_SUPP=pd.to_numeric(

... college.GRAD_DEBT_MDN_SUPP, errors="coerce"

...),

Index Alignment

276

...)

... .select_dtypes("number")

... .pipe(remove_binary_cols)

...)

2. Find the maximum of each column with the .max method:
>>> college_n.max().head()

SATVRMID 765.0

SATMTMID 785.0

UGDS 151558.0

UGDS_WHITE 1.0

UGDS_BLACK 1.0

dtype: float64

3. Use the .eq DataFrame method to test each value against the column .max method.
By default, the .eq method aligns the columns of the column DataFrame with the
labels of the passed Series index:
>>> college_n.eq(college_n.max()).head()

 SATVRMID SATMTMID ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Alabama A... False False ... False
False

Universit... False False ... False
False

Amridge U... False False ... False
False

Universit... False False ... False
False

Alabama S... False False ... False
False

4. All the rows in this DataFrame that have at least one True value must contain
a column maximum. Let's use the .any method to find all such rows that have
at least one True value:
>>> has_row_max = (

... college_n

... .eq(college_n.max())

... .any(axis="columns")

...)

Chapter 8

277

>>> has_row_max.head()

INSTNM

Alabama A & M University False

University of Alabama at Birmingham False

Amridge University False

University of Alabama in Huntsville False

Alabama State University False

dtype: bool

5. There are only 18 columns, which means that there should only be at most 18 True
values in has_row_max. Let's find out how many there are:
>>> college_n.shape

(7535, 18)

>>> has_row_max.sum()

401

6. This was a bit unexpected, but it turns out that there are columns with many rows
that equal the maximum value. This is common with many of the percentage columns
that have a maximum of 1. .idxmax returns the first occurrence of the maximum
value. Let's back up a bit, remove the .any method, and look at the output from
step 3. Let's run the .cumsum method instead to accumulate all the True values:
>>> college_n.eq(college_n.max()).cumsum()

 SATVRMID SATMTMID ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Alabama A... 0 0 ... 0
0

Universit... 0 0 ... 0
0

Amridge U... 0 0 ... 0
0

Universit... 0 0 ... 0
0

Alabama S... 0 0 ... 0
0

...

...

SAE Insti... 1 1 ... 1
2

Rasmussen... 1 1 ... 1
2

Index Alignment

278

National ... 1 1 ... 1
2

Bay Area ... 1 1 ... 1
2

Excel Lea... 1 1 ... 1
2

7. Some columns have one unique maximum, like SATVRMID and SATMTMID, while
others like UGDS_WHITE have many. 109 schools have 100% of their undergraduates
as White. If we chain the .cumsum method one more time, the value 1 would only
appear once in each column and it would be the first occurrence of the maximum:
>>> (college_n.eq(college_n.max()).cumsum().cumsum())

 SATVRMID SATMTMID ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Alabama A... 0 0 ... 0
0

Universit... 0 0 ... 0
0

Amridge U... 0 0 ... 0
0

Universit... 0 0 ... 0
0

Alabama S... 0 0 ... 0
0

...

...

SAE Insti... 7305 7305 ... 3445
10266

Rasmussen... 7306 7306 ... 3446
10268

National ... 7307 7307 ... 3447
10270

Bay Area ... 7308 7308 ... 3448
10272

Excel Lea... 7309 7309 ... 3449
10274

8. We can now test the equality of each value against 1 with the .eq method and then
use the .any method to find rows that have at least one True value:
>>> has_row_max2 = (

... college_n.eq(college_n.max())

Chapter 8

279

... .cumsum()

... .cumsum()

... .eq(1)

... .any(axis="columns")

...)

>>> has_row_max2.head()

INSTNM

Alabama A & M University False

University of Alabama at Birmingham False

Amridge University False

University of Alabama in Huntsville False

Alabama State University False

dtype: bool

9. Check that has_row_max2 has no more True values than the number of columns:
>>> has_row_max2.sum()

16

10. We need all the institutions where has_row_max2 is True. We can use Boolean
indexing on the Series itself:
>>> idxmax_cols = has_row_max2[has_row_max2].index

>>> idxmax_cols

Index(['Thunderbird School of Global Management',

 'Southwest University of Visual Arts-Tucson', 'ABC Beauty
College Inc',

 'Velvatex College of Beauty Culture',

 'California Institute of Technology',

 'Le Cordon Bleu College of Culinary Arts-San Francisco',

 'MTI Business College Inc', 'Dongguk University-Los
Angeles',

 'Mr Leon's School of Hair Design-Moscow',

 'Haskell Indian Nations University', 'LIU Brentwood',

 'Medical College of Wisconsin', 'Palau Community College',

 'California University of Management and Sciences',

 'Cosmopolitan Beauty and Tech School', 'University of
Phoenix-Arizona'],

 dtype='object', name='INSTNM')

Index Alignment

280

11. All 16 of these institutions are the index of the first maximum occurrence for at least
one of the columns. We can check whether they are the same as the ones found with
the .idxmax method:
>>> set(college_n.idxmax().unique()) == set(idxmax_cols)

True

12. Refactor to an idx_max function:

>>> def idx_max(df):

... has_row_max = (

... df

... .eq(df.max())

... .cumsum()

... .cumsum()

... .eq(1)

... .any(axis="columns")

...)

... return has_row_max[has_row_max].index

>>> idx_max(college_n)

Index(['Thunderbird School of Global Management',

 'Southwest University of Visual Arts-Tucson', 'ABC Beauty
College Inc',

 'Velvatex College of Beauty Culture',

 'California Institute of Technology',

 'Le Cordon Bleu College of Culinary Arts-San Francisco',

 'MTI Business College Inc', 'Dongguk University-Los
Angeles',

 'Mr Leon's School of Hair Design-Moscow',

 'Haskell Indian Nations University', 'LIU Brentwood',

 'Medical College of Wisconsin', 'Palau Community College',

 'California University of Management and Sciences',

 'Cosmopolitan Beauty and Tech School', 'University of
Phoenix-Arizona'],

 dtype='object', name='INSTNM')

Chapter 8

281

How it works…
The first step replicates work from the previous recipe by converting two columns to numeric
and eliminating the binary columns. We find the maximum value of each column in step
2. Care needs to be taken here as pandas silently drops columns that cannot produce a
maximum. If this happens, then step 3 will still complete but provide False values for each
column without an available maximum.

Step 4 uses the .any method to scan across each row in search of at least one True value.
Any row with at least one True value contains a maximum value for a column. We sum up
the resulting Boolean Series in step 5 to determine how many rows contain a maximum.
Somewhat unexpectedly, there are far more rows than columns. Step 6 gives an insight into
why this happens. We take a cumulative sum of the output from step 3 and detect the total
number of rows that equal the maximum for each column.

Many colleges have 100% of their student population as only a single race. This is by far the
largest contributor to the multiple rows with maximums. As you can see, there is only one row
with a maximum value for both SAT score columns and undergraduate population, but several
of the race columns have a tie for the maximum.

Our goal is to find the first row with the maximum value. We need to take the cumulative sum
once more so that each column has only a single row equal to 1. Step 8 formats the code
to have one method per line and runs the .any method as was done in step 4. If this step
is successful, then we should have no more True values than the number of columns. Step
9 asserts that this is true.

To validate that we have found the same columns as .idxmax in the previous columns, we
use Boolean selection on has_row_max2 with itself. The columns will be in a different order,
so we convert the sequence of column names to sets, which are inherently unordered to
compare equality.

There's more…
It is possible to complete this recipe in one long line of code chaining the indexing operator
with an anonymous function. This little trick removes the need for step 10. We can time the
difference between the .idxmax method and our manual effort in this recipe:

>>> def idx_max(df):

... has_row_max = (

... df

... .eq(df.max())

... .cumsum()

... .cumsum()

... .eq(1)

Index Alignment

282

... .any(axis="columns")

... [lambda df_: df_]

... .index

...)

... return has_row_max

>>> %timeit college_n.idxmax().values

1.12 ms ± 28.4 μs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

>>> %timeit idx_max(college_n)

5.35 ms ± 55.2 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Our effort is, unfortunately, five times as slow as the built-in .idxmax pandas method, but
regardless of its performance regression, many creative and practical solutions use the
accumulation methods like .cumsum with Boolean Series to find streaks or specific patterns
along an axis.

Finding the most common maximum
of columns

The college dataset contains the undergraduate population percentage of eight different
races for over 7,500 colleges. It would be interesting to find the race with the highest
undergrad population for each school and then find the distribution of this result for the entire
dataset. We would be able to answer a question like, "What percentage of institutions have
more White students than any other race?"

In this recipe, we find the race with the highest percentage of the undergraduate population
for each school with the .idxmax method and then find the distribution of these maximums.

How to do it…
1. Read in the college dataset and select just those columns with undergraduate race

percentage information:
>>> college = pd.read_csv(

... "data/college.csv", index_col="INSTNM"

...)

>>> college_ugds = college.filter(like="UGDS_")

>>> college_ugds.head()

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

Chapter 8

283

INSTNM ...

Alabama A... 0.0333 0.9353 ... 0.0059 0.0138

Universit... 0.5922 0.2600 ... 0.0179 0.0100

Amridge U... 0.2990 0.4192 ... 0.0000 0.2715

Universit... 0.6988 0.1255 ... 0.0332 0.0350

Alabama S... 0.0158 0.9208 ... 0.0243 0.0137

2. Use the .idxmax method applied against the column axis to get the college name
with the highest race percentage for each row:
>>> highest_percentage_race = college_ugds.idxmax(

... axis="columns"

...)

>>> highest_percentage_race.head()

INSTNM

Alabama A & M University

University of Alabama at Birmingham

Amridge University

University of Alabama in Huntsville

Alabama State University

dtype: object

3. Use the .value_counts method to return the distribution of maximum occurrences.
Add the normalize=True parameter so that it sums to 1:

>>> highest_percentage_race.value_counts(normalize=True)

UGDS_WHITE 0.670352

UGDS_BLACK 0.151586

UGDS_HISP 0.129473

UGDS_UNKN 0.023422

UGDS_ASIAN 0.012074

UGDS_AIAN 0.006110

UGDS_NRA 0.004073

UGDS_NHPI 0.001746

UGDS_2MOR 0.001164

dtype: float64

Index Alignment

284

How it works…
The key to this recipe is recognizing that the columns all represent the same unit of
information. We can compare these columns with each other, which is usually not the case.
For instance, it wouldn't make sense to compare SAT verbal scores with the undergraduate
population. As the data is structured in this manner, we can apply the .idxmax method
to each row of data to find the column with the largest value. We need to alter its default
behavior with the axis parameter.

Step 3 completes this operation and returns a Series, to which we can now apply the
.value_counts method to return the distribution. We pass True to the normalize
parameter as we are interested in the distribution (relative frequency) and not the raw counts.

There's more…
We might want to explore more and answer the question: For those schools with more Black
students than any other race, what is the distribution of its second highest race percentage?

>>> (

... college_ugds

... [highest_percentage_race == "UGDS_BLACK"]

... .drop(columns="UGDS_BLACK")

... .idxmax(axis="columns")

... .value_counts(normalize=True)

...)

UGDS_WHITE 0.661228

UGDS_HISP 0.230326

UGDS_UNKN 0.071977

UGDS_NRA 0.018234

UGDS_ASIAN 0.009597

UGDS_2MOR 0.006718

UGDS_AIAN 0.000960

UGDS_NHPI 0.000960

dtype: float64

We needed to drop the UGDS_BLACK column before applying the same method from this
recipe. It seems that these schools with higher Black populations tend to have higher Hispanic
populations.

285

9
Grouping for

Aggregation, Filtration,
and Transformation

Introduction
One of the most fundamental tasks during data analysis involves splitting data into
independent groups before performing a calculation on each group. This methodology
has been around for quite some time but has more recently been referred to as split-apply-
combine. This chapter covers the powerful .groupby method, which allows you to group your
data in any way imaginable and apply any type of function independently to each group before
returning a single dataset.

Before we get started with the recipes, we will need to know just a little terminology. All basic
groupby operations have grouping columns, and each unique combination of values in these
columns represents an independent grouping of the data. The syntax looks as follows:

df.groupby(['list', 'of', 'grouping', 'columns'])
df.groupby('single_column') # when grouping by a single column

The result of calling the .groupby method is a groupby object. It is this groupby object
that will be the engine that drives all the calculations for this entire chapter. pandas does very
little when creating this groupby object, merely validating that grouping is possible. You will
have to chain methods on this groupby object to unleash its powers.

Grouping for Aggregation, Filtration, and Transformation

286

The most common use of the .groupby method is to perform an aggregation. What is an
aggregation? An aggregation takes place when a sequence of many inputs get summarized
or combined into a single value output. For example, summing up all the values of a column
or finding its maximum are aggregations applied to a sequence of data. An aggregation takes
a sequence and reduces it to a single value.

In addition to the grouping columns defined during the introduction, most aggregations have
two other components, the aggregating columns and aggregating functions. The aggregating
columns are the columns whose values will be aggregated. The aggregating functions define
what aggregations take place. Aggregation functions include sum, min, max, mean, count,
variance, std, and so on.

Defining an aggregation
In this recipe, we examine the flights dataset and perform the simplest aggregation involving
only a single grouping column, a single aggregating column, and a single aggregating function.
We will find the average arrival delay for each airline. pandas has different syntaxes to create
an aggregation, and this recipe will show them.

How to do it…
1. Read in the flights dataset:

>>> import pandas as pd

>>> import numpy as np

>>> flights = pd.read_csv('data/flights.csv')

>>> flights.head()

0 1 1 4 ... 65.0 0 0

1 1 1 4 ... -13.0 0 0

2 1 1 4 ... 35.0 0 0

3 1 1 4 ... -7.0 0 0

4 1 1 4 ... 39.0 0 0

2. Define the grouping columns (AIRLINE), aggregating columns (ARR_DELAY), and
aggregating functions (mean). Place the grouping column in the .groupby method
and then call the .agg method with a dictionary pairing the aggregating column
with its aggregating function. If you pass in a dictionary, it returns back a DataFrame
instance:
>>> (flights

... .groupby('AIRLINE')

... .agg({'ARR_DELAY':'mean'})

Chapter 9

287

...)

 ARR_DELAY

AIRLINE

AA 5.542661

AS -0.833333

B6 8.692593

DL 0.339691

EV 7.034580

... ...

OO 7.593463

UA 7.765755

US 1.681105

VX 5.348884

WN 6.397353

Alternatively, you may place the aggregating column in the index operator and then
pass the aggregating function as a string to .agg. This will return a Series:
>>> (flights

... .groupby('AIRLINE')

... ['ARR_DELAY']

... .agg('mean')

...)

AIRLINE

AA 5.542661

AS -0.833333

B6 8.692593

DL 0.339691

EV 7.034580

 ...

OO 7.593463

UA 7.765755

US 1.681105

VX 5.348884

WN 6.397353

Name: ARR_DELAY, Length: 14, dtype: float64

Grouping for Aggregation, Filtration, and Transformation

288

3. The string names used in the previous step are a convenience that pandas offers you
to refer to a particular aggregation function. You can pass any aggregating function
directly to the .agg method, such as the NumPy mean function. The output is the
same as the previous step:
>>> (flights

... .groupby('AIRLINE')

... ['ARR_DELAY']

... .agg(np.mean)

...)

AIRLINE

AA 5.542661

AS -0.833333

B6 8.692593

DL 0.339691

EV 7.034580

 ...

OO 7.593463

UA 7.765755

US 1.681105

VX 5.348884

WN 6.397353

Name: ARR_DELAY, Length: 14, dtype: float64

4. It's possible to skip the agg method altogether in this case and use the code in text
method directly. This output is also the same as step 3:

>>> (flights

... .groupby('AIRLINE')

... ['ARR_DELAY']

... .mean()

...)

AIRLINE

AA 5.542661

AS -0.833333

B6 8.692593

DL 0.339691

EV 7.034580

 ...

OO 7.593463

Chapter 9

289

UA 7.765755

US 1.681105

VX 5.348884

WN 6.397353

Name: ARR_DELAY, Length: 14, dtype: float64

How it works…
The syntax for the .groupby method is not as straightforward as other methods. Let's
intercept the chain of methods in step 2 by storing the result of the .groupby method
as its own variable:

>>> grouped = flights.groupby('AIRLINE')

>>> type(grouped)

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

A completely new intermediate object is first produced with its own distinct attributes and
methods. No calculations take place at this stage. pandas merely validates the grouping
columns. This groupby object has an .agg method to perform aggregations. One of
the ways to use this method is to pass it a dictionary mapping the aggregating column to
the aggregating function, as done in step 2. If you pass in a dictionary, the result will be
a DataFrame.

The pandas library often has more than one way to perform the same operation. Step
3 shows another way to perform a groupby. Instead of identifying the aggregating column in
the dictionary, place it inside the index operator as if you were selecting it as a column from
a DataFrame. The function string name is then passed as a scalar to the .agg method. The
result, in this case, is a Series.

You may pass any aggregating function to the .agg method. pandas allows you to use the
string names for simplicity, but you may also explicitly call an aggregating function as done
in step 4. NumPy provides many functions that aggregate values.

Step 5 shows one last syntax flavor. When you are only applying a single aggregating function
as in this example, you can often call it directly as a method on the groupby object itself
without .agg. Not all aggregation functions have a method equivalent, but most do.

There's more…
If you do not use an aggregating function with .agg, pandas raises an exception. For
instance, let's see what happens when we apply the square root function to each group:

>>> (flights

Grouping for Aggregation, Filtration, and Transformation

290

... .groupby('AIRLINE')

... ['ARR_DELAY']

... .agg(np.sqrt)

...)

Traceback (most recent call last):

 ...

ValueError: function does not reduce

Grouping and aggregating with multiple
columns and functions

It is possible to group and aggregate with multiple columns. The syntax is slightly different
than it is for grouping and aggregating with a single column. As usual with any kind of
grouping operation, it helps to identify the three components: the grouping columns,
aggregating columns, and aggregating functions.

In this recipe, we showcase the flexibility of the .groupby method by answering the following
queries:

 f Finding the number of canceled flights for every airline per weekday

 f Finding the number and percentage of canceled and diverted flights for every airline
per weekday

 f For each origin and destination, finding the total number of flights, the number
and percentage of canceled flights, and the average and variance of the airtime

How to do it…
1. Read in the flights dataset, and answer the first query by defining the grouping

columns (AIRLINE, WEEKDAY), the aggregating column (CANCELLED), and the
aggregating function (sum):
>>> (flights

... .groupby(['AIRLINE', 'WEEKDAY'])

... ['CANCELLED']

... .agg('sum')

...)

AIRLINE WEEKDAY

AA 1 41

 2 9

Chapter 9

291

 3 16

 4 20

 5 18

 ..

WN 3 18

 4 10

 5 7

 6 10

 7 7

Name: CANCELLED, Length: 98, dtype: int64

2. Answer the second query by using a list for each pair of grouping and aggregating
columns, and use a list for the aggregating functions:
>>> (flights

... .groupby(['AIRLINE', 'WEEKDAY'])

... [['CANCELLED', 'DIVERTED']]

... .agg(['sum', 'mean'])

...)

 CANCELLED DIVERTED

 sum mean sum mean

AIRLINE WEEKDAY

AA 1 41 0.032106 6 0.004699

 2 9 0.007341 2 0.001631

 3 16 0.011949 2 0.001494

 4 20 0.015004 5 0.003751

 5 18 0.014151 1 0.000786

...

WN 3 18 0.014118 2 0.001569

 4 10 0.007911 4 0.003165

 5 7 0.005828 0 0.000000

 6 10 0.010132 3 0.003040

 7 7 0.006066 3 0.002600

3. Answer the third query using a dictionary in the .agg method to map specific
aggregating columns to specific aggregating functions:
>>> (flights

... .groupby(['ORG_AIR', 'DEST_AIR'])

Grouping for Aggregation, Filtration, and Transformation

292

... .agg({'CANCELLED':['sum', 'mean', 'size'],

... 'AIR_TIME':['mean', 'var']})

...)

 CANCELLED ... AIR_TIME

 sum mean ... mean var

ORG_AIR DEST_AIR ...

ATL ABE 0 0.000000 ... 96.387097 45.778495

 ABQ 0 0.000000 ... 170.500000 87.866667

 ABY 0 0.000000 ... 28.578947 6.590643

 ACY 0 0.000000 ... 91.333333 11.466667

 AEX 0 0.000000 ... 78.725000 47.332692

...

SFO SNA 4 0.032787 ... 64.059322 11.338331

 STL 0 0.000000 ... 198.900000 101.042105

 SUN 0 0.000000 ... 78.000000 25.777778

 TUS 0 0.000000 ... 100.200000 35.221053

 XNA 0 0.000000 ... 173.500000 0.500000

4. In pandas 0.25, there is a named aggregation object that can create non-hierarchical
columns. We will repeat the above query using them:
>>> (flights

... .groupby(['ORG_AIR', 'DEST_AIR'])

... .agg(sum_cancelled=pd.NamedAgg(column='CANCELLED',
aggfunc='sum'),

... mean_cancelled=pd.NamedAgg(column='CANCELLED',
aggfunc='mean'),

... size_cancelled=pd.NamedAgg(column='CANCELLED',
aggfunc='size'),

... mean_air_time=pd.NamedAgg(column='AIR_TIME',
aggfunc='mean'),

... var_air_time=pd.NamedAgg(column='AIR_TIME',
aggfunc='var'))

...)

 sum_cancelled mean_cancelled ... mean_air_
time

ORG_AIR DEST_AIR ...

ATL ABE 0 0.000000 ... 96.387097

 ABQ 0 0.000000 ... 170.500000

Chapter 9

293

 ABY 0 0.000000 ... 28.578947

 ACY 0 0.000000 ... 91.333333

 AEX 0 0.000000 ... 78.725000

...

SFO SNA 4 0.032787 ... 64.059322

 STL 0 0.000000 ... 198.900000

 SUN 0 0.000000 ... 78.000000

 TUS 0 0.000000 ... 100.200000

 XNA 0 0.000000 ... 173.500000

How it works…
To group by multiple columns as in step 1, we pass a list of the string names to the .groupby
method. Each unique combination of AIRLINE and WEEKDAY forms its own group. Within
each of these groups, the sum of the canceled flights is calculated and then returned as
a Series.

Step 2 groups by both AIRLINE and WEEKDAY, but this time aggregates two columns.
It applies each of the two aggregation functions, using the strings sum and mean, to each
column, resulting in four returned columns per group.

Step 3 goes even further, and uses a dictionary to map specific aggregating columns to
different aggregating functions. Notice that the size aggregating function returns the total
number of rows per group. This is different than the count aggregating function, which
returns the number of non-missing values per group.

Step 4 shows the new syntax to create flat columns, named aggregations.

There's more…
To flatten the columns in step 3, you can use the .to_flat_index method (available since
pandas 0.24):

>>> res = (flights

... .groupby(['ORG_AIR', 'DEST_AIR'])

... .agg({'CANCELLED':['sum', 'mean', 'size']

... 'AIR_TIME':['mean', 'var']})

...)

>>> res.columns = ['_'.join(x) for x in

... res.columns.to_flat_index()]

Grouping for Aggregation, Filtration, and Transformation

294

>>> res

 CANCELLED_sum CANCELLED_mean ... AIR_TIME_mean

ORG_AIR DEST_AIR ...

ATL ABE 0 0.000000 ... 96.387097

 ABQ 0 0.000000 ... 170.500000

 ABY 0 0.000000 ... 28.578947

 ACY 0 0.000000 ... 91.333333

 AEX 0 0.000000 ... 78.725000

...

SFO SNA 4 0.032787 ... 64.059322

 STL 0 0.000000 ... 198.900000

 SUN 0 0.000000 ... 78.000000

 TUS 0 0.000000 ... 100.200000

 XNA 0 0.000000 ... 173.500000

That is kind of ugly and I would prefer a chain operation to flatten the columns. Unfortunately,
the .reindex method does not support flattening. Instead, we will have to leverage the
.pipe method:

>>> def flatten_cols(df):

... df.columns = ['_'.join(x) for x in

... df.columns.to_flat_index()]

... return df

>>> res = (flights

... .groupby(['ORG_AIR', 'DEST_AIR'])

... .agg({'CANCELLED':['sum', 'mean', 'size'],

... 'AIR_TIME':['mean', 'var']})

... .pipe(flatten_cols)

...)

>>> res

 CANCELLED_sum CANCELLED_mean ... AIR_TIME_mean

ORG_AIR DEST_AIR ...

ATL ABE 0 0.000000 ... 96.387097

 ABQ 0 0.000000 ... 170.500000

 ABY 0 0.000000 ... 28.578947

Chapter 9

295

 ACY 0 0.000000 ... 91.333333

 AEX 0 0.000000 ... 78.725000

...

SFO SNA 4 0.032787 ... 64.059322

 STL 0 0.000000 ... 198.900000

 SUN 0 0.000000 ... 78.000000

 TUS 0 0.000000 ... 100.200000

 XNA 0 0.000000 ... 173.500000

Be aware that when grouping with multiple columns, pandas creates a hierarchical index, or
multi-index. In the preceding example, it returned 1,130 rows. However, if one of the columns
that we group by is categorical (and has a category type, not an object type), then pandas
will create a Cartesian product of all combinations for each level. In this case, it returns
2,710 rows. However, if you have categorical columns with higher cardinality, you can get
many more values:

>>> res = (flights

... .assign(ORG_AIR=flights.ORG_AIR.astype('category'))

... .groupby(['ORG_AIR', 'DEST_AIR'])

... .agg({'CANCELLED':['sum', 'mean', 'size'],

... 'AIR_TIME':['mean', 'var']})

...)

>>> res

 CANCELLED ... AIR_TIME

 sum mean ... mean var

ORG_AIR DEST_AIR ...

ATL ABE 0.0 0.0 ... 96.387097 45.778495

 ABI NaN NaN ... NaN NaN

 ABQ 0.0 0.0 ... 170.500000 87.866667

 ABR NaN NaN ... NaN NaN

 ABY 0.0 0.0 ... 28.578947 6.590643

...

SFO TYS NaN NaN ... NaN NaN

 VLD NaN NaN ... NaN NaN

 VPS NaN NaN ... NaN NaN

 XNA 0.0 0.0 ... 173.500000 0.500000

 YUM NaN NaN ... NaN NaN

Grouping for Aggregation, Filtration, and Transformation

296

To remedy the combinatoric explosion, use the observed=True parameter. This makes
the categorical group bys work like grouping with string types, and only shows the observed
values and not the Cartesian product:

>>> res = (flights

... .assign(ORG_AIR=flights.ORG_AIR.astype('category'))

... .groupby(['ORG_AIR', 'DEST_AIR'], observed=True)

... .agg({'CANCELLED':['sum', 'mean', 'size'],

... 'AIR_TIME':['mean', 'var']})

...)

>>> res

 CANCELLED ... AIR_TIME

 sum mean ... mean var

ORG_AIR DEST_AIR ...

LAX ABQ 1 0.018182 ... 89.259259 29.403215

 ANC 0 0.000000 ... 307.428571 78.952381

 ASE 1 0.038462 ... 102.920000 102.243333

 ATL 0 0.000000 ... 224.201149 127.155837

 AUS 0 0.000000 ... 150.537500 57.897310

...

MSP TTN 1 0.125000 ... 124.428571 57.952381

 TUL 0 0.000000 ... 91.611111 63.075163

 TUS 0 0.000000 ... 176.000000 32.000000

 TVC 0 0.000000 ... 56.600000 10.300000

 XNA 0 0.000000 ... 90.642857 115.939560

Removing the MultiIndex after grouping
Inevitably, when using groupby, you will create a MultiIndex. MultiIndexes can happen in both
the index and the columns. DataFrames with MultiIndexes are more difficult to navigate and
occasionally have confusing column names as well.

In this recipe, we perform an aggregation with the .groupby method to create a DataFrame
with a MultiIndex for the rows and columns. Then, we manipulate the index so that it has
a single level and the column names are descriptive.

Chapter 9

297

How to do it…
1. Read in the flights dataset, write a statement to find the total and average miles

flown, and the maximum and minimum arrival delay for each airline for each
weekday:
>>> flights = pd.read_csv('data/flights.csv')

>>> airline_info = (flights

... .groupby(['AIRLINE', 'WEEKDAY'])

... .agg({'DIST':['sum', 'mean'],

... 'ARR_DELAY':['min', 'max']})

... .astype(int)

...)

>>> airline_info

 DIST ARR_DELAY

 sum mean min max

AIRLINE WEEKDAY

AA 1 1455386 1139 -60 551

 2 1358256 1107 -52 725

 3 1496665 1117 -45 473

 4 1452394 1089 -46 349

 5 1427749 1122 -41 732

...

WN 3 997213 782 -38 262

 4 1024854 810 -52 284

 5 981036 816 -44 244

 6 823946 834 -41 290

 7 945679 819 -45 261

2. Both the rows and columns are labeled by a MultiIndex with two levels. Let's squash
both down to just a single level. To address the columns, we use the MultiIndex
method, .to_flat_index. Let's display the output of each level and then
concatenate both levels before setting it as the new column values:
>>> airline_info.columns.get_level_values(0)

Index(['DIST', 'DIST', 'ARR_DELAY', 'ARR_DELAY'], dtype='object')

>>> airline_info.columns.get_level_values(1)

Index(['sum', 'mean', 'min', 'max'], dtype='object')

>>> airline_info.columns.to_flat_index()

Grouping for Aggregation, Filtration, and Transformation

298

Index([('DIST', 'sum'), ('DIST', 'mean'), ('ARR_DELAY', 'min'),

 ('ARR_DELAY', 'max')],

 dtype='object')

>>> airline_info.columns = ['_'.join(x) for x in

... airline_info.columns.to_flat_index()]

>>> airline_info

 DIST_sum DIST_mean ARR_DELAY_min ARR_DELAY_max

AIRLINE WEEKDAY

AA 1 1455386 1139 -60 551

 2 1358256 1107 -52 725

 3 1496665 1117 -45 473

 4 1452394 1089 -46 349

 5 1427749 1122 -41 732

...

WN 3 997213 782 -38 262

 4 1024854 810 -52 284

 5 981036 816 -44 244

 6 823946 834 -41 290

 7 945679 819 -45 261

3. A quick way to get rid of the row MultiIndex is to use the .reset_index method:
>>> airline_info.reset_index()

 AIRLINE WEEKDAY ... ARR_DELAY_min ARR_DELAY_max

0 AA 1 ... -60 551

1 AA 2 ... -52 725

2 AA 3 ... -45 473

3 AA 4 ... -46 349

4 AA 5 ... -41 732

..

93 WN 3 ... -38 262

94 WN 4 ... -52 284

95 WN 5 ... -44 244

96 WN 6 ... -41 290

97 WN 7 ... -45 261

Chapter 9

299

4. Refactor the code to make it readable. Use the pandas 0.25 functionality to flatten
columns automatically:

>>> (flights

... .groupby(['AIRLINE', 'WEEKDAY'])

... .agg(dist_sum=pd.NamedAgg(column='DIST', aggfunc='sum'),

... dist_mean=pd.NamedAgg(column='DIST', aggfunc='mean'),

... arr_delay_min=pd.NamedAgg(column='ARR_DELAY',
aggfunc='min'),

... arr_delay_max=pd.NamedAgg(column='ARR_DELAY',
aggfunc='max'))

... .astype(int)

... .reset_index()

...)

 AIRLINE WEEKDAY ... ARR_DELAY_min ARR_DELAY_max

0 AA 1 ... -60 551

1 AA 2 ... -52 725

2 AA 3 ... -45 473

3 AA 4 ... -46 349

4 AA 5 ... -41 732

..

93 WN 3 ... -38 262

94 WN 4 ... -52 284

95 WN 5 ... -44 244

96 WN 6 ... -41 290

97 WN 7 ... -45 261

How it works…
When using the .agg method to perform an aggregation on multiple columns, pandas creates
an index object with two levels. The aggregating columns become the top level, and the
aggregating functions become the bottom level. pandas displays MultiIndex levels differently
to single-level columns. Except for the innermost levels, repeated index values do not get
displayed in Jupyter or a Python shell. You can inspect the DataFrame from step 1 to verify
this. For instance, the DIST column shows up only once, but it refers to both of the first
two columns.

Grouping for Aggregation, Filtration, and Transformation

300

Step 2 defines new columns by first retrieving the underlying values of each of the levels with
the MultiIndex method, .get_level_values. This method accepts an integer identifying
the index level. They are numbered beginning with zero from the outside (top/left). We use the
recently added index method, .to_flat_index, in combination with a list comprehension
to create strings for each column. We assign these new values to the columns attribute.

In step 3, we make use of the .reset_index method to push both index levels into columns.
This is easy, and I wish there was a similar method for column name compaction.

In step 4, we use the NamedAgg class (new in pandas 0.25) to create flat aggregate columns.

There's more…
By default, at the end of a groupby operation, pandas puts all of the grouping columns in the
index. The as_index parameter in the .groupby method can be set to False to avoid this
behavior. You can chain the .reset_index method after grouping to get the same effect as
seen in step 3. Let's see an example of this by finding the average distance traveled per flight
from each airline:

>>> (flights

... .groupby(['AIRLINE'], as_index=False)

... ['DIST']

... .agg('mean')

... .round(0)

...)

 AIRLINE DIST

0 AA 1114.0

1 AS 1066.0

2 B6 1772.0

3 DL 866.0

4 EV 460.0

..

9 OO 511.0

10 UA 1231.0

11 US 1181.0

12 VX 1240.0

13 WN 810.0

Chapter 9

301

Take a look at the order of the airlines in the previous result. By default, pandas sorts the
grouping columns. The sort parameter exists within the .groupby method and defaults
to True. You may set it to False to keep the order of the grouping columns the same as
how they are encountered in the dataset. There is a small performance improvement by not
sorting your data.

Grouping with a custom aggregation
function

pandas provides a number of aggregation functions to use with the groupby object. At some
point, you may need to write your own custom user-defined function that does not exist in
pandas or NumPy.

In this recipe, we use the college dataset to calculate the mean and standard deviation
of the undergraduate student population per state. We then use this information to find the
maximum number of standard deviations from the mean that any single population value
is per state.

How to do it…
1. Read in the college dataset, and find the mean and standard deviation of the

undergraduate population by state:
>>> college = pd.read_csv('data/college.csv')

>>> (college

... .groupby('STABBR')

... ['UGDS']

... .agg(['mean', 'std'])

... .round(0)

...)

 mean std

STABBR

AK 2493.0 4052.0

AL 2790.0 4658.0

AR 1644.0 3143.0

AS 1276.0 NaN

AZ 4130.0 14894.0

...

VT 1513.0 2194.0

Grouping for Aggregation, Filtration, and Transformation

302

WA 2271.0 4124.0

WI 2655.0 4615.0

WV 1758.0 5957.0

WY 2244.0 2745.0

2. This output isn't quite what we desire. We are not looking for the mean and standard
deviations of the entire group but the maximum number of standard deviations away
from the mean for any one institution. To calculate this, we need to subtract the mean
undergraduate population by state from each institution's undergraduate population
and then divide by the standard deviation. This standardizes the undergraduate
population for each group. We can then take the maximum of the absolute value of
these scores to find the one that is farthest away from the mean. pandas does not
provide a function capable of doing this. Instead, we will need to create a custom
function:
>>> def max_deviation(s):

... std_score = (s - s.mean()) / s.std()

... return std_score.abs().max()

3. After defining the function, pass it directly to the .agg method to complete the
aggregation:

>>> (college

... .groupby('STABBR')

... ['UGDS']

... .agg(max_deviation)

... .round(1)

...)

STABBR

AK 2.6

AL 5.8

AR 6.3

AS NaN

AZ 9.9

 ...

VT 3.8

WA 6.6

WI 5.8

WV 7.2

WY 2.8

Name: UGDS, Length: 59, dtype: float64

Chapter 9

303

How it works…
There is no predefined pandas function to calculate the maximum number of standard
deviations away from the mean. We need to write our own function. Notice that this custom
function, max_deviation, accepts a single parameter, s.

In step 3, you will notice that the function name is placed inside the .agg method without
directly being called. Nowhere is the parameter s explicitly passed to max_deviation.
Instead, pandas implicitly passes the UGDS column as a Series to max_deviation.

The max_deviation function is called once for each group. As s is a Series, all normal
Series methods are available. It subtracts the mean of that particular grouping from each
of the values in the group before dividing by the standard deviation in a process called
standardization.

As we are interested in absolute deviation from the mean, we take the absolute value from
all the standardized scores and return the maximum. The .agg method requires that we
return a scalar from the function, or else an exception will be raised.

pandas defaults to using the sample standard deviation, which is undefined for any groups
with just a single value. For instance, the state abbreviation AS (American Samoa) has a
missing value returned as it has only a single institution in the dataset.

There's more…
It is possible to apply our custom function to multiple aggregating columns. We simply add
more column names to the indexing operator. The max_deviation function only works with
numeric columns:

>>> (college

... .groupby('STABBR')

... [['UGDS', 'SATVRMID', 'SATMTMID']]

... .agg(max_deviation)

... .round(1)

...)

 UGDS SATVRMID SATMTMID

STABBR

AK 2.6 NaN NaN

AL 5.8 1.6 1.8

AR 6.3 2.2 2.3

AS NaN NaN NaN

AZ 9.9 1.9 1.4

Grouping for Aggregation, Filtration, and Transformation

304

...

VT 3.8 1.9 1.9

WA 6.6 2.2 2.0

WI 5.8 2.4 2.2

WV 7.2 1.7 2.1

WY 2.8 NaN NaN

You can also use your custom aggregation function along with the prebuilt functions. The
following does this and groups by state and religious affiliation:

>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATVRMID', 'SATMTMID']]

... .agg([max_deviation, 'mean', 'std'])

... .round(1)

...)

 UGDS ... SATMTMID

 max_deviation mean ... mean std

STABBR RELAFFIL ...

AK 0 2.1 3508.9 ... NaN NaN

 1 1.1 123.3 ... 503.0 NaN

AL 0 5.2 3248.8 ... 515.8 56.7

 1 2.4 979.7 ... 485.6 61.4

AR 0 5.8 1793.7 ... 503.6 39.0

...

WI 0 5.3 2879.1 ... 591.2 85.7

 1 3.4 1716.2 ... 526.6 42.5

WV 0 6.9 1873.9 ... 480.0 27.7

 1 1.3 716.4 ... 484.8 17.7

WY 0 2.8 2244.4 ... 540.0 NaN

Notice that pandas uses the name of the function as the name for the returned column.
You can change the column name directly with the .rename method or you can modify
the function attribute .__name__:

>>> max_deviation.__name__

'max_deviation'

>>> max_deviation.__name__ = 'Max Deviation'

>>> (college

Chapter 9

305

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATVRMID', 'SATMTMID']]

... .agg([max_deviation, 'mean', 'std'])

... .round(1)

...)

 UGDS ... SATMTMID

 Max Deviation mean ... mean std

STABBR RELAFFIL ...

AK 0 2.1 3508.9 ... NaN NaN

 1 1.1 123.3 ... 503.0 NaN

AL 0 5.2 3248.8 ... 515.8 56.7

 1 2.4 979.7 ... 485.6 61.4

AR 0 5.8 1793.7 ... 503.6 39.0

...

WI 0 5.3 2879.1 ... 591.2 85.7

 1 3.4 1716.2 ... 526.6 42.5

WV 0 6.9 1873.9 ... 480.0 27.7

 1 1.3 716.4 ... 484.8 17.7

WY 0 2.8 2244.4 ... 540.0 NaN

Customizing aggregating functions with
*args and **kwargs

When writing your own user-defined customized aggregation function, pandas implicitly
passes it each of the aggregating columns one at a time as a Series. Occasionally, you
will need to pass more arguments to your function than just the Series itself. To do so, you
need to be aware of Python's ability to pass an arbitrary number of arguments to functions.

The signature to .agg is agg(func, *args, **kwargs). The func parameter is
a reducing function, the string name of a reducing method, a list of reducing functions,
or a dictionary mapping columns to functions or a list of functions. Additionally, as we have
seen, you can use keyword arguments to create named aggregations.

If you have a reducing function that takes additional arguments that you would like to use,
you can leverage the *args and **kwargs parameters to pass arguments to the reduction
function. You can use *args to pass an arbitrary number of positional arguments to your
customized aggregation function. Similarly, **kwargs allows you to pass an arbitrary
number of keyword arguments.

Grouping for Aggregation, Filtration, and Transformation

306

In this recipe, we will build a customized function for the college dataset that finds the
percentage of schools by state and religious affiliation that have an undergraduate population
between two values.

How to do it…
1. Define a function that returns the percentage of schools with an undergraduate

population of between 1,000 and 3,000:
>>> def pct_between_1_3k(s):

... return (s

... .between(1_000, 3_000)

... .mean()

... * 100

...)

2. Calculate this percentage grouping by state and religious affiliation:
>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... ['UGDS']

... .agg(pct_between_1_3k)

... .round(1)

...)

STABBR RELAFFIL

AK 0 14.3

 1 0.0

AL 0 23.6

AR 0 27.9

 ...

WI 0 13.8

 1 36.0

WV 0 24.6

 1 37.5

WY 0 54.5

Name: UGDS, Length: 112, dtype: float64

3. This function works, but it does not give the user any flexibility to choose the lower
and upper bound. Let's create a new function that allows the user to parameterize
these bounds:
>>> def pct_between(s, low, high):

... return s.between(low, high).mean() * 100

Chapter 9

307

4. Pass this new function to the .agg method along with the lower and upper bounds:

>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... ['UGDS']

... .agg(pct_between, 1_000, 10_000)

... .round(1)

...)

STABBR RELAFFIL

AK 0 42.9

 1 0.0

AL 0 45.8

 1 37.5

AR 0 39.7

 ...

WI 0 31.0

 1 44.0

WV 0 29.2

 1 37.5

WY 0 72.7

Name: UGDS, Length: 112, dtype: float64

How it works…
Step 1 creates a function that doesn't accept any extra arguments. The upper and lower
bounds are hardcoded into the function, which isn't very flexible. Step 2 shows the results
of this aggregation.

We create a more flexible function in step 3 where we parameterize both the lower and upper
bounds dynamically. Step 4 is where the magic of *args and **kwargs comes into play.
In this particular example, we pass two non-keyword arguments, 1_000 and 10_000, to
the .agg method. pandas passes these two arguments respectively to the low and high
parameters of pct_between.

There are a few ways we could achieve the same result in step 4. We could have explicitly
used keyword parameters to produce the same result:

 (college

 .groupby(['STABBR', 'RELAFFIL'])

 ['UGDS']

Grouping for Aggregation, Filtration, and Transformation

308

 .agg(pct_between, high=10_000, low=1_000)

 .round(1)

)

There's more…
If we want to call multiple aggregation functions and some of them need parameters, we can
utilize Python's closure functionality to create a new function that has the parameters closed
over in its calling environment:

>>> def between_n_m(n, m):

... def wrapper(ser):

... return pct_between(ser, n, m)

... wrapper.__name__ = f'between_{n}_{m}'

... return wrapper

>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... ['UGDS']

... .agg([between_n_m(1_000, 10_000), 'max', 'mean'])

... .round(1)

...)

 between_1000_10000 max mean

STABBR RELAFFIL

AK 0 42.9 12865.0 3508.9

 1 0.0 275.0 123.3

AL 0 45.8 29851.0 3248.8

 1 37.5 3033.0 979.7

AR 0 39.7 21405.0 1793.7

...

WI 0 31.0 29302.0 2879.1

 1 44.0 8212.0 1716.2

WV 0 29.2 44924.0 1873.9

 1 37.5 1375.0 716.4

WY 0 72.7 9910.0 2244.4

Chapter 9

309

Examining the groupby object
The immediate result from using the .groupby method on a DataFrame is a groupby object.
Usually, we chain operations on this object to do aggregations or transformations without ever
storing the intermediate values in variables.

In this recipe, we examine the groupby object to examine individual groups.

How to do it…
1. Let's get started by grouping the state and religious affiliation columns from the

college dataset, saving the result to a variable and confirming its type:
>>> college = pd.read_csv('data/college.csv')

>>> grouped = college.groupby(['STABBR', 'RELAFFIL'])

>>> type(grouped)

<class 'pandas.core.groupby.generic.DataFrameGroupBy'>

2. Use the dir function to discover the attributes of a groupby object:
>>> print([attr for attr in dir(grouped) if not

... attr.startswith('_')])

['CITY', 'CURROPER', 'DISTANCEONLY', 'GRAD_DEBT_MDN_SUPP', 'HBCU',
'INSTNM',

'MD_EARN_ WNE_P10', 'MENONLY', 'PCTFLOAN', 'PCTPELL', 'PPTUG_EF',
'RELAFFIL',

'SATMTMID', 'SATVRMID' , 'STABBR', 'UG25ABV', 'UGDS', 'UGDS_2MOR',
'UGDS_AIAN',

'UGDS_ASIAN', 'UGDS_BLACK', 'UGDS _HISP', 'UGDS_NHPI', 'UGDS_NRA',
'UGDS_UNKN',

'UGDS_WHITE', 'WOMENONLY', 'agg', 'aggregate ', 'all', 'any',
'apply',

'backfill', 'bfill', 'boxplot', 'corr', 'corrwith', 'count', 'co
v', 'cumcount',

'cummax', 'cummin', 'cumprod', 'cumsum', 'describe', 'diff',
'dtypes', 'ex

panding', 'ffill', 'fillna', 'filter', 'first', 'get_group',
'groups', 'head',

'hist', 'id xmax', 'idxmin', 'indices', 'last', 'mad', 'max',
'mean', 'median',

'min', 'ndim', 'ngroup ', 'ngroups', 'nth', 'nunique', 'ohlc',
'pad',

Grouping for Aggregation, Filtration, and Transformation

310

'pct_change', 'pipe', 'plot', 'prod', 'quan tile', 'rank',
'resample',

'rolling', 'sem', 'shift', 'size', 'skew', 'std', 'sum', 'tail' ,
'take',

'transform', 'tshift', 'var']

3. Find the number of groups with the .ngroups attribute:
>>> grouped.ngroups

112

4. To find the uniquely identifying labels for each group, look in the .groups attribute,
which contains a dictionary of each unique group mapped to all the corresponding
index labels of that group. Because we grouped by two columns, each of the keys has
a tuple, one value for the STABBR column and another for the RELAFFIL column:
>>> groups = list(grouped.groups)

>>> groups[:6]

[('AK', 0), ('AK', 1), ('AL', 0), ('AL', 1), ('AR', 0), ('AR', 1)]

5. Retrieve a single group with the .get_group method by passing it a tuple of an
exact group label. For example, to get all the religiously affiliated schools in the state
of Florida, do the following:
>>> grouped.get_group(('FL', 1))

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

712 The Bapt... Graceville ... 30800 20052

713 Barry Un... Miami ... 44100 28250

714 Gooding ... Panama City ... NaN PrivacyS...

715 Bethune-... Daytona 29400 36250

724 Johnson ... Kissimmee ... 26300 20199

...

7486 Strayer ... Coral Sp... ... 49200 36173.5

7487 Strayer ... Fort Lau... ... 49200 36173.5

7488 Strayer ... Miramar ... 49200 36173.5

7489 Strayer ... Miami ... 49200 36173.5

7490 Strayer ... Miami ... 49200 36173.5

6. You may want to take a peek at each individual group. This is possible because
groupby objects are iterable. If you are in Jupyter, you can leverage the display
function to show each group in a single cell (otherwise, Jupyter will only show the
result of the last statement of the cell):
from IPython.display import display

Chapter 9

311

 for name, group in grouped:

 print(name)

 display(group.head(3))

Displaying multiple dataframes

However, I typically want to see some example data from a single group to figure out
what function I want to apply to the groups. If I know the names of the values from
the columns I grouped by, I can use the previous step. Often, I don't know those
names, but I also don't need to see all of the groups. The following is some debugging
of the code that is usually sufficient to understand what a group looks like:
>>> for name, group in grouped:

... print(name)

... print(group)

... break

('AK', 0)

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

60 Universi... Anchorage ... 42500 19449.5

62 Universi... Fairbanks ... 36200 19355

Grouping for Aggregation, Filtration, and Transformation

312

63 Universi... Juneau ... 37400 16875

65 AVTEC-Al... Seward ... 33500 PrivacyS...

66 Charter ... Anchorage ... 39200 13875

67 Alaska C... Anchorage ... 28700 8994

5171 Ilisagvi... Barrow ... 24900 PrivacyS...

7. You can also call the .head method on your groupby object to get the first rows of
each group together in a single DataFrame:

>>> grouped.head(2)

 INSTNM CITY ... MD_EARN_WNE_P10 GRAD_DEBT_MDN_
SUPP

0 Alabama ... Normal ... 30300 33888

1 Universi... Birmingham ... 39700 21941.5

2 Amridge ... Montgomery ... 40100 23370

10 Birmingh... Birmingham ... 44200 27000

43 Prince I... Elmhurst ... PrivacyS... 20992

...

5289 Pacific ... Mangilao ... PrivacyS... PrivacyS...

6439 Touro Un... Henderson ... NaN PrivacyS...

7352 Marinell... Henderson ... 21200 9796.5

7404 Universi... St. Croix ... 31800 15150

7419 Computer... Las Cruces ... 21300 14250

How it works…
Step 1 creates our groupby object. We can display all the public attributes and methods to
reveal the functionality of an object as was done in step 2. Each group is uniquely identified by
a tuple containing a unique combination of the values in the grouping columns. pandas allows
you to select a specific group as a DataFrame with the .get_group method shown in step 5.

It is rare that you will need to iterate through your groups. In fact, you should avoid doing
so, as it can be quite slow. Occasionally, however, you will have no other choice. When
iterating through a groupby object, you are given a tuple containing the group name and the
DataFrame with the grouping columns moved into the index. This tuple is unpacked into the
name and group variables in the for loop in step 6.

One thing you can do while iterating through your groups is to display a few of the rows from
each group directly in the notebook. To do this, you can either use the print function or the
display function from the IPython.display module if you are using Jupyter.

Chapter 9

313

There's more…
There are several useful methods that were not explored from the list in step 2. Take, for
instance, the .nth method, which, when provided with a list of integers, selects those specific
rows from each group. For example, the following operation selects the first and last rows from
each group:

>>> grouped.nth([1, -1])

 INSTNM CITY ... MD_EARN_WNE_P10

STABBR RELAFFIL ...

AK 0 Universi... Fairbanks ... 36200

 0 Ilisagvi... Barrow ... 24900

 1 Alaska P... Anchorage ... 47000

 1 Alaska C... Soldotna ... NaN

AL 0 Universi... Birmingham ... 39700

...

WV 0 BridgeVa... South C... ... NaN

 1 Appalach... Mount Hope ... 28700

 1 West Vir... Nutter Fort ... 16700

WY 0 Central ... Riverton ... 25200

 0 CollegeA... Cheyenne ... 25600

Filtering for states with a minority majority
Previously, we examined using Boolean arrays to filter rows. In a similar fashion, when using
the .groupby method, we can filter out groups. The .filter method of the groupby object
accepts a function that must return either True or False to indicate whether a group is kept.

This .filter method applied after a call to the .groupby method is completely different to
the DataFrame .filter method covered in the Selecting columns with methods recipe from
Chapter 2, Essential DataFrame Operations.

One thing to be aware of is that when the .filter method is applied, the result does not use
the grouping columns as the index, but keeps the original index! The DataFrame .filter
method filters columns, not values.

In this recipe, we use the college dataset to find all the states that have more non-white
undergraduate students than white. This is a dataset from the US, where whites form the
majority and therefore, we are looking for states with a minority majority.

Grouping for Aggregation, Filtration, and Transformation

314

How to do it…
1. Read in the college dataset, group by state, and display the total number of groups.

This should equal the number of unique states retrieved from the .nunique Series
method:
>>> college = pd.read_csv('data/college.csv', index_col='INSTNM')

>>> grouped = college.groupby('STABBR')

>>> grouped.ngroups

59

>>> college['STABBR'].nunique() # verifying the same number

59

2. The grouped variable has a .filter method, which accepts a custom function
that determines whether a group is kept. The custom function accepts a DataFrame
of the current group and is required to return a Boolean. Let's define a function
that calculates the total percentage of minority students and returns True if this
percentage is greater than a user-defined threshold:
>>> def check_minority(df, threshold):

... minority_pct = 1 - df['UGDS_WHITE']

... total_minority = (df['UGDS'] * minority_pct).sum()

... total_ugds = df['UGDS'].sum()

... total_minority_pct = total_minority / total_ugds

... return total_minority_pct > threshold

3. Use the .filter method passed with the check_minority function and a
threshold of 50% to find all states that have a minority majority:
>>> college_filtered = grouped.filter(check_minority,
threshold=.5)

>>> college_filtered

 CITY STABBR ... MD_EARN_WNE_P10 GRAD_DEBT_
MDN_SUPP

INSTNM ...

Everest C... Phoenix AZ ... 28600
9500

Collins C... Phoenix AZ ... 25700
47000

Empire Be... Phoenix AZ ... 17800
9588

Empire Be... Tucson AZ ... 18200
9833

Thunderbi... Glendale AZ ... 118900

Chapter 9

315

PrivacyS...

...

...

WestMed C... Merced CA ... NaN
15623.5Vantage C... El Paso TX ... NaN
9500

SAE Insti... Emeryville CA ... NaN
9500

Bay Area ... San Jose CA ... NaN
PrivacyS...

Excel Lea... San Antonio TX ... NaN
12125

4. Just looking at the output may not be indicative of what happened. The DataFrame
starts with the state of Arizona (AZ) and not Alaska (AK), so we can visually confirm
that something changed. Let's compare the shape of this filtered DataFrame with the
original. Looking at the results, about 60% of the rows have been filtered, and only
20 states remain that have a minority majority:

>>> college.shape

(7535, 26)

>>> college_filtered.shape

(3028, 26)

>>> college_filtered['STABBR'].nunique()

20

How it works…
This recipe takes a look at the total population of all the institutions on a state-by-state basis.
The goal is to keep all the rows from the states, as a whole, that have a minority majority.
This requires us to group our data by state, which we do in step 1. We find that there are
59 independent groups.

The .filter groupby method either keeps all the rows in a group or filters them out. It does
not change the number of columns. The .filter groupby method performs this gatekeeping
through a user-defined function, check_minority, in this recipe. This function accepts a
DataFrame of each group and needs to return a Boolean.

Inside the check_minority function, the percentage and the total number of non-white
students for each institution are first calculated followed by the total number of all students.
Finally, the percentage of non-white students for the entire state is checked against the given
threshold, which produces a Boolean.

Grouping for Aggregation, Filtration, and Transformation

316

The final result is a DataFrame with the same columns as the original (and the same index,
not the grouped index), but with the rows from the states that don't meet the threshold filtered
out. As it is possible that the head of the filtered DataFrame is the same as the original, you
need to do some inspection to ensure that the operation completed successfully. We verify
this by checking the number of rows and unique states.

There's more…
Our function, check_minority, is flexible and accepts a parameter to lower or raise the
percentage of minority threshold. Let's check the shape and number of unique states for
a couple of other thresholds:

>>> college_filtered_20 = grouped.filter(check_minority, threshold=.2)

>>> college_filtered_20.shape

(7461, 26)

>>> college_filtered_20['STABBR'].nunique()

57

>>> college_filtered_70 = grouped.filter(check_minority, threshold=.7)

>>> college_filtered_70.shape

(957, 26)

>>> college_filtered_70['STABBR'].nunique()

10

Transforming through a weight loss bet
One method to increase motivation to lose weight is to make a bet with someone else. The
scenario in this recipe will track weight loss from two individuals throughout a four-month
period and determine a winner.

In this recipe, we use simulated data from two individuals to track the percentage of weight
loss over four months. At the end of each month, a winner will be declared based on the
individual who lost the highest percentage of body weight for that month. To track weight
loss, we group our data by month and person, and then call the .transform method to find
the percentage weight loss change for each week against the start of the month.

We will use the .transform method in this recipe. This method returns a new object that
preserves the index of the original DataFrame but allows you to do calculations on groups
of the data.

Chapter 9

317

How to do it…
1. Read in the raw weight_loss dataset, and examine the first month of data from the

two people, Amy and Bob. There are a total of four weigh-ins per month:
>>> weight_loss = pd.read_csv('data/weight_loss.csv')

>>> weight_loss.query('Month == "Jan"')

 Name Month Week Weight

0 Bob Jan Week 1 291

1 Amy Jan Week 1 197

2 Bob Jan Week 2 288

3 Amy Jan Week 2 189

4 Bob Jan Week 3 283

5 Amy Jan Week 3 189

6 Bob Jan Week 4 283

7 Amy Jan Week 4 190

2. To determine the winner for each month, we only need to compare weight loss from
the first week to the last week of each month. But, if we wanted to have weekly
updates, we can also calculate weight loss from the current week to the first week
of each month. Let's create a function that is capable of providing weekly updates.
It will take a Series and return a Series of the same size:
>>> def percent_loss(s):

... return ((s - s.iloc[0]) / s.iloc[0]) * 100

3. Let's test out this function for Bob during the month of January:
>>> (weight_loss

... .query('Name=="Bob" and Month=="Jan"')

... ['Weight']

... .pipe(percent_loss)

...)

0 0.000000

2 -1.030928

4 -2.749141

6 -2.749141

Name: Weight, dtype: float64

Grouping for Aggregation, Filtration, and Transformation

318

4. After the first week, Bob lost 1% of his body weight. He continued losing weight during
the second week but made no progress during the last week. We can apply this
function to every single combination of person and month to get the weight loss per
week in relation to the first week of the month. To do this, we need to group our data
by Name and Month, and then use the .transform method to apply this custom
function. The function we pass to .transform needs to maintain the index of the
group that is passed into it, so we can use percent_loss here:
>>> (weight_loss

... .groupby(['Name', 'Month'])

... ['Weight']

... .transform(percent_loss)

...)

0 0.000000

1 0.000000

2 -1.030928

3 -4.060914

4 -2.749141

 ...

27 -3.529412

28 -3.065134

29 -3.529412

30 -4.214559

31 -5.294118

Name: Weight, Length: 32, dtype: float64

5. The .transform method takes a function that returns an object with the same
index (and the same number of rows) as was passed into it. Because it has the
same index, we can insert it as a column. The .transform method is useful for
summarizing information from the groups and then adding it back to the original
DataFrame. We will also filter down to two months of data for Bob:
>>> (weight_loss

... .assign(percent_loss=(weight_loss

... .groupby(['Name', 'Month'])

... ['Weight']

... .transform(percent_loss)

... .round(1)))

... .query('Name=="Bob" and Month in ["Jan", "Feb"]')

...)

Chapter 9

319

 Name Month Week Weight percent_loss

0 Bob Jan Week 1 291 0.0

2 Bob Jan Week 2 288 -1.0

4 Bob Jan Week 3 283 -2.7

6 Bob Jan Week 4 283 -2.7

8 Bob Feb Week 1 283 0.0

10 Bob Feb Week 2 275 -2.8

12 Bob Feb Week 3 268 -5.3

14 Bob Feb Week 4 268 -5.3

6. Notice that the percentage of weight loss resets after the new month. With this new
percent_loss column, we can manually determine a winner but let's see whether
we can find a way to do this automatically. As the only week that matters is the last
week, let's select week 4:
>>> (weight_loss

... .assign(percent_loss=(weight_loss

... .groupby(['Name', 'Month'])

... ['Weight']

... .transform(percent_loss)

... .round(1)))

... .query('Week == "Week 4"')

...)

 Name Month Week Weight percent_loss

6 Bob Jan Week 4 283 -2.7

7 Amy Jan Week 4 190 -3.6

14 Bob Feb Week 4 268 -5.3

15 Amy Feb Week 4 173 -8.9

22 Bob Mar Week 4 261 -2.6

23 Amy Mar Week 4 170 -1.7

30 Bob Apr Week 4 250 -4.2

31 Amy Apr Week 4 161 -5.3

7. This narrows down the weeks but still doesn't automatically find out the winner of
each month. Let's reshape this data with the .pivot method so that Bob's and
Amy's percent weight loss is side by side for each month:
>>> (weight_loss

... .assign(percent_loss=(weight_loss

... .groupby(['Name', 'Month'])

Grouping for Aggregation, Filtration, and Transformation

320

... ['Weight']

... .transform(percent_loss)

... .round(1)))

... .query('Week == "Week 4"')

... .pivot(index='Month', columns='Name',

... values='percent_loss')

...)

Name Amy Bob

Month

Apr -5.3 -4.2

Feb -8.9 -5.3

Jan -3.6 -2.7

Mar -1.7 -2.6

8. This output makes it clearer who has won each month, but we can still go a couple
of steps further. NumPy has a vectorized if then else function called where,
which can map a Series or array of Booleans to other values. Let's create a column,
winner, with the name of the winner:
>>> (weight_loss

... .assign(percent_loss=(weight_loss

... .groupby(['Name', 'Month'])

... ['Weight']

... .transform(percent_loss)

... .round(1)))

... .query('Week == "Week 4"')

... .pivot(index='Month', columns='Name',

... values='percent_loss')

... .assign(winner=lambda df_:

... np.where(df_.Amy < df_.Bob, 'Amy', 'Bob'))

...)

Name Amy Bob winner

Month

Apr -5.3 -4.2 Amy

Feb -8.9 -5.3 Amy

Jan -3.6 -2.7 Amy

Mar -1.7 -2.6 Bob

Chapter 9

321

In Jupyter, you can highlight the winning percentage for each month using the
.style attribute:
(weight_loss

 .assign(percent_loss=(weight_loss

 .groupby(['Name', 'Month'])

 ['Weight']

 .transform(percent_loss)

 .round(1)))

 .query('Week == "Week 4"')

 .pivot(index='Month', columns='Name',

 values='percent_loss')

 .assign(winner=lambda df_:

 np.where(df_.Amy < df_.Bob, 'Amy', 'Bob'))

 .style.highlight_min(axis=1)

)

The highlight minimum

9. Use the .value_counts method to return the final score as the number of months
won:

>>> (weight_loss

... .assign(percent_loss=(weight_loss

Grouping for Aggregation, Filtration, and Transformation

322

... .groupby(['Name', 'Month'])

... ['Weight']

... .transform(percent_loss)

... .round(1)))

... .query('Week == "Week 4"')

... .pivot(index='Month', columns='Name',

... values='percent_loss')

... .assign(winner=lambda df_:

... np.where(df_.Amy < df_.Bob, 'Amy', 'Bob'))

... .winner

... .value_counts()

...)

Amy 3

Bob 1

Name: winner, dtype: int64

How it works…
Throughout this recipe, the .query method is used to filter data instead of using Boolean
arrays. Refer to the Improving readability of Boolean indexing with the query method recipe
in Chapter 7, Filtering Rows for more information.

Our goal is to find the percentage weight loss for each month for each person. One way
to accomplish this task is to calculate each week's weight loss relative to the start of each
month. This specific task is perfectly suited to the .transform groupby method. The
.transform method requires a function as a parameter. This function gets passed each
group (which can be a Series or DataFrame). It must return a sequence of values the same
length as the group that was passed in or else an exception will be raised. No aggregation
or filtering takes place.

Step 2 creates a function that calculates the percent age loss (or gain) relative to the first
value. It subtracts the first value of the passed Series from all of its values and then divides
this result by the first value. In step 3, we test this function on one person during one month.

In step 4, we use .groupby with .transform to run this function over every combination
of person and month. We are transforming the Weight column into the percentage of weight
lost in the current week.

Chapter 9

323

The first month of data is outputted for each person in step 6. pandas returns the new data
as a Series. This Series isn't all that useful by itself and makes more sense appended to the
original DataFrame as a new column. We complete this operation in step 5.

To determine the winner, only week 4 of each month is necessary. We could stop here and
manually determine the winner, but pandas supplies us with the functionality to automate
this. The .pivot function in step 7 reshapes our dataset by pivoting the unique values of one
column into new column names. The index parameter is used for the column that you do
not want to pivot. The column passed to the values parameter gets tiled over each unique
combination of the columns in the index and columns parameters.

The .pivot method only works if there is just a single occurrence of each unique
combination of the columns in the index and columns parameters. If there is more than one
unique combination, an exception is raised. You can use the .pivot_table or .groupby
method in that situation.

Here is an example of using .groupyby with .unstack to emulate the pivot functionality:

>>> (weight_loss

... .assign(percent_loss=(weight_loss

... .groupby(['Name', 'Month'])

... ['Weight']

... .transform(percent_loss)

... .round(1)))

... .query('Week == "Week 4"')

... .groupby(['Month', 'Name'])

... ['percent_loss']

... .first()

... .unstack()

...)

Name Amy Bob

Month

Apr -5.3 -4.2

Feb -8.9 -5.3

Jan -3.6 -2.7

Mar -1.7 -2.6

After pivoting, we utilize the NumPy where function, whose first argument is a condition
that produces a Series of Booleans. True values get mapped to Amy, and False values
get mapped to Bob. We highlight the winner of each month and tally the final score with the
.value_counts method.

Grouping for Aggregation, Filtration, and Transformation

324

There's more…
Take a look at the DataFrame output from step 7. Did you notice that the months are in
alphabetical and not chronological order? pandas unfortunately, in this case at least, orders
the months for us alphabetically. We can solve this issue by changing the data type of Month
to a categorical variable. Categorical variables map all the values of each column to an
integer. We can choose this mapping to be the normal chronological order for the months.
pandas uses this underlying integer mapping during the .pivot method to order the months
chronologically:

>>> (weight_loss

... .assign(percent_loss=(weight_loss

... .groupby(['Name', 'Month'])

... ['Weight']

... .transform(percent_loss)

... .round(1)),

... Month=pd.Categorical(weight_loss.Month,

... categories=['Jan', 'Feb', 'Mar', 'Apr'],

... ordered=True))

... .query('Week == "Week 4"')

... .pivot(index='Month', columns='Name',

... values='percent_loss')

...)

Name Amy Bob

Month

Jan -3.6 -2.7

Feb -8.9 -5.3

Mar -1.7 -2.6

Apr -5.3 -4.2

To convert Month to an ordered category column, use the Categorical constructor. Pass
it the original column as a Series and a unique sequence of all the categories in the desired
order to the categories parameter. In general, to sort columns of the object data type by
something other than alphabetical, convert them to categorical.

Chapter 9

325

Calculating weighted mean SAT scores per
state with apply

The groupby object has four methods that accept a function (or functions) to perform a
calculation on each group. These four methods are .agg, .filter, .transform, and
.apply. Each of the first three of these methods has a very specific output that the function
must return. .agg must return a scalar value, .filter must return a Boolean, and
.transform must return a Series or DataFrame with the same length as the passed group.
The .apply method, however, may return a scalar value, a Series, or even a DataFrame
of any shape, therefore making it very flexible. It is also called only once per group (on a
DataFrame), while the .transform and .agg methods get called once for each aggregating
column (on a Series). The .apply method's ability to return a single object when operating on
multiple columns at the same time makes the calculation in this recipe possible.

In this recipe, we calculate the weighted average of both the math and verbal SAT scores
per state from the college dataset. We weight the scores by the population of undergraduate
students per school.

How to do it…
1. Read in the college dataset, and drop any rows that have missing values in the UGDS,

SATMTMID, or SATVRMID columns. We do not want any missing values for those
columns:
>>> college = pd.read_csv('data/college.csv')

>>> subset = ['UGDS', 'SATMTMID', 'SATVRMID']

>>> college2 = college.dropna(subset=subset)

>>> college.shape

(7535, 27)

>>> college2.shape

(1184, 27)

2. The vast majority of institutions do not have data for our three required columns,
but this is still more than enough data to continue. Next, create a user-defined
function to calculate the weighted average of the SAT math scores:
>>> def weighted_math_average(df):

... weighted_math = df['UGDS'] * df['SATMTMID']

... return int(weighted_math.sum() / df['UGDS'].sum())

Grouping for Aggregation, Filtration, and Transformation

326

3. Group by state and pass this function to the .apply method. Because each group
has multiple columns and we want to reduce those to a single value, we need to use
.apply. The weighted_math_average function will be called once for each group
(not on the individual columns in the group):
>>> college2.groupby('STABBR').apply(weighted_math_average)

STABBR

AK 503

AL 536

AR 529

AZ 569

CA 564

 ...

VT 566

WA 555

WI 593

WV 500

WY 540

Length: 53, dtype: int64

4. We successfully returned a scalar value for each group. Let's take a small detour and
see what the outcome would have been by passing the same function to the .agg
method (which calls the function for every column):
>>> (college2

... .groupby('STABBR')

... .agg(weighted_math_average)

...)

Traceback (most recent call last):

 ...

KeyError: 'UGDS'

5. The weighted_math_average function gets applied to each non-aggregating
column in the DataFrame. If you try and limit the columns to just SATMTMID, you
will get an error as you won't have access to UGDS. So, the best way to complete
operations that act on multiple columns is with .apply:
>>> (college2

... .groupby('STABBR')

... ['SATMTMID']

... .agg(weighted_math_average)

...)

Chapter 9

327

Traceback (most recent call last):

 ...

KeyError: 'UGDS'

6. A nice feature of .apply is that you can create multiple new columns by returning
a Series. The index of this returned Series will be the new column names. Let's
modify our function to calculate the weighted and arithmetic average for both SAT
scores along with the count of the number of institutions from each group. We return
these five values in a Series:

>>> def weighted_average(df):

... weight_m = df['UGDS'] * df['SATMTMID']

... weight_v = df['UGDS'] * df['SATVRMID']

... wm_avg = weight_m.sum() / df['UGDS'].sum()

... wv_avg = weight_v.sum() / df['UGDS'].sum()

... data = {'w_math_avg': wm_avg,

... 'w_verbal_avg': wv_avg,

... 'math_avg': df['SATMTMID'].mean(),

... 'verbal_avg': df['SATVRMID'].mean(),

... 'count': len(df)

... }

... return pd.Series(data)

>>> (college2

... .groupby('STABBR')

... .apply(weighted_average)

... .astype(int)

...)

 w_math_avg w_verbal_avg math_avg verbal_avg count

STABBR

AK 503 555 503 555 1

AL 536 533 504 508 21

AR 529 504 515 491 16

AZ 569 557 536 538 6

CA 564 539 562 549 72

...

VT 566 564 526 527 8

WA 555 541 551 548 18

WI 593 556 545 516 14

WV 500 487 481 473 17

WY 540 535 540 535 1

Grouping for Aggregation, Filtration, and Transformation

328

How it works…
In order for this recipe to complete correctly, we need to filter for institutions that do not have
missing values for UGDS, SATMTMID, and SATVRMID. By default, the .dropna method drops
rows that have one or more missing values. We must use the subset parameter to limit the
columns it looks at. It only considers the UGDS, SATMTMID, or SATVRMID columns for missing
values.

If we do not remove the missing values, it will throw off the computations for the weighted
averages. Next, you can see that the weighted scores for AK are 5 and 6, which does not
make sense:

>>> (college

... .groupby('STABBR')

... .apply(weighted_average)

...)

 w_math_avg w_verbal_avg math_avg verbal_avg count

STABBR

AK 5.548091 6.121651 503.000000 555.000000 10.0

AL 261.895658 260.550109 504.285714 508.476190 96.0

AR 301.054792 287.264872 515.937500 491.875000 86.0

AS 0.000000 0.000000 NaN NaN 1.0

AZ 61.815821 60.511712 536.666667 538.333333 133.0

...

VT 389.967094 388.696848 526.875000 527.500000 27.0

WA 274.885878 267.880280 551.222222 548.333333 123.0

WI 153.803086 144.160115 545.071429 516.857143 112.0

WV 224.697582 218.843452 481.705882 473.411765 73.0

WY 216.761180 214.754132 540.000000 535.000000 11.0

In step 2, we define a function that calculates the weighted average for just the SATMTMID
column. The weighted average differs from the arithmetic mean because each value is
multiplied by a weight. This quantity is then summed and divided by the sum of the weights.
In this case, our weight is the undergraduate student population.

In step 3, we pass this function to the .apply method. Our function, weighted_math_
average, gets passed a DataFrame of all the original columns for each group. It returns
a single scalar value, the weighted average of SATMTMID. At this point, you might think
that this calculation is possible using the .agg method. Directly replacing .apply with
.agg does not work as .agg returns a value for each of its aggregating columns.

Chapter 9

329

Step 6 shows the versatility of .apply. We build a new function that calculates the weighted
and arithmetic average of both SAT columns as well as the number of rows for each group. To
use .apply to create multiple columns, you must return a Series. The index values are used
as column names in the resulting DataFrame. You can return as many values as you want with
this method.

Note that because I'm using a Python version greater than 3.5, I can use a normal dictionary
in weighted_average to create a Series. This is because since Python 3.6, the dictionary
is sorted by default.

There's more…
In this recipe, we returned a single row as a Series for each group. It's possible to return any
number of rows and columns for each group by returning a DataFrame.

In addition to finding just the arithmetic and weighted means, let's also find the geometric and
harmonic means of both SAT columns and return the results as a DataFrame with rows as the
name of the type of mean and columns as the SAT type. To ease the burden on us, we use the
NumPy function average to compute the weighted average and the SciPy functions gmean and
hmean for geometric and harmonic means:

>>> from scipy.stats import gmean, hmean

>>> def calculate_means(df):

... df_means = pd.DataFrame(index=['Arithmetic', 'Weighted',

... 'Geometric', 'Harmonic'])

... cols = ['SATMTMID', 'SATVRMID']

... for col in cols:

... arithmetic = df[col].mean()

... weighted = np.average(df[col], weights=df['UGDS'])

... geometric = gmean(df[col])

... harmonic = hmean(df[col])

... df_means[col] = [arithmetic, weighted,

... geometric, harmonic]

... df_means['count'] = len(df)

... return df_means.astype(int)

>>> (college2

... .groupby('STABBR')

... .apply(calculate_means)

...)

 SATMTMID SATVRMID count

Grouping for Aggregation, Filtration, and Transformation

330

STABBR

AK Arithmetic 503 555 1

 Weighted 503 555 1

 Geometric 503 555 1

 Harmonic 503 555 1

AL Arithmetic 504 508 21

...

WV Harmonic 480 472 17

WY Arithmetic 540 535 1

 Weighted 540 535 1

 Geometric 540 534 1

 Harmonic 540 535 1

Grouping by continuous variables
When grouping in pandas, you typically use columns with discrete repeating values. If there
are no repeated values, then grouping would be pointless as there would only be one row
per group. Continuous numeric columns typically have few repeated values and are generally
not used to form groups. However, if we can transform columns with continuous values into a
discrete column by placing each value in a bin, rounding them, or using some other mapping,
then grouping with them makes sense.

In this recipe, we explore the flights dataset to discover the distribution of airlines for different
travel distances. This allows us, for example, to find the airline that makes the most flights
between 500 and 1,000 miles. To accomplish this, we use the pandas cut function to
discretize the distance of each flight flown.

How to do it…
1. Read in the flights dataset:

>>> flights = pd.read_csv('data/flights.csv')

>>> flights

 MONTH DAY WEEKDAY ... ARR_DELAY DIVERTED CANCELLED

0 1 1 4 ... 65.0 0 0

1 1 1 4 ... -13.0 0 0

2 1 1 4 ... 35.0 0 0

3 1 1 4 ... -7.0 0 0

4 1 1 4 ... 39.0 0 0

Chapter 9

331

...

58487 12 31 4 ... -19.0 0 0

58488 12 31 4 ... 4.0 0 0

58489 12 31 4 ... -5.0 0 0

58490 12 31 4 ... 34.0 0 0

58491 12 31 4 ... -1.0 0 0

2. If we want to find the distribution of airlines over a range of distances, we need to
place the values of the DIST column into discrete bins. Let's use the pandas cut
function to split the data into five bins:
>>> bins = [-np.inf, 200, 500, 1000, 2000, np.inf]

>>> cuts = pd.cut(flights['DIST'], bins=bins)

>>> cuts

0 (500.0, 1000.0]

1 (1000.0, 2000.0]

2 (500.0, 1000.0]

3 (1000.0, 2000.0]

4 (1000.0, 2000.0]

 ...

58487 (1000.0, 2000.0]

58488 (200.0, 500.0]

58489 (200.0, 500.0]

58490 (500.0, 1000.0]

58491 (500.0, 1000.0]

Name: DIST, Length: 58492, dtype: category

Categories (5, interval[float64]): [(-inf, 200.0] < (200.0, 500.0]
< (500.0, 1000.0] <

 (1000.0, 2000.0] < (2000.0, inf]]

3. An ordered categorical Series is created. To help get an idea of what happened, let's
count the values of each category:
>>> cuts.value_counts()

(500.0, 1000.0] 20659

(200.0, 500.0] 15874

(1000.0, 2000.0] 14186

(2000.0, inf] 4054

(-inf, 200.0] 3719

Name: DIST, dtype: int64

Grouping for Aggregation, Filtration, and Transformation

332

4. The cuts Series can now be used to form groups. pandas allows you to pass many
types into the .groupby method. Pass the cuts Series to the .groupby method
and then call the .value_counts method on the AIRLINE column to find the
distribution for each distance group. Notice that SkyWest (OO) makes up 33% of
flights of less than 200 miles but only 16% of those between 200 and 500 miles:

>>> (flights

... .groupby(cuts)

... ['AIRLINE']

... .value_counts(normalize=True)

... .round(3)

...)

DIST AIRLINE

(-inf, 200.0] OO 0.326

 EV 0.289

 MQ 0.211

 DL 0.086

 AA 0.052

 ...

(2000.0, inf] WN 0.046

 HA 0.028

 NK 0.019

 AS 0.012

 F9 0.004

Name: AIRLINE, Length: 57, dtype: float64

How it works…
In step 2, the .cut function places each value of the DIST column into one of five bins.
The bins are created by a sequence of six numbers defining the edges. You always need one
more edge than the number of bins. You can pass the bins parameter an integer, which
automatically creates that number of equal-width bins. Negative infinity and positive infinity
values are available in NumPy and ensure that all values get placed in a bin. If you have
values that are outside the bin edges, they will be made missing and not be placed in a bin.

The cuts variable is now a Series of five ordered categories. It has all the normal Series
methods and, in step 3, the .value_counts method is used to get a sense of its
distribution.

Chapter 9

333

The .groupby method allows you to pass any object to group on. This means that you are
able to form groups from something completely unrelated to the current DataFrame. Here,
we group by the values in the cuts variable. For each grouping, we find the percentage of
flights per airline with .value_counts by setting normalize to True.

Some interesting insights can be drawn from this result. Looking at the full result, SkyWest
is the leading airline for under 200 miles but has no flights over 2,000 miles. In contrast,
American Airlines has the fifth highest total for flights under 200 miles but has by far the
most flights between 1,000 and 2,000 miles.

There's more…
We can find more results when grouping by the cuts variable. For instance, we can find the
25th, 50th, and 75th percentile airtime for each distance grouping. As airtime is in minutes,
we can divide by 60 to get hours. This will return a Series with a MultiIndex:

>>> (flights

... .groupby(cuts)

... ['AIR_TIME']

... .quantile(q=[.25, .5, .75])

... .div(60)

... .round(2)

...)

DIST

(-inf, 200.0] 0.25 0.43

 0.50 0.50

 0.75 0.57

(200.0, 500.0] 0.25 0.77

 0.50 0.92

 ...

(1000.0, 2000.0] 0.50 2.93

 0.75 3.40

(2000.0, inf] 0.25 4.30

 0.50 4.70

 0.75 5.03

Name: AIR_TIME, Length: 15, dtype: float64

Grouping for Aggregation, Filtration, and Transformation

334

We can use this information to create informative string labels when using the cut function.
These labels replace the interval notation found in the index. We can also chain the
.unstack method, which transposes the inner index level to column names:

>>> labels=['Under an Hour', '1 Hour', '1-2 Hours',

... '2-4 Hours', '4+ Hours']

>>> cuts2 = pd.cut(flights['DIST'], bins=bins, labels=labels)

>>> (flights

... .groupby(cuts2)

... ['AIRLINE']

... .value_counts(normalize=True)

... .round(3)

... .unstack()

...)

AIRLINE AA AS B6 ... US VX WN

DIST ...

Under an Hour 0.052 NaN NaN ... NaN NaN 0.009

1 Hour 0.071 0.001 0.007 ... 0.016 0.028 0.194

1-2 Hours 0.144 0.023 0.003 ... 0.025 0.004 0.138

2-4 Hours 0.264 0.016 0.003 ... 0.040 0.012 0.160

4+ Hours 0.212 0.012 0.080 ... 0.065 0.074 0.046

Counting the total number of flights
between cities

In the flights dataset, we have data on the origin and destination airport. It is trivial to count
the number of flights originating in Houston and landing in Atlanta, for instance. What is more
difficult is counting the total number of flights between the two cities.

In this recipe, we count the total number of flights between two cities, regardless of which
one is the origin or destination. To accomplish this, we sort the origin and destination airports
alphabetically so that each combination of airports always occurs in the same order. We can
then use this new column arrangement to form groups and then to count.

How to do it…
1. Read in the flights dataset, and find the total number of flights between each origin

and destination airport:

Chapter 9

335

>>> flights = pd.read_csv('data/flights.csv')

>>> flights_ct = flights.groupby(['ORG_AIR', 'DEST_AIR']).size()

>>> flights_ct

ORG_AIR DEST_AIR

ATL ABE 31

 ABQ 16

 ABY 19

 ACY 6

 AEX 40

 ...

SFO SNA 122

 STL 20

 SUN 10

 TUS 20

 XNA 2

Length: 1130, dtype: int64

2. Select the total number of flights between Houston (IAH) and Atlanta (ATL) in both
directions:
>>> flights_ct.loc[[('ATL', 'IAH'), ('IAH', 'ATL')]]

ORG_AIR DEST_AIR

ATL IAH 121

IAH ATL 148

dtype: int64

3. We could simply sum these two numbers together to find the total flights between
the cities, but there is a more efficient and automated solution that can work for all
flights. Let's sort the origin and destination columns for each row alphabetically. We
will use axis='columns' to do that:
>>> f_part3 = (flights

... [['ORG_AIR', 'DEST_AIR']]

... .apply(lambda ser:

... ser.sort_values().reset_index(drop=True),

... axis='columns')

...)

>>> f_part3

 DEST_AIR ORG_AIR

0 SLC LAX

Grouping for Aggregation, Filtration, and Transformation

336

1 IAD DEN

2 VPS DFW

3 DCA DFW

4 MCI LAX

...

58487 DFW SFO

58488 SFO LAS

58489 SBA SFO

58490 ATL MSP

58491 BOI SFO

4. Now that the origin and destination values in each row are sorted, the column names
are not correct. Let's rename them to something more generic and then again find
the total number of flights between all cities:
>>> rename_dict = {0:'AIR1', 1:'AIR2'}

>>> (flights

... [['ORG_AIR', 'DEST_AIR']]

... .apply(lambda ser:

... ser.sort_values().reset_index(drop=True),

... axis='columns')

... .rename(columns=rename_dict)

... .groupby(['AIR1', 'AIR2'])

... .size()

...)

AIR1 AIR2

ATL ABE 31

 ABQ 16

 ABY 19

 ACY 6

 AEX 40

 ...

SFO SNA 122

 STL 20

 SUN 10

 TUS 20

 XNA 2

Length: 1130, dtype: int64

Chapter 9

337

5. Let's select all the flights between Atlanta and Houston and verify that they match the
sum of the values in step 2:
>>> (flights

... [['ORG_AIR', 'DEST_AIR']]

... .apply(lambda ser:

... ser.sort_values().reset_index(drop=True),

... axis='columns')

... .rename(columns=rename_dict)

... .groupby(['AIR1', 'AIR2'])

... .size()

... .loc[('ATL', 'IAH')]

...)

269

6. If we try and select flights with Houston followed by Atlanta, we get an error:

>>> (flights

... [['ORG_AIR', 'DEST_AIR']]

... .apply(lambda ser:

... ser.sort_values().reset_index(drop=True),

... axis='columns')

... .rename(columns=rename_dict)

... .groupby(['AIR1', 'AIR2'])

... .size()

... .loc[('IAH', 'ATL')]

...)

Traceback (most recent call last)

 ...

KeyError: 'ATL'

How it works…
In step 1, we form groups by the origin and destination airport columns and then apply the
.size method to the groupby object, which returns the total number of rows for each group.
Notice that we could have passed the string size to the .agg method to achieve the same
result. In step 2, the total number of flights for each direction between Atlanta and Houston
are selected. The result is a Series that has a MultiIndex with two levels. One way to select
rows from a MultiIndex is to pass the .loc index operator a tuple of the exact level values.
Here, we select two different rows, ('ATL', 'HOU') and ('HOU', 'ATL'). We use a list
of tuples to do this correctly.

Grouping for Aggregation, Filtration, and Transformation

338

Step 3 is the most important step in the recipe. We would like to have just one label for all
flights between Atlanta and Houston and so far we have two. If we sort each combination
of origin and destination airports alphabetically, we would then have a single label for flights
between airports. To do this, we use the .apply method on a DataFrame. This is different
from the groupby .apply method. No groups are formed in step 3.

The DataFrame .apply method must be passed a function. In this case, it's a lambda
function that sorts each row. By default, this function is passed each column. We can change
the direction of computation by using axis='columns' (or axis=1). The lambda function
has each row of data passed to it implicitly as a Series. It returns a Series with sorted
airport codes. We have to call .reset_index so that the columns do not realign after the
application of the function.

The .apply method iterates over all rows using the lambda function. After completion of
this operation, the values in the two columns are sorted for each row. The column names are
now meaningless. We rename the column names in the next step and then perform the same
grouping and aggregation as was done in step 2. This time, all flights between Atlanta and
Houston fall under the same label.

There's more…
Steps 3 through 6 are expensive operations and take several seconds to complete. There
are only about 60,000 rows, so this solution would not scale well to larger data. Calling
the .apply method with axis='columns' (or axis=1) is one of the least performant
operations in all of pandas. Internally, pandas loops over each row and does not provide
any speed boosts from NumPy. If possible, avoid using .apply with axis=1.

We can get a massive speed increase with the NumPy sort function. Let's go ahead and use
this function and analyze its output. By default, it sorts each row:

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> data_sorted[:10]

array([['LAX', 'SLC'],

 ['DEN', 'IAD'],

 ['DFW', 'VPS'],

 ['DCA', 'DFW'],

 ['LAX', 'MCI'],

 ['IAH', 'SAN'],

 ['DFW', 'MSY'],

 ['PHX', 'SFO'],

 ['ORD', 'STL'],

 ['IAH', 'SJC']], dtype=object)

Chapter 9

339

A two-dimensional NumPy array is returned. NumPy does not do grouping operations so let's
use the DataFrame constructor to create a new DataFrame and check whether it equals the
DataFrame from step 3:

>>> flights_sort2 = pd.DataFrame(data_sorted, columns=['AIR1', 'AIR2'])

>>> flights_sort2.equals(f_part3.rename(columns={0:'AIR1', 1:'AIR2'}))

True

Because the DataFrames are the same, you can replace step 3 with the previous faster
sorting routine. Let's time the difference between each of the different sorting methods:

>>> %%timeit

>>> flights_sort = (flights

... [['ORG_AIR', 'DEST_AIR']]

... .apply(lambda ser:

... ser.sort_values().reset_index(drop=True),

... axis='columns')

...)

1min 5s ± 2.67 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

>>> %%timeit

>>> data_sorted = np.sort(flights[['ORG_AIR', 'DEST_AIR']])

>>> flights_sort2 = pd.DataFrame(data_sorted,

... columns=['AIR1', 'AIR2'])

14.6 ms ± 173 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

The NumPy solution is 4,452 times faster than using .apply with pandas in this example.

Finding the longest streak of on-time flights
One of the most important metrics for airlines is their on-time flight performance. The
Federal Aviation Administration considers a flight delayed when it arrives at least 15 minutes
later than its scheduled arrival time. pandas includes methods to calculate the total and
percentage of on-time flights per airline. While these basic summary statistics are an
important metric, there are other non-trivial calculations that are interesting, such as finding
the length of consecutive on-time flights for each airline at each of its origin airports.

Grouping for Aggregation, Filtration, and Transformation

340

In this recipe, we find the longest consecutive streak of on-time flights for each airline at
each origin airport. This requires each value in a column to be aware of the value immediately
following it. We make clever use of the .diff and .cumsum methods to find streaks before
applying this methodology to each of the groups.

How to do it…
1. Before we get started with the flights dataset, let's practice counting streaks of ones

with a small sample Series:
>>> s = pd.Series([0, 1, 1, 0, 1, 1, 1, 0])

>>> s

0 0

1 1

2 1

3 0

4 1

5 1

6 1

7 0

dtype: int64

2. Our final representation of the streaks of ones will be a Series of the same length
as the original with an independent count beginning from one for each streak. To get
started, let's use the .cumsum method:
>>> s1 = s.cumsum()

>>> s1

0 0

1 1

2 2

3 2

4 3

5 4

6 5

7 5

dtype: int64

The max_streak function we develop in this section exposes a
regression in pandas 1.0 and 1.0.1. This bug (https://github.
com/pandas-dev/pandas/issues/31802) should be fixed in
pandas 1.0.2.

https://github.com/pandas-dev/pandas/issues/31802
https://github.com/pandas-dev/pandas/issues/31802

Chapter 9

341

3. We have now accumulated all the ones going down the Series. Let's multiply this
Series by the original:
>>> s.mul(s1)

0 0

1 1

2 2

3 0

4 3

5 4

6 5

7 0

dtype: int64

4. We have only non-zero values where we originally had ones. This result is fairly close
to what we desire. We just need to restart each streak at one instead of where the
cumulative sum left off. Let's chain the .diff method, which subtracts the previous
value from the current:
>>> s.mul(s1).diff()

0 NaN

1 1.0

2 1.0

3 -2.0

4 3.0

5 1.0

6 1.0

7 -5.0

dtype: float64

5. A negative value represents the end of a streak. We need to propagate the negative
values down the Series and use them to subtract away the excess accumulation from
step 2. To do this, we will make all non-negative values missing with the .where
method:
>>> (s

... .mul(s.cumsum())

... .diff()

... .where(lambda x: x < 0)

...)

0 NaN

Grouping for Aggregation, Filtration, and Transformation

342

1 NaN

2 NaN

3 -2.0

4 NaN

5 NaN

6 NaN

7 -5.0

dtype: float64

6. We can now propagate these values down with the .ffill method:
>>> (s

... .mul(s.cumsum())

... .diff()

... .where(lambda x: x < 0)

... .ffill()

...)

0 NaN

1 NaN

2 NaN

3 -2.0

4 -2.0

5 -2.0

6 -2.0

7 -5.0

dtype: float64

7. Finally, we can add this Series back to the cumulative sum to clear out the excess
accumulation:
>>> (s

... .mul(s.cumsum())

... .diff()

... .where(lambda x: x < 0)

... .ffill()

... .add(s.cumsum(), fill_value=0)

...)

0 0.0

1 1.0

Chapter 9

343

2 2.0

3 0.0

4 1.0

5 2.0

6 3.0

7 0.0

dtype: float64

8. Now that we have a working consecutive streak finder, we can find the longest streak
per airline and origin airport. Let's read in the flights dataset and create a column
to represent on-time arrival:
>>> flights = pd.read_csv('data/flights.csv')

>>> (flights

... .assign(ON_TIME=flights['ARR_DELAY'].lt(15).astype(int))

... [['AIRLINE', 'ORG_AIR', 'ON_TIME']]

...)

 AIRLINE ORG_AIR ON_TIME

0 WN LAX 0

1 UA DEN 1

2 MQ DFW 0

3 AA DFW 1

4 WN LAX 0

...

58487 AA SFO 1

58488 F9 LAS 1

58489 OO SFO 1

58490 WN MSP 0

58491 OO SFO 1

9. Use our logic from the first seven steps to define a function that returns the maximum
streak of ones for a given Series:
>>> def max_streak(s):

... s1 = s.cumsum()

... return (s

... .mul(s1)

... .diff()

... .where(lambda x: x < 0)

... .ffill()

Grouping for Aggregation, Filtration, and Transformation

344

... .add(s1, fill_value=0)

... .max()

...)

10. Find the maximum streak of on-time arrivals per airline and origin airport along with
the total number of flights and the percentage of on-time arrivals. First, sort the day
of the year and the scheduled departure time:

>>> (flights

... .assign(ON_TIME=flights['ARR_DELAY'].lt(15).astype(int))

... .sort_values(['MONTH', 'DAY', 'SCHED_DEP'])

... .groupby(['AIRLINE', 'ORG_AIR'])

... ['ON_TIME']

... .agg(['mean', 'size', max_streak])

... .round(2)

...)

 mean size max_streak

AIRLINE ORG_AIR

AA ATL 0.82 233 15

 DEN 0.74 219 17

 DFW 0.78 4006 64

 IAH 0.80 196 24

 LAS 0.79 374 29

...

WN LAS 0.77 2031 39

 LAX 0.70 1135 23

 MSP 0.84 237 32

 PHX 0.77 1724 33

 SFO 0.76 445 17

How it works…
Finding streaks in the data is not a straightforward operation in pandas and requires methods
that look ahead or behind, such as .diff or .shift, or those that remember their current
state, such as .cumsum. The final result from the first seven steps is a Series the same length
as the original that keeps track of all consecutive ones. Throughout these steps, we use the
.mul and .add methods instead of their operator equivalents, (*) and (+). In my opinion, this
allows for a slightly cleaner progression of calculations from left to right. You, of course, can
replace these with the actual operators.

Chapter 9

345

Ideally, we would like to tell pandas to apply the .cumsum method to the start of each streak
and reset itself after the end of each one. It takes many steps to convey this message to
pandas. Step 2 accumulates all the ones in the Series as a whole. The rest of the steps slowly
remove any excess accumulation. To identify this excess accumulation, we need to find the
end of each streak and subtract this value from the beginning of the next streak.

To find the end of each streak, we cleverly make all values not part of the streak zero by
multiplying the cumulative sum by the original Series of zeros and ones in step 3. The first
zero following a non-zero, marks the end of a streak. That's good, but again, we need to
eliminate the excess accumulation. Knowing where the streak ends doesn't exactly get us
there.

In step 4, we use the .diff method to find this excess. The .diff method takes the
difference between the current value and any value located a set number of rows away
from it. By default, the difference between the current and the immediately preceding value
is returned.

Only negative values are meaningful in step 4. Those are the ones immediately following
the end of a streak. These values need to be propagated down until the end of the following
streak. To eliminate (make missing) all the values we don't care about, we use the .where
method (this is different from the NumPy where function), which takes a Boolean array of the
same size as the calling Series. By default, all the True values remain the same, while the
False values become missing. The .where method allows you to use the calling Series as
part of the conditional by taking a function as its first parameter. An anonymous function is
used, which gets passed the calling Series implicitly and checks whether each value is less
than zero. The result of step 5 is a Series where only the negative values are preserved, with
the rest changed to missing.

The .ffill method in step 6 replaces missing values with the last non-missing value going
down a Series. As the first three values don't follow a non-missing value, they remain missing.
We finally have our Series that removes the excess accumulation. We add our accumulation
Series to the result of step 6 to get the streaks all beginning from zero. The .add method
allows us to replace the missing values with the fill_value parameter. This completes the
process of finding streaks of ones in the dataset. When doing complex logic like this, it is a
good idea to use a small dataset where you know what the final output will be. It would be
quite a difficult task to start at step 8 and build this streak-finding logic while grouping.

In step 8, we create the ON_TIME column. One item of note is that the canceled flights have
missing values for ARR_DELAY, which do not pass the Boolean condition and therefore result
in a zero for the ON_TIME column. Canceled flights are treated the same as delayed.

Step 9 turns our logic from the first seven steps into a function and chains the .max
method to return the longest streak. As our function returns a single value, it is formally an
aggregating function and can be passed to the .agg method in step 10. To ensure that we
are looking at consecutive flights, we use the .sort_values method to sort by date and
scheduled departure time.

Grouping for Aggregation, Filtration, and Transformation

346

There's more…
Now that we have found the longest streaks of on-time arrivals, we can easily find the opposite
– the longest streak of delayed arrivals. The following function returns two rows for each group
passed to it. The first row is the start of the streak, and the last row is the end of the streak.
Each row contains the month and day that the streak started and ended, along with the total
streak length:

>>> def max_delay_streak(df):

... df = df.reset_index(drop=True)

... late = 1 - df['ON_TIME']

... late_sum = late.cumsum()

... streak = (late

... .mul(late_sum)

... .diff()

... .where(lambda x: x < 0)

... .ffill()

... .add(late_sum, fill_value=0)

...)

... last_idx = streak.idxmax()

... first_idx = last_idx - streak.max() + 1

... res = (df

... .loc[[first_idx, last_idx], ['MONTH', 'DAY']]

... .assign(streak=streak.max())

...)

... res.index = ['first', 'last']

... return res

>>> (flights

... .assign(ON_TIME=flights['ARR_DELAY'].lt(15).astype(int))

... .sort_values(['MONTH', 'DAY', 'SCHED_DEP'])

... .groupby(['AIRLINE', 'ORG_AIR'])

... .apply(max_delay_streak)

... .sort_values('streak', ascending=False)

...)

 MONTH DAY streak

AIRLINE ORG_AIR

AA DFW first 2.0 26.0 38.0

Chapter 9

347

 last 3.0 1.0 38.0

MQ ORD last 1.0 12.0 28.0

 first 1.0 6.0 28.0

 DFW last 2.0 26.0 25.0

...

US LAS last 1.0 7.0 1.0

AS ATL first 5.0 4.0 1.0

OO LAS first 2.0 8.0 1.0

EV PHX last 8.0 1.0 0.0

 first NaN NaN 0.0

As we are using the .apply groupby method, a DataFrame of each group is passed to the
max_delay_streak function. Inside this function, the index of the DataFrame is dropped
and replaced by a RangeIndex in order for us to easily find the first and last row of the
streak. The ON_TIME column is inverted and then the same logic is used to find streaks
of delayed flights. The index of the first and last rows of the streak are stored as variables.
These indexes are then used to select the month and day when the streaks ended. We use a
DataFrame to return our results. We label and name the index to make the final result clearer.

Our final results show the longest delayed streaks accompanied by the first and last date.
Let's investigate to see whether we can find out why these delays happened. Inclement
weather is a common reason for delayed or canceled flights. Looking at the first row, American
Airlines (AA) started a streak of 38 delayed flights in a row from the Dallas Fort-Worth (DFW)
airport beginning February 26 until March 1,2015. Looking at historical weather data from
February 27, 2015, two inches of snow fell, which was a record for that day. This was a
major weather event for DFW and caused problems for the entire city. Notice that DFW
makes another appearance as the third longest streak, but this time a few days earlier and
for a different airline.

349

10
Restructuring Data

into a Tidy Form

Introduction
All the datasets used in the preceding chapters have not had much or any work done to
change their structure. We immediately began processing the datasets in their original shape.
Many datasets in the wild will need a significant amount of restructuring before commencing
a more detailed analysis. In some cases, an entire project might only concern itself with
formatting the data in such a way that it can be easily processed by someone else.

There are many terms that are used to describe the process of data restructuring, with tidy
data being the most common to data scientists. Tidy data is a term coined by Hadley Wickham
to describe a form of data that makes analysis easy to do. This chapter will cover many
ideas formulated by Hadley and how to accomplish them with pandas. To learn a great deal
more about tidy data, read Hadley's paper (http://vita.had.co.nz/papers/tidy-
data.pdf).

The following is an example of untidy data:

Name Category Value
Jill Bank 2,300
Jill Color Red
John Bank 1,100
Jill Age 40
John Color Purple

http://vita.had.co.nz/papers/tidy-data.pdf
http://vita.had.co.nz/papers/tidy-data.pdf

Restructuring Data into a Tidy Form

350

The following is an example of tidy data:

Name Age Bank Color
Jill 40 2,300 Red
John 38 Purple

What is tidy data? Hadley puts forth three guiding principles that determine whether a dataset
is tidy:

 f Each variable forms a column

 f Each observation forms a row

 f Each type of observational unit forms a table

Any dataset that does not meet these guidelines is considered messy. This definition will
make more sense once we start restructuring our data into tidy form, but for now, we'll need
to know what variables, observations, and observational units are.

Using this jargon, a variable is not referring to a Python variable, it is a piece of data. It is good
to think about the distinction between a variable name and the variable value. The variable
names are labels, such as gender, race, salary, and position. The variable values are those
things liable to change for every observation, such as male, female, or other for gender.

A single observation is the collection of all variable values for a single observational unit.
To help understand what an observational unit might be, consider a retail store, which has
data for each transaction, employee, customer, item, and the store itself. Each of these can
be viewed as an observational unit and would require its own table. Combining employee
information (like the number of hours worked) with customer information (like the amount
spent) in the same table would break this tidy principle.

The first step to resolving messy data is to recognize it when it exists, and there are boundless
possibilities. Hadley explicitly mentions five of the most common types of messy data:

 f Column names are values, not variable names

 f Multiple variables are stored in column names

 f Variables are stored in both rows and columns

 f Multiple types of observational units are stored in the same table

 f A single observational unit is stored in multiple tables

It is important to understand that tidying data does not typically involve changing the values
of your dataset, filling in missing values, or doing any sort of analysis. Tidying data consists
in changing the shape or structure of the data to meet the tidy principles. Tidy data is akin
to having all your tools in the toolbox instead of scattered randomly throughout your house.
Having the tools properly in the toolbox allows all other tasks to be completed easily. Once
the data is in the correct form, it becomes much easier to perform further analysis.

Chapter 10

351

Once you have spotted messy data, you will use the pandas library to restructure the data,
so that it is tidy. The main tidy tools that pandas has available for you are the DataFrame
methods .stack, .melt, .unstack, and .pivot. More complex tidying involves ripping
apart text, which necessitates the .str accessor. Other helper methods, such as .rename,
.rename_axis, .reset_index, and .set_index, will help with applying the final touches
to tidy data.

Tidying variable values as column names
with stack

To help understand the differences between tidy and messy data, let's take a look at a table
that may or may not be in tidy form:

>>> import pandas as pd

>>> import numpy as np

>>> state_fruit = pd.read_csv('data/state_fruit.csv', index_col=0)

>>> state_fruit

 Apple Orange Banana

Texas 12 10 40

Arizona 9 7 12

Florida 0 14 190

There does not appear to be anything messy about this table, and the information is easily
consumable. However, according to the tidy principles, it isn't tidy. Each column name is the
value of a variable. In fact, none of the variable names are even present in the DataFrame.
One of the first steps to transform a messy dataset into tidy data is to identify all of the
variables. In this particular dataset, we have variables for state and fruit. There's also the
numeric data that wasn't identified anywhere in the context of the problem. We can label
this variable as weight or any other sensible name.

This particular messy dataset contains variable values as column names. We will need to
transpose these column names into column values. In this recipe, we use the stack method
to restructure our DataFrame into tidy form.

How to do it…
1. First, take note that the state names are in the index of the DataFrame. These states

are correctly placed vertically and do not need to be restructured. It is the column
names that are the problem. The .stack method takes all of the column names
and pivots them into the index. Typically, when you call the .stack method, the data
becomes taller.

Restructuring Data into a Tidy Form

352

2. Note that in this case, the result collapses from a DataFrame to a Series:
>>> state_fruit.stack()

Texas Apple 12

 Orange 10

 Banana 40

Arizona Apple 9

 Orange 7

 Banana 12

Florida Apple 0

 Orange 14

 Banana 190

dtype: int64

3. Notice that we now have a Series with a MultiIndex. There are now two levels in
the index. The original index has been pushed to the left to make room for the fruit
column names. With this one command, we now essentially have tidy data. Each
variable, state, fruit, and weight is vertical. Let's use the .reset_index method
to turn the result into a DataFrame:
>>> (state_fruit

... .stack()

... .reset_index()

...)

 level_0 level_1 0

0 Texas Apple 12

1 Texas Orange 10

2 Texas Banana 40

3 Arizona Apple 9

4 Arizona Orange 7

5 Arizona Banana 12

6 Florida Apple 0

7 Florida Orange 14

8 Florida Banana 190

4. Our structure is now correct, but the column names are meaningless. Let's replace
them with proper identifiers:
>>> (state_fruit

... .stack()

... .reset_index()

Chapter 10

353

... .rename(columns={'level_0':'state',

... 'level_1': 'fruit', 0: 'weight'})

...)

 state fruit weight

0 Texas Apple 12

1 Texas Orange 10

2 Texas Banana 40

3 Arizona Apple 9

4 Arizona Orange 7

5 Arizona Banana 12

6 Florida Apple 0

7 Florida Orange 14

8 Florida Banana 190

5. Instead of using the .rename method, it is possible to use the lesser-known Series
method .rename_axis to set the names of the index levels before using .reset_
index:
>>> (state_fruit

... .stack()

... .rename_axis(['state', 'fruit'])

...)

state fruit

Texas Apple 12

 Orange 10

 Banana 40

Arizona Apple 9

 Orange 7

 Banana 12

Florida Apple 0

 Orange 14

 Banana 190

dtype: int64

6. From here, we can chain the .reset_index method with the name parameter to
reproduce the output from step 3:

>>> (state_fruit

... .stack()

Restructuring Data into a Tidy Form

354

... .rename_axis(['state', 'fruit'])

... .reset_index(name='weight')

...)

 state fruit weight

0 Texas Apple 12

1 Texas Orange 10

2 Texas Banana 40

3 Arizona Apple 9

4 Arizona Orange 7

5 Arizona Banana 12

6 Florida Apple 0

7 Florida Orange 14

8 Florida Banana 190

How it works…
The .stack method is powerful, and it takes time to understand and appreciate fully.
By default, it takes the (innermost level in hierarchical columns of) column names and
transposes them, so they become the new innermost index level. Notice how each old
column name still labels its original value by being paired with each state. There were nine
original values in a 3 x 3 DataFrame, which got transformed into a single Series with the
same number of values. The original first row of data became the first three values in the
resulting Series.

After resetting the index in step 2, pandas defaults our DataFrame columns to level_0,
level_1, and 0 (two strings and one integer). This is because the Series calling this method
has two index levels that were formally unnamed. pandas also refers to indexes by integer,
beginning from zero from the outside.

Step 3 shows an intuitive way to rename the columns with the .rename method.

Alternatively, it is possible to set the column names by chaining the .rename_axis method
that uses a list of values as the index level names. pandas uses these index level names
as the new column names when the index is reset. Additionally, the .reset_index method
has a name parameter corresponding to the new column name of the Series values.

All Series have a name attribute that can be assigned or changed with the .rename
method. It is this attribute that becomes the column name when using .reset_index.

Chapter 10

355

There's more…
One of the keys to using .stack is to place all of the columns that you do not wish to
transform in the index. The dataset in this recipe was initially read with the states in the index.
Let's take a look at what would have happened if we did not read the states into the index:

>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2

 State Apple Orange Banana

0 Texas 12 10 40

1 Arizona 9 7 12

2 Florida 0 14 190

As the state names are not in the index, using .stack on this DataFrame reshapes all values
into one long Series of values:

>>> state_fruit2.stack()

0 State Texas

 Apple 12

 Orange 10

 Banana 40

1 State Arizona

 ...

 Banana 12

2 State Florida

 Apple 0

 Orange 14

 Banana 190

Length: 12, dtype: object

This command reshapes all the columns, this time including the states, and is not at all what
we need. To reshape this data correctly, you will need to put all the non-reshaped columns
into the index first with the .set_index method, and then use .stack. The following code
gives a similar result to step 1:

>>> state_fruit2.set_index('State').stack()

State

Texas Apple 12

 Orange 10

 Banana 40

Arizona Apple 9

Restructuring Data into a Tidy Form

356

 Orange 7

 Banana 12

Florida Apple 0

 Orange 14

 Banana 190

dtype: int64

Tidying variable values as column names
with melt

Like most large Python libraries, pandas has many different ways to accomplish the same
task, the differences usually being readability and performance. A DataFrame has a method
named .melt that is similar to the .stack method described in the previous recipe but gives
a bit more flexibility.

In this recipe, we use the .melt method to tidy a DataFrame with variable values as column
names.

How to do it…
1. Read in the state_fruit2.csv dataset:

>>> state_fruit2 = pd.read_csv('data/state_fruit2.csv')

>>> state_fruit2

 State Apple Orange Banana

0 Texas 12 10 40

1 Arizona 9 7 12

2 Florida 0 14 190

2. Use the .melt method by passing the appropriate columns to the id_vars and
value_vars parameters:
>>> state_fruit2.melt(id_vars=['State'],

... value_vars=['Apple', 'Orange', 'Banana'])

 State variable value

0 Texas Apple 12

1 Arizona Apple 9

2 Florida Apple 0

3 Texas Orange 10

Chapter 10

357

4 Arizona Orange 7

5 Florida Orange 14

6 Texas Banana 40

7 Arizona Banana 12

8 Florida Banana 190

3. This one step creates tidy data for us. By default, .melt refers to the transformed
column names as variables and the corresponding values as values. Conveniently,
.melt has two additional parameters, var_name and value_name, that give you
the ability to rename these two columns:

>>> state_fruit2.melt(id_vars=['State'],

... value_vars=['Apple', 'Orange', 'Banana'],

... var_name='Fruit',

... value_name='Weight')

 State Fruit Weight

0 Texas Apple 12

1 Arizona Apple 9
2 Florida Apple 0

3 Texas Orange 10

4 Arizona Orange 7

5 Florida Orange 14

6 Texas Banana 40

7 Arizona Banana 12

8 Florida Banana 190

How it works…
The .melt method reshapes your DataFrame. It takes up to five parameters, with two of them
being crucial to understanding how to reshape your data correctly:

 f id_vars is a list of column names that you want to preserve as columns and not
reshape

 f value_vars is a list of column names that you want to reshape into a single column

The id_vars, or the identification variables, remain in the same column but repeat for each
of the columns passed to value_vars. One crucial aspect of .melt is that it ignores values
in the index, and it silently drops your index and replaces it with a default RangeIndex. This
means that if you do have values in your index that you would like to keep, you will need to
reset the index first before using melt.

Restructuring Data into a Tidy Form

358

There's more…
All the parameters for the .melt method are optional, and if you desire all your values to be
in a single column and their old column labels to be in the other, you may call .melt with the
default parameters:

>>> state_fruit2.melt()

 variable value

0 State Texas

1 State Arizona

2 State Florida

3 Apple 12

4 Apple 9

..

7 Orange 7

8 Orange 14

9 Banana 40

10 Banana 12

11 Banana 190

More realistically, you might have lots of variables that need melting and would like to specify
only the identification variables. In that case, calling .melt in the following manner will yield
the same result as in step 2. You don't even need a list when melting a single column and can
pass its string value:

>>> state_fruit2.melt(id_vars='State')

 State variable value

0 Texas Apple 12

1 Arizona Apple 9

2 Florida Apple 0

3 Texas Orange 10

4 Arizona Orange 7

5 Florida Orange 14

6 Texas Banana 40

7 Arizona Banana 12

8 Florida Banana 190

Chapter 10

359

Stacking multiple groups of variables
simultaneously

Some datasets contain multiple groups of variables as column names that need to be
stacked simultaneously into their own columns. An example involving the movie dataset can
help clarify this. Let's begin by selecting all columns containing the actor names and their
corresponding Facebook likes:

>>> movie = pd.read_csv('data/movie.csv')

>>> actor = movie[['movie_title', 'actor_1_name',

... 'actor_2_name', 'actor_3_name',

... 'actor_1_facebook_likes',

... 'actor_2_facebook_likes',

... 'actor_3_facebook_likes']]

>>> actor.head()

 movie_title ...

0 Avatar ...

1 Pirates of the Caribbean: At World's End ...

2 Spectre ...

3 The Dark Knight Rises ...

4 Star Wars: Episode VII - The Force Awakens ...

If we define our variables as the title of the movie, the actor name, and the number of
Facebook likes, then we will need to stack two sets of columns, which is not possible using
a single call to .stack or .melt.

In this recipe, we will tidy our actor DataFrame by simultaneously stacking the actor names
and their corresponding Facebook likes with the wide_to_long function.

How to do it…
1. We will be using the wide_to_long function to reshape our data into tidy form.

To use this function, we will need to change the column names that we are stacking,
so that they end with a digit. We first create a user-defined function to change the
column names:
>>> def change_col_name(col_name):

... col_name = col_name.replace('_name', '')

... if 'facebook' in col_name:

... fb_idx = col_name.find('facebook')

Restructuring Data into a Tidy Form

360

... col_name = (col_name[:5] + col_name[fb_idx - 1:]

... + col_name[5:fb_idx-1])

... return col_name

2. Pass this function to the rename method to transform all the column names:
>>> actor2 = actor.rename(columns=change_col_name)

>>> actor2

 movie_title actor_1 ... actor_facebook_likes_2

0 Avatar CCH Pounder ... 936.0

1 Pirates ... Johnny Depp ... 5000.0

2 Spectre Christop... ... 393.0

3 The Dark... Tom Hardy ... 23000.0

4 Star War... Doug Walker ... 12.0

...

4911 Signed S... Eric Mabius ... 470.0

4912 The Foll... Natalie Zea ... 593.0

4913 A Plague... Eva Boehnke ... 0.0

4914 Shanghai... Alan Ruck ... 719.0

4915 My Date ... John August ... 23.0

3. Use the wide_to_long function to stack the actor and Facebook sets of columns
simultaneously:

>>> stubs = ['actor', 'actor_facebook_likes']

>>> actor2_tidy = pd.wide_to_long(actor2,

... stubnames=stubs,

... i=['movie_title'],

... j='actor_num',

... sep='_')

>>> actor2_tidy.head()

 actor actor_facebook_likes

movie_title actor_num

Avatar 1 CCH Pounder 1000.0

Pirates o... 1 Johnny Depp 40000.0

Spectre 1 Christop... 11000.0

The Dark ... 1 Tom Hardy 27000.0

Star Wars... 1 Doug Walker 131.0

Chapter 10

361

How it works…
The wide_to_long function works in a fairly specific manner. Its main parameter is
stubnames, which is a list of strings. Each string represents a single column grouping. All
columns that begin with this string will be stacked into a single column. In this recipe, there
are two groups of columns: actor, and actor_facebook_likes. By default, each of these
groups of columns will need to end in a digit. This digit will subsequently be used to label the
reshaped data. Each of these column groups has an underscore character separating the
stubname from the ending digit. To account for this, you must use the sep parameter.

The original column names do not match the pattern needed for wide_to_long to work.
The column names could have been changed manually by specifying their values with a list.
This could quickly become a lot of typing so instead, we define a function that automatically
converts our columns to a format that works. The change_col_name function removes *_
name* from the actor columns and rearranges the Facebook columns so that now they both
end in digits.

To accomplish the column renaming, we use the .rename method in step 2. It accepts many
different types of arguments, one of which is a function. When passing it to a function, every
column name gets implicitly passed to it one at a time.

We have now correctly created two groups of columns, those beginning with actor and
actor_facebook_likes that will be stacked. In addition to this, wide_to_long
requires a unique column, parameter i, to act as an identification variable that will not
be stacked. Also required is the parameter j, which renames the identifying digit stripped
from the end of the original column names. By default, the suffix parameter contains the
regular expression, r'\d+', that searches for one or more digits. The \d is a special token
that matches the digits 0-9. The plus sign, +, makes the expression match for one or more
of these digits.

There's more…
The function wide_to_long works when all groupings of variables have the same numeric
ending like they did in this recipe. When your variables do not have the same ending or don't
end in a digit, you can still use wide_to_long to do simultaneous column stacking. For
instance, let's take a look at the following dataset:

>>> df = pd.read_csv('data/stackme.csv')

>>> df

 State Country a1 b2 Test d e

0 TX US 0.45 0.3 Test1 2 6

1 MA US 0.03 1.2 Test2 9 7

2 ON CAN 0.70 4.2 Test3 4 2

Restructuring Data into a Tidy Form

362

Let's say we wanted columns a1 and b1 stacked together, as well as columns d and e.
Additionally, we wanted to use a1 and b1 as labels for the rows. To accomplish this task,
we would need to rename the columns so that they ended in the label we desired:

>>> df.rename(columns = {'a1':'group1_a1', 'b2':'group1_b2',

... 'd':'group2_a1', 'e':'group2_b2'})

 State Country ... group2_a1 group2_b2

0 TX US ... 2 6

1 MA US ... 9 7

2 ON CAN ... 4 2

We would then need to modify the suffix parameter, which normally defaults to a regular
expression that selects digits. Here, we tell it to find any number of characters:

>>> pd.wide_to_long(

... df.rename(columns = {'a1':'group1_a1',

... 'b2':'group1_b2',

... 'd':'group2_a1', 'e':'group2_b2'}),

... stubnames=['group1', 'group2'],

... i=['State', 'Country', 'Test'],

... j='Label',

... suffix='.+',

... sep='_')

 group1 group2

State Country Test Label

TX US Test1 a1 0.45 2

 b2 0.30 6

MA US Test2 a1 0.03 9

 b2 1.20 7

ON CAN Test3 a1 0.70 4

 b2 4.20 2

Inverting stacked data
DataFrames have two similar methods, .stack and .melt, to convert horizontal column names
into vertical column values. DataFrames can invert these two operations with the .unstack and
.pivot methods, respectively. .stack and .unstack are methods that allow control over only the
column and row indexes, while .melt and .pivot give more flexibility to choose which columns
are reshaped.

Chapter 10

363

In this recipe, we will call .stack and .melt on a dataset and promptly invert the operation
with the .unstack and .pivot methods.

How to do it…
1. Read in the college dataset with the institution name as the index, and with only the

undergraduate race columns:
>>> def usecol_func(name):

... return 'UGDS_' in name or name == 'INSTNM'

>>> college = pd.read_csv('data/college.csv',

... index_col='INSTNM',

... usecols=usecol_func)

>>> college

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.0333 0.9353 ... 0.0059 0.0138

Universit... 0.5922 0.2600 ... 0.0179 0.0100

Amridge U... 0.2990 0.4192 ... 0.0000 0.2715

Universit... 0.6988 0.1255 ... 0.0332 0.0350

Alabama S... 0.0158 0.9208 ... 0.0243 0.0137

...

SAE Insti... NaN NaN ... NaN NaN

Rasmussen... NaN NaN ... NaN NaN

National ... NaN NaN ... NaN NaN

Bay Area ... NaN NaN ... NaN NaN

Excel Lea... NaN NaN ... NaN NaN

2. Use the .stack method to convert each horizontal column name to a vertical index
level:
>>> college_stacked = college.stack()

>>> college_stacked

INSTNM

Alabama A & M University UGDS_WHITE 0.0333

 UGDS_BLACK 0.9353

 UGDS_HISP 0.0055

 UGDS_ASIAN 0.0019

 UGDS_AIAN 0.002

Restructuring Data into a Tidy Form

364

 ...

Coastal Pines Technical College UGDS_AIAN 0.0034

 UGDS_NHPI 0.0017

 UGDS_2MOR 0.0191

 UGDS_NRA 0.0028

 UGDS_UNKN 0.0056

Length: 61866, dtype: float64

3. Invert this stacked data back to its original form with the .unstack method:
>>> college_stacked.unstack()

 UGDS_WHITE UGDS_BLACK ... UGDS_NRA UGDS_UNKN

INSTNM ...

Alabama A... 0.0333 0.9353 ... 0.0059 0.0138

Universit... 0.5922 0.2600 ... 0.0179 0.0100

Amridge U... 0.2990 0.4192 ... 0.0000 0.2715

Universit... 0.6988 0.1255 ... 0.0332 0.0350

Alabama S... 0.0158 0.9208 ... 0.0243 0.0137

...

Hollywood... 0.2182 0.4182 ... 0.0182 0.0909

Hollywood... 0.1200 0.3333 ... 0.0000 0.0667

Coachella... 0.3284 0.1045 ... 0.0000 0.0000

Dewey Uni... 0.0000 0.0000 ... 0.0000 0.0000

Coastal P... 0.6762 0.2508 ... 0.0028 0.0056

4. A similar sequence of operations can be done with .melt followed by .pivot.
First, read in the data without putting the institution name in the index:
>>> college2 = pd.read_csv('data/college.csv',

... usecols=usecol_func)

>>> college2

 INSTNM UGDS_WHITE ... UGDS_NRA UGDS_UNKN

0 Alabama ... 0.0333 ... 0.0059 0.0138

1 Universi... 0.5922 ... 0.0179 0.0100

2 Amridge ... 0.2990 ... 0.0000 0.2715

3 Universi... 0.6988 ... 0.0332 0.0350

4 Alabama ... 0.0158 ... 0.0243 0.0137

...

7530 SAE Inst... NaN ... NaN NaN

Chapter 10

365

7531 Rasmusse... NaN ... NaN NaN

7532 National... NaN ... NaN NaN

7533 Bay Area... NaN ... NaN NaN

7534 Excel Le... NaN ... NaN NaN

5. Use the .melt method to transpose all the race columns into a single column:
>>> college_melted = college2.melt(id_vars='INSTNM',

... var_name='Race',

... value_name='Percentage')

>>> college_melted

 INSTNM Race Percentage

0 Alabama ... UGDS_WHITE 0.0333

1 Universi... UGDS_WHITE 0.5922

2 Amridge ... UGDS_WHITE 0.2990

3 Universi... UGDS_WHITE 0.6988

4 Alabama ... UGDS_WHITE 0.0158

...

67810 SAE Inst... UGDS_UNKN NaN

67811 Rasmusse... UGDS_UNKN NaN

67812 National... UGDS_UNKN NaN

67813 Bay Area... UGDS_UNKN NaN

67814 Excel Le... UGDS_UNKN NaN

6. Use the .pivot method to invert this previous result:
>>> melted_inv = college_melted.pivot(index='INSTNM',

... columns='Race',

... values='Percentage')

>>> melted_inv

Race UGDS_2MOR UGDS_AIAN ... UGDS_UNKN UGDS_WHITE

INSTNM ...

A & W Hea... 0.0000 0.0000 ... 0.0000 0.0000

A T Still... NaN NaN ... NaN NaN

ABC Beaut... 0.0000 0.0000 ... 0.0000 0.0000

ABC Beaut... 0.0000 0.0000 ... 0.0000 0.2895

AI Miami ... 0.0018 0.0000 ... 0.4644 0.0324

...

Yukon Bea... 0.0000 0.1200 ... 0.0000 0.8000

Restructuring Data into a Tidy Form

366

Z Hair Ac... 0.0211 0.0000 ... 0.0105 0.9368

Zane Stat... 0.0218 0.0029 ... 0.2399 0.6995

duCret Sc... 0.0976 0.0000 ... 0.0244 0.4634

eClips Sc... 0.0000 0.0000 ... 0.0000 0.1446

7. Notice that the institution names are now shuttled over into the index and are not in
their original order. The column names are not in their original order. To get an exact
replication of our starting DataFrame from step 4, use the .loc index operator to
select rows and columns simultaneously and then reset the index:

>>> college2_replication = (melted_inv

... .loc[college2['INSTNM'], college2.columns[1:]]

... .reset_index()

...)

>>> college2.equals(college2_replication)

True

How it works…
There are multiple ways to accomplish the same thing in step 1. Here, we show the versatility
of the read_csv function. The usecols parameter accepts either a list of the columns that
we would like to import or a function that dynamically determines them. We use a function
that checks whether the column name contains UGDS_ or is equal to INSTNM. The function
is passed each column name as a string and must return a Boolean. A considerable amount
of memory can be saved in this manner.

The stack method in step 2 puts all column names into the innermost index level and returns
a Series. In step 3, the .unstack method inverts this operation by taking all the values in the
innermost index level and converting them to column names. Note that the sizes of the results
of steps 1 and 3 are different because .stack drops missing values by default. If you pass in
the dropna=False parameter, it will round-trip correctly.

Step 4 reads in the same dataset as in step 1 but does not put the institution name in the
index because the .melt method isn't able to access it. Step 5 uses the .melt method
to transpose all the Race columns. It does this by leaving the value_vars parameter as
its default value, None. When not specified, all the columns not present in the id_vars
parameter get transposed.

Step 6 inverts the operation from step 5 with the .pivot method, which accepts three
parameters. Most parameters take a single column as a string (the values parameter may
also accept a list of column names). The column referenced by the index parameter remains
vertical and becomes the new index. The values of the column referenced by the columns
parameter become the column names. The values referenced by the values parameter
become tiled to correspond with the intersection of their former index and columns label.

Chapter 10

367

To make a replication with pivot, we need to sort the rows and columns in the same order as
the original. As the institution name is in the index, we use the .loc index operator to sort the
DataFrame by its original index.

There's more…
To help further understand .stack and .unstack, let's use them to transpose the
college DataFrame. In this context, we are using the precise mathematical definition of the
transposing of a matrix, where the new rows are the old columns of the original data matrix.

If you take a look at the output from step 2, you'll notice that there are two index levels. By
default, the .unstack method uses the innermost index level as the new column values.
Index levels are numbered beginning from zero from the outside. pandas defaults the level
parameter of the .unstack method to -1, which refers to the innermost index. We can
instead .unstack the outermost column using level=0:

>>> college.stack().unstack(0)

INSTNM Alaba/rsity ... Coast/llege

UGDS_WHITE 0.0333 ... 0.6762

UGDS_BLACK 0.9353 ... 0.2508

UGDS_HISP 0.0055 ... 0.0359

UGDS_ASIAN 0.0019 ... 0.0045

UGDS_AIAN 0.0024 ... 0.0034

UGDS_NHPI 0.0019 ... 0.0017

UGDS_2MOR 0.0000 ... 0.0191

UGDS_NRA 0.0059 ... 0.0028

UGDS_UNKN 0.0138 ... 0.0056

There is a way to transpose a DataFrame that does not require .stack or .unstack. Use the
.transpose method or the .T attribute like this:

>>> college.T

>>> college.transpose()

INSTNM Alaba/rsity ... Coast/llege

UGDS_WHITE 0.0333 ... 0.6762

UGDS_BLACK 0.9353 ... 0.2508

UGDS_HISP 0.0055 ... 0.0359

UGDS_ASIAN 0.0019 ... 0.0045

UGDS_AIAN 0.0024 ... 0.0034

UGDS_NHPI 0.0019 ... 0.0017

Restructuring Data into a Tidy Form

368

UGDS_2MOR 0.0000 ... 0.0191

UGDS_NRA 0.0059 ... 0.0028

UGDS_UNKN 0.0138 ... 0.0056

Unstacking after a groupby aggregation
Grouping data by a single column and performing an aggregation on a single column returns
a result that is easy to consume. When grouping by more than one column, a resulting
aggregation might not be structured in a manner that makes consumption easy. Since
.groupby operations, by default, put the unique grouping columns in the index, the .unstack
method can be beneficial to rearrange the data so that it is presented in a manner that is
more useful for interpretation.

In this recipe, we use the employee dataset to perform an aggregation, grouping by multiple
columns. We then use the .unstack method to reshape the result into a format that makes
for easier comparisons of different groups.

How to do it…
1. Read in the employee dataset and find the mean salary by race:

>>> employee = pd.read_csv('data/employee.csv')

>>> (employee

... .groupby('RACE')

... ['BASE_SALARY']

... .mean()

... .astype(int)

...)

RACE

American Indian or Alaskan Native 60272

Asian/Pacific Islander 61660

Black or African American 50137

Hispanic/Latino 52345

Others 51278

White 64419

Name: BASE_SALARY, dtype: int64

Chapter 10

369

2. This is a groupby operation that results in a Series that is easy to read and has no
need to reshape. Let's now find the average salary for all races by gender. Note that
the result is a Series:
>>> (employee

... .groupby(['RACE', 'GENDER'])

... ['BASE_SALARY']

... .mean()

... .astype(int)

...)

RACE GENDER

American Indian or Alaskan Native Female 60238

 Male 60305

Asian/Pacific Islander Female 63226

 Male 61033

Black or African American Female 48915

 ...

Hispanic/Latino Male 54782

Others Female 63785

 Male 38771

White Female 66793

 Male 63940

Name: BASE_SALARY, Length: 12, dtype: int64

3. This aggregation is more complex and can be reshaped to make different
comparisons easier. For instance, it would be easier to compare male versus female
salaries for each race if they were side by side and not vertical as they are now. Let's
call on .unstack on the gender index level:
>>> (employee

... .groupby(['RACE', 'GENDER'])

... ['BASE_SALARY']

... .mean()

... .astype(int)

... .unstack('GENDER')

...)

GENDER Female Male

RACE

American Indian or Alaskan Native 60238 60305

Restructuring Data into a Tidy Form

370

Asian/Pacific Islander 63226 61033

Black or African American 48915 51082

Hispanic/Latino 46503 54782

Others 63785 38771

White 66793 63940

4. Similarly, we can unstack the race index level:

>>> (employee

... .groupby(['RACE', 'GENDER'])

... ['BASE_SALARY']

... .mean()

... .astype(int)

... .unstack('RACE')

...)

RACE American Indian or Alaskan Native ... White

GENDER ...

Female 60238 ... 66793

Male 60305 ... 63940

How it works…
Step 1 has the simplest possible aggregation with a single grouping column (RACE), a single
aggregating column (BASE_SALARY), and a single aggregating function (.mean). This result
is easy to consume and doesn't require any more processing to evaluate. Step 2 groups by
both race and gender together. The resulting Series (which has a MultiIndex) contains
all the values in a single dimension, which makes comparisons more difficult. To make the
information easier to consume, we use the .unstack method to convert the values in one
(or more) of the levels to columns.

By default, .unstack uses the innermost index level as the new columns. You can specify
the level you would like to unstack with the level parameter, which accepts either the level
name as a string or the level integer location. It is preferable to use the level name over
the integer location to avoid ambiguity. Steps 3 and 4 unstack each level, which results in
a DataFrame with a single-level index. It is now much easier to compare salaries from each
race by gender.

Chapter 10

371

There's more…
If there are multiple aggregating functions when performing a groupby with a single column
from a DataFrame, then the immediate result will be a DataFrame and not a Series. For
instance, let's calculate more aggregations than just the mean, as was done in step 2:

>>> (employee

... .groupby(['RACE', 'GENDER'])

... ['BASE_SALARY']

... .agg(['mean', 'max', 'min'])

... .astype(int)

...)

 mean max min

RACE GENDER

American Indian or Alaskan Native Female 60238 98536 26125

 Male 60305 81239 26125

Asian/Pacific Islander Female 63226 130416 26125

 Male 61033 163228 27914

Black or African American Female 48915 150416 24960

...

Hispanic/Latino Male 54782 165216 26104

Others Female 63785 63785 63785

 Male 38771 38771 38771

White Female 66793 178331 27955

 Male 63940 210588 26125

Unstacking the Gender column will result in columns with a MultiIndex. From here, you
can keep swapping row and column levels with both the .unstack and .stack methods
until you achieve the structure of data you desire:

>>> (employee

... .groupby(['RACE', 'GENDER'])

... ['BASE_SALARY']

... .agg(['mean', 'max', 'min'])

... .astype(int)

... .unstack('GENDER')

...)

 mean ... min

GENDER Female Male ... Female Male

Restructuring Data into a Tidy Form

372

RACE ...

American ... 60238 60305 ... 26125 26125

Asian/Pac... 63226 61033 ... 26125 27914

Black or ... 48915 51082 ... 24960 26125

Hispanic/... 46503 54782 ... 26125 26104

Others 63785 38771 ... 63785 38771

White 66793 63940 ... 27955 26125

Replicating pivot_table with a groupby
aggregation

At first glance, it may seem that the .pivot_table method provides a unique way to
analyze data. However, after a little massaging, it is possible to replicate its functionality
with the .groupby method. Knowing this equivalence can help shrink the universe of pandas
functionality.

In this recipe, we use the flights dataset to create a pivot table and then recreate it using the
.groupby method.

How to do it…
1. Read in the flights dataset, and use the .pivot_table method to find the total

number of canceled flights per origin airport for each airline:
>>> flights = pd.read_csv('data/flights.csv')

>>> fpt = flights.pivot_table(index='AIRLINE',

... columns='ORG_AIR',

... values='CANCELLED',

... aggfunc='sum',

... fill_value=0)

>>> fpt

ORG_AIR ATL DEN DFW IAH LAS LAX MSP ORD PHX SFO

AIRLINE

AA 3 4 86 3 3 11 3 35 4 2

AS 0 0 0 0 0 0 0 0 0 0

B6 0 0 0 0 0 0 0 0 0 1

DL 28 1 0 0 1 1 4 0 1 2

EV 18 6 27 36 0 0 6 53 0 0

...

Chapter 10

373

OO 3 25 2 10 0 15 4 41 9 33

UA 2 9 1 23 3 6 2 25 3 19

US 0 0 2 2 1 0 0 6 7 3

VX 0 0 0 0 0 3 0 0 0 3

WN 9 13 0 0 7 32 1 0 6 25

2. To replicate this with the .groupby method, we will need to groupby two columns
and then unstack them. A groupby aggregation cannot replicate this table. The trick
is to group by all the columns in both the index and columns parameters first:
>>> (flights

... .groupby(['AIRLINE', 'ORG_AIR'])

... ['CANCELLED']

... .sum()

...)

AIRLINE ORG_AIR

AA ATL 3

 DEN 4

 DFW 86

 IAH 3

 LAS 3

 ..

WN LAS 7

 LAX 32

 MSP 1

 PHX 6

 SFO 25

Name: CANCELLED, Length: 114, dtype: int64

3. Use the .unstack method to pivot the ORG_AIR index level to column names:

>>> fpg = (flights

... .groupby(['AIRLINE', 'ORG_AIR'])

... ['CANCELLED']

... .sum()

... .unstack('ORG_AIR', fill_value=0)

...)

>>> fpt.equals(fpg)

True

Restructuring Data into a Tidy Form

374

How it works…
The .pivot_table method is very versatile and flexible but performs a rather similar
operation to a groupby aggregation with step 1 showing an example. The index parameter
takes a column (or list of columns) that will not be pivoted and whose unique values will be
placed in the index. The columns parameter takes a column (or list of columns) that will be
pivoted and whose unique values will be made into column names. The values parameter
takes a column (or list of columns) that will be aggregated.

There also exists an aggfunc parameter that takes an aggregating function (or list of
functions) that determines how the columns in the values parameter get aggregated.
It defaults to the string mean, and, in this example, we change it to calculate the sum.
Additionally, some unique combinations of AIRLINE and ORG_AIR do not exist. These
missing combinations will default to missing values in the resulting DataFrame. Here,
we use the fill_value parameter to change them to zero.

Step 2 begins the replication process using all the columns in the index and columns
parameter as the grouping columns. This is the key to making this recipe work. A pivot table
is an intersection of all the unique combinations of the grouping columns. Step 3 finishes
the replication by pivoting the innermost index level into column names with the .unstack
method. Just like with .pivot_table, not all combinations of AIRLINE and ORG_AIR exist;
we again use the fill_value parameter to force these missing intersections to zero.

There's more…
It is possible to replicate much more complex pivot tables with the .groupby method.
For instance, take the following result from .pivot_table:

>>> flights.pivot_table(index=['AIRLINE', 'MONTH'],

... columns=['ORG_AIR', 'CANCELLED'],

... values=['DEP_DELAY', 'DIST'],

... aggfunc=['sum', 'mean'],

... fill_value=0)

 sum ... mean

 DEP_DELAY ... DIST

ORG_AIR ATL ... SFO

CANCELLED 0 1 ... 0 1

AIRLINE MONTH ...

AA 1 -13 0 ... 1860.166667 0.0

 2 -39 0 ... 1337.916667 2586.0

 3 -2 0 ... 1502.758621 0.0

Chapter 10

375

 4 1 0 ... 1646.903226 0.0

 5 52 0 ... 1436.892857 0.0

...

WN 7 2604 0 ... 636.210526 0.0

 8 1718 0 ... 644.857143 392.0

 9 1033 0 ... 731.578947 354.5

 11 700 0 ... 580.875000 392.0

 12 1679 0 ... 782.256410 0.0

To replicate this with the .groupby method, follow the same pattern from the recipe, place all
the columns from the index and columns parameters into the .groupby method, and then call
.unstack to pull the index levels out to the columns:

>>> (flights

... .groupby(['AIRLINE', 'MONTH', 'ORG_AIR', 'CANCELLED'])

... [['DEP_DELAY', 'DIST']]

... .agg(['mean', 'sum'])

... .unstack(['ORG_AIR', 'CANCELLED'], fill_value=0)

... .swaplevel(0, 1, axis='columns')

...)

 mean ... sum

 DEP_DELAY ... DIST

ORG_AIR ATL ... SFO

CANCELLED 0 1 ... 0 1

AIRLINE MONTH ...

AA 1 -3.250000 NaN ... 33483.0 NaN

 2 -3.000000 NaN ... 32110.0 2586.0

 3 -0.166667 NaN ... 43580.0 NaN

 4 0.071429 NaN ... 51054.0 NaN

 5 5.777778 NaN ... 40233.0 NaN

...

WN 7 21.700000 NaN ... 24176.0 NaN

 8 16.207547 NaN ... 18056.0 784.0

 9 8.680672 NaN ... 27800.0 709.0

 11 5.932203 NaN ... 23235.0 784.0

 12 15.691589 NaN ... 30508.0 NaN

Restructuring Data into a Tidy Form

376

The order of the column levels differs, with .pivot_table putting the aggregation functions
at a level preceding the columns in the values parameter. You can use the .swaplevel
method to remedy this. It will swap the outermost column (level 0) with the level below that
(level 1). Also note that the column order is different.

Renaming axis levels for easy reshaping
Reshaping with the .stack and .unstack methods is far easier when each axis (both
index and column) level has a name. pandas allows users to reference each axis level by
integer location or by name. Since integer location is implicit and not explicit, you should
consider using level names whenever possible. This advice follows from The Zen of Python
(type import this if you are not familiar with it), a short list of guiding principles for Python,
of which the second one is "Explicit is better than implicit."

When grouping or aggregating with multiple columns, the resulting pandas object will have
multiple levels in one or both of the axes. In this recipe, we will name each level of each axis
and then use the .stack and .unstack methods to reshape the data to the desired form.

How to do it…
1. Read in the college dataset, and find a few basic summary statistics on the

undergraduate population and SAT math scores by institution and religious affiliation:
>>> college = pd.read_csv('data/college.csv')

>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

...)

 UGDS SATMTMID

 size min max size min max

STABBR RELAFFIL

AK 0 7 109.0 12865.0 7 NaN NaN

 1 3 27.0 275.0 3 503.0 503.0

AL 0 72 12.0 29851.0 72 420.0 590.0

 1 24 13.0 3033.0 24 400.0 560.0

AR 0 68 18.0 21405.0 68 427.0 565.0

...

WI 0 87 20.0 29302.0 87 480.0 680.0

Chapter 10

377

 1 25 4.0 8212.0 25 452.0 605.0

WV 0 65 20.0 44924.0 65 430.0 530.0

 1 8 63.0 1375.0 8 455.0 510.0

WY 0 11 52.0 9910.0 11 540.0 540.0

2. Notice that both index levels have names and are the old column names. The column
levels, on the other hand, do not have names. Use the .rename_axis method to
give them level names:
>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

... .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

...)

AGG_COLS UGDS SATMTMID

AGG_FUNCS size min max size min max

STABBR RELAFFIL

AK 0 7 109.0 12865.0 7 NaN NaN

 1 3 27.0 275.0 3 503.0 503.0

AL 0 72 12.0 29851.0 72 420.0 590.0

 1 24 13.0 3033.0 24 400.0 560.0

AR 0 68 18.0 21405.0 68 427.0 565.0

...

WI 0 87 20.0 29302.0 87 480.0 680.0

 1 25 4.0 8212.0 25 452.0 605.0

WV 0 65 20.0 44924.0 65 430.0 530.0

 1 8 63.0 1375.0 8 455.0 510.0

WY 0 11 52.0 9910.0 11 540.0 540.0

3. Now that each axis level has a name, reshaping is a breeze. Use the .stack method
to move the AGG_FUNCS column to an index level:
>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

... .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

... .stack('AGG_FUNCS')

...)

Restructuring Data into a Tidy Form

378

AGG_COLS UGDS SATMTMID

STABBR RELAFFIL AGG_FUNCS

AK 0 size 7.0 7.0

 min 109.0 NaN

 max 12865.0 NaN

 1 size 3.0 3.0

 min 27.0 503.0

...

WV 1 min 63.0 455.0

 max 1375.0 510.0

WY 0 size 11.0 11.0

 min 52.0 540.0

 max 9910.0 540.0

4. By default, stacking places the new column level in the innermost index position. Use
the .swaplevel method to move AGG_FUNCS from the innermost level to the outer
level:
>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

... .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

... .stack('AGG_FUNCS')

... .swaplevel('AGG_FUNCS', 'STABBR',

... axis='index')

...)

AGG_COLS UGDS SATMTMID

AGG_FUNCS RELAFFIL STABBR

size 0 AK 7.0 7.0

min 0 AK 109.0 NaN

max 0 AK 12865.0 NaN

size 1 AK 3.0 3.0

min 1 AK 27.0 503.0

...

 WV 63.0 455.0

max 1 WV 1375.0 510.0

size 0 WY 11.0 11.0

Chapter 10

379

min 0 WY 52.0 540.0

max 0 WY 9910.0 540.0

5. We can continue to make use of the axis level names by sorting levels with the
.sort_index method:
>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

... .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

... .stack('AGG_FUNCS')

... .swaplevel('AGG_FUNCS', 'STABBR', axis='index')

... .sort_index(level='RELAFFIL', axis='index')

... .sort_index(level='AGG_COLS', axis='columns')

...)

AGG_COLS SATMTMID UGDS

AGG_FUNCS RELAFFIL STABBR

max 0 AK NaN 12865.0

 AL 590.0 29851.0

 AR 565.0 21405.0

 AS NaN 1276.0

 AZ 580.0 151558.0

...

size 1 VI 1.0 1.0

 VT 5.0 5.0

 WA 17.0 17.0

 WI 25.0 25.0

 WV 8.0 8.0

6. To completely reshape your data, you might need to stack some columns while
unstacking others. Chain the two methods together:
>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

... .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

... .stack('AGG_FUNCS')

Restructuring Data into a Tidy Form

380

... .unstack(['RELAFFIL', 'STABBR'])

...)

AGG_COLS UGDS ... SATMTMID

RELAFFIL 0 1 ... 1 0

STABBR AK AK ... WV WY

AGG_FUNCS ...

size 7.0 3.0 ... 8.0 11.0

min 109.0 27.0 ... 455.0 540.0

max 12865.0 275.0 ... 510.0 540.0

7. Stack all the columns at once to return a Series:
>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

... .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

... .stack(['AGG_FUNCS', 'AGG_COLS'])

...)

STABBR RELAFFIL AGG_FUNCS AGG_COLS

AK 0 size UGDS 7.0

 SATMTMID 7.0

 min UGDS 109.0

 max UGDS 12865.0

 1 size UGDS 3.0

 ...

WY 0 size SATMTMID 11.0

 min UGDS 52.0

 SATMTMID 540.0

 max UGDS 9910.0

 SATMTMID 540.0

Length: 640, dtype: float64

8. We can also unstack everything in the index. In this case, it collapses to a very wide
result, which pandas displays as a Series:

>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

Chapter 10

381

... .agg(['size', 'min', 'max'])

... .rename_axis(['AGG_COLS', 'AGG_FUNCS'], axis='columns')

... .unstack(['STABBR', 'RELAFFIL'])

...)

AGG_COLS AGG_FUNCS STABBR RELAFFIL

UGDS size AK 0 7.0

 1 3.0

 AL 0 72.0

 1 24.0

 AR 0 68.0

 ...

SATMTMID max WI 1 605.0

 WV 0 530.0

 1 510.0

 WY 0 540.0

 1 NaN

Length: 708, dtype: float64

How it works…
It is common for the result of a call to the .groupby method to produce a DataFrame or
Series with multiple axis levels. The resulting DataFrame from the groupby operation in step
1 has multiple levels for each axis. The column levels are not named, which would require us
to reference them only by their integer location. To ease our ability to reference the column
levels, we rename them with the .rename_axis method.

The .rename_axis method is a bit strange in that it can modify both the level names
and the level values based on the type of the first argument passed to it. Passing it a list
(or a scalar if there is only one level) changes the names of the levels. In step 2, we pass
the .rename_axis method a list and are returned a DataFrame with all axis levels named.

Once all the axis levels have names, we can control the structure of data. Step 3 stacks
the AGG_FUNCS column into the innermost index level. The .swaplevel method in step
4 accepts the name or position of the levels that you want to swap as the first two arguments.
In step 5, the .sort_index method is called twice and sorts the values of each level. Notice
that the values of the column level are the column names SATMTMID and UGDS.

We can get vastly different output by both stacking and unstacking, as done in step 6.
It is also possible to stack or unstack every single column or index level, and both will
collapse into a Series.

Restructuring Data into a Tidy Form

382

There's more…
If you wish to dispose of the level values altogether, you may set them to None. You can do
this when you want to reduce visual clutter or when it is obvious what the column levels
represent and no further processing will take place:

>>> (college

... .groupby(['STABBR', 'RELAFFIL'])

... [['UGDS', 'SATMTMID']]

... .agg(['size', 'min', 'max'])

... .rename_axis([None, None], axis='index')

... .rename_axis([None, None], axis='columns')

...)

 UGDS SATMTMID

 size min max size min max

 AK 0 7 109.0 12865.0 7 NaN NaN

 1 3 27.0 275.0 3 503.0 503.0

 AL 0 72 12.0 29851.0 72 420.0 590.0

 1 24 13.0 3033.0 24 400.0 560.0

 AR 0 68 18.0 21405.0 68 427.0 565.0

 WI 0 87 20.0 29302.0 87 480.0 680.0

 1 25 4.0 8212.0 25 452.0 605.0

 WV 0 65 20.0 44924.0 65 430.0 530.0

 1 8 63.0 1375.0 8 455.0 510.0

 WY 0 11 52.0 9910.0 11 540.0 540.0

Tidying when multiple variables are stored
as column names

One particular flavor of messy data appears whenever the column names contain multiple
different variables themselves. A common example of this scenario occurs when age and sex
are concatenated together. To tidy datasets like this, we must manipulate the columns with
the pandas .str attribute. This attribute contains additional methods for string processing.

In this recipe, we will first identify all the variables, of which some will be concatenated
together as column names. We then reshape the data and parse the text to extract the
correct variable values.

Chapter 10

383

How to do it…
1. Read in the men's weightlifting dataset, and identify the variables:

>>> weightlifting = pd.read_csv('data/weightlifting_men.csv')

>>> weightlifting

 Weight Category M35 35-39 ... M75 75-79 M80 80+

0 56 137 ... 62 55

1 62 152 ... 67 57

2 69 167 ... 75 60

3 77 182 ... 82 65

4 85 192 ... 87 70

5 94 202 ... 90 75

6 105 210 ... 95 80

7 105+ 217 ... 100 85

2. The variables are the Weight Category, a combination of sex and age, and the
qualifying total. The age and sex variables have been concatenated together into a
single cell. Before we can separate them, let's use the .melt method to transpose
the age and sex column names into a single vertical column:
>>> (weightlifting

... .melt(id_vars='Weight Category',

... var_name='sex_age',

... value_name='Qual Total')

...)

 Weight Category sex_age Qual Total

0 56 M35 35-39 137

1 62 M35 35-39 152

2 69 M35 35-39 167

3 77 M35 35-39 182

4 85 M35 35-39 192

..

75 77 M80 80+ 65

76 85 M80 80+ 70

77 94 M80 80+ 75

78 105 M80 80+ 80

79 105+ M80 80+ 85

Restructuring Data into a Tidy Form

384

3. Select the sex_age column, and use the .split method available from the .str
attribute to split the column into two different columns:
>>> (weightlifting

... .melt(id_vars='Weight Category',

... var_name='sex_age',

... value_name='Qual Total')

... ['sex_age']

... .str.split(expand=True)

...)

 0 1

0 M35 35-39

1 M35 35-39

2 M35 35-39

3 M35 35-39

4 M35 35-39

..

75 M80 80+

76 M80 80+

77 M80 80+

78 M80 80+

79 M80 80+

4. This operation returned a DataFrame with meaningless column names. Let's rename
the columns:
>>> (weightlifting

... .melt(id_vars='Weight Category',

... var_name='sex_age',

... value_name='Qual Total')

... ['sex_age']

... .str.split(expand=True)

... .rename(columns={0:'Sex', 1:'Age Group'})

...)

 Sex Age Group

0 M35 35-39

1 M35 35-39

2 M35 35-39

3 M35 35-39

Chapter 10

385

4 M35 35-39

..

75 M80 80+

76 M80 80+

77 M80 80+

78 M80 80+

79 M80 80+

5. Create a Sex column using an index operation after the .str attribute to select the
first character from the renamed Sex column:
>>> (weightlifting

... .melt(id_vars='Weight Category',

... var_name='sex_age',

... value_name='Qual Total')

... ['sex_age']

... .str.split(expand=True)

... .rename(columns={0:'Sex', 1:'Age Group'})

... .assign(Sex=lambda df_: df_.Sex.str[0])

...)

 Sex Age Group

0 M 35-39

1 M 35-39

2 M 35-39

3 M 35-39

4 M 35-39

..

75 M 80+

76 M 80+

77 M 80+

78 M 80+

79 M 80+

6. Use the pd.concat function to concatenate this DataFrame with the Weight
Category and Qual Total columns:
>>> melted = (weightlifting

... .melt(id_vars='Weight Category',

... var_name='sex_age',

Restructuring Data into a Tidy Form

386

... value_name='Qual Total')

...)

>>> tidy = pd.concat([melted

... ['sex_age']

... .str.split(expand=True)

... .rename(columns={0:'Sex', 1:'Age Group'})

... .assign(Sex=lambda df_: df_.Sex.str[0]),

... melted[['Weight Category', 'Qual Total']]],

... axis='columns'

...)

>>> tidy

 Sex Age Group Weight Category Qual Total

0 M 35-39 56 137

1 M 35-39 62 152

2 M 35-39 69 167

3 M 35-39 77 182

4 M 35-39 85 192

..

75 M 80+ 77 65

76 M 80+ 85 70

77 M 80+ 94 75

78 M 80+ 105 80

79 M 80+ 105+ 85

7. This same result could have been created with the following:

>>> melted = (weightlifting

... .melt(id_vars='Weight Category',

... var_name='sex_age',

... value_name='Qual Total')

...)

>>> (melted

... ['sex_age']

... .str.split(expand=True)

... .rename(columns={0:'Sex', 1:'Age Group'})

... .assign(Sex=lambda df_: df_.Sex.str[0],

... Category=melted['Weight Category'],

Chapter 10

387

... Total=melted['Qual Total'])

...)

 Sex Age Group Category Total

0 M 35-39 56 137

1 M 35-39 62 152

2 M 35-39 69 167

3 M 35-39 77 182

4 M 35-39 85 192

..

75 M 80+ 77 65

76 M 80+ 85 70

77 M 80+ 94 75

78 M 80+ 105 80

79 M 80+ 105+ 85

How it works…
The weightlifting dataset, like many datasets, has easily digestible information in its raw form.
Still, technically it is messy, as all but one of the column names contain information for sex
and age. Once the variables are identified, we can begin to tidy the dataset. Whenever column
names contain variables, you will need to use the .melt (or .stack) method. The Weight
Category variable is already in the correct position, so we keep it as an identifying variable
by passing it to the id_vars parameter. Note that we don't explicitly need to name all the
columns that we are melting with value_vars. By default, all the columns not present in
id_vars get melted.

The sex_age column needs to be parsed, and split into two variables. For this, we turn to the
extra functionality provided by the .str attribute, only available to Series (a single DataFrame
column) or an index (this is not hierarchical). The .split method is one of the more common
methods in this situation, as it can separate different parts of the string into their own
columns.By default, it splits on an empty space, but you may also specify a string or regular
expression with the pat parameter. When the expand parameter is set to True, a new
column forms for each independent split character segment. When False, a single column is
returned, containing a list of all the segments.

After renaming the columns in step 4, we need to use the .str attribute again. This attribute
allows us to index or slice off of it, just like a string. Here, we select the first character, which
is the variable for sex. We could go further and split the ages into two separate columns for
minimum and maximum age, but it is common to refer to the entire age group in this manner,
so we leave it as is.

Restructuring Data into a Tidy Form

388

Step 6 shows one of two different methods to join all the data together. The concat function
accepts a collection of DataFrames and either concatenates them vertically (axis='index')
or horizontally (axis='columns'). Because the two DataFrames are indexed identically, it
is possible to assign the values of one DataFrame to new columns in the other, as done in
step 7.

There's more…
Another way to complete this recipe, beginning after step 2, is by assigning new columns from
the sex_age column without using the .split method. The .assign method may be used
to add these new columns dynamically:

>>> tidy2 = (weightlifting

... .melt(id_vars='Weight Category',

... var_name='sex_age',

... value_name='Qual Total')

... .assign(Sex=lambda df_:df_.sex_age.str[0],

... **{'Age Group':(lambda df_: (df_

... .sex_age

... .str.extract(r'(\d{2}[-+](?:\d{2})?)',

... expand=False)))})

... .drop(columns='sex_age')

...)

>>> tidy2

 Weight Category Qual Total Sex Age Group

0 56 137 M 35-39

1 62 152 M 35-39

2 69 167 M 35-39

3 77 182 M 35-39

4 85 192 M 35-39

..

75 77 65 M 80+

76 85 70 M 80+

77 94 75 M 80+

78 105 80 M 80+

79 105+ 85 M 80+

Chapter 10

389

>>> tidy.sort_index(axis=1).equals(tidy2.sort_index(axis=1))

True

The Sex column is found in the same manner as done in step 5. Because we are not using
.split, the Age Group column must be extracted in a different manner. The .extract
method uses a complex regular expression to extract very specific portions of the string.
To use .extract correctly, your pattern must contain capture groups. A capture group is
formed by enclosing parentheses around a portion of the pattern. In this example, the entire
expression is one large capture group. It begins with \d{2}, which searches for exactly
two digits, followed by either a literal plus or minus, optionally followed by two more digits.
Although the last part of the expression, (?:\d{2})?, is surrounded by parentheses, the ?:
denotes that it is not a capture group. It is technically a non-capturing group used to express
two digits together as optional. The sex_age column is no longer needed and is dropped.

Finally, the two tidy DataFrames are compared against one another and are found to be
equivalent.

Tidying when multiple variables are stored
as a single column

Tidy datasets must have a single column for each variable. Occasionally, multiple variable
names are placed in a single column with their corresponding value placed in another.

In this recipe, we identify the column containing the improperly structured variables and pivot
it to create tidy data.

How to do it…
1. Read in the restaurant inspections dataset, and convert the Date column data type

to datetime64:
>>> inspections = pd.read_csv('data/restaurant_inspections.csv',

... parse_dates=['Date'])

>>> inspections

 Name ...

0 E & E Grill House ...

1 E & E Grill House ...

2 E & E Grill House ...

3 E & E Grill House ...

4 E & E Grill House ...

..

Restructuring Data into a Tidy Form

390

495 PIER SIXTY ONE-THE LIGHTHOUSE ...

496 PIER SIXTY ONE-THE LIGHTHOUSE ...

497 PIER SIXTY ONE-THE LIGHTHOUSE ...

498 PIER SIXTY ONE-THE LIGHTHOUSE ...

499 PIER SIXTY ONE-THE LIGHTHOUSE ...

2. This dataset has two columns, Name and Date, that are each correctly contained
in a single column. The Info column has five different variables: Borough, Cuisine,
Description, Grade, and Score. Let's attempt to use the .pivot method to keep the
Name and Date columns vertical, create new columns out of all the values in the
Info column, and use the Value column as their intersection:
>>> inspections.pivot(index=['Name', 'Date'],

... columns='Info', values='Value')

Traceback (most recent call last):

 ...

NotImplementedError: > 1 ndim Categorical are not supported at
this time

3. Unfortunately, pandas developers have not implemented this functionality for us.
Thankfully, for the most part, pandas has multiple ways of accomplishing the same
task. Let's put Name, Date, and Info into the index:
>>> inspections.set_index(['Name','Date', 'Info'])

 Value

Name Date Info

E & E Gri... 2017-08-08 Borough MANHATTAN

 Cuisine American

 Description Non-food...

 Grade A

 Score 9.0

... ...

PIER SIXT... 2017-09-01 Borough MANHATTAN

 Cuisine American

 Description Filth fl...

 Grade Z

 Score 33.0

4. Use the .unstack method to pivot all the values in the Info column:
>>> (inspections

... .set_index(['Name','Date', 'Info'])

Chapter 10

391

... .unstack('Info')

...)

 Value ...

Info Borough Cuisine ... Grade Score

Name Date ...

3 STAR JU... 2017-05-10 BROOKLYN Juice, S... ... A 12.0

A & L PIZ... 2017-08-22 BROOKLYN Pizza ... A 9.0

AKSARAY T... 2017-07-25 BROOKLYN Turkish ... A 13.0

ANTOJITOS... 2017-06-01 BROOKLYN Latin (C... ... A 10.0

BANGIA 2017-06-16 MANHATTAN Korean ... A 9.0

...

VALL'S PI... 2017-03-15 STATEN I... Pizza/It... ... A 9.0

VIP GRILL 2017-06-12 BROOKLYN Jewish/K... ... A 10.0

WAHIZZA 2017-04-13 MANHATTAN Pizza ... A 10.0

WANG MAND... 2017-08-29 QUEENS Korean ... A 12.0

XIAOYAN Y... 2017-08-29 QUEENS Korean ... Z 49.0

5. Make the index levels into columns with the .reset_index method:
>>> (inspections

... .set_index(['Name','Date', 'Info'])

... .unstack('Info')

... .reset_index(col_level=-1)

...)

. ... Value

Info Name Date ... Grade Score

0 3 STAR J... 2017-05-10 ... A 12.0

1 A & L PI... 2017-08-22 ... A 9.0

2 AKSARAY ... 2017-07-25 ... A 13.0

3 ANTOJITO... 2017-06-01 ... A 10.0

4 BANGIA 2017-06-16 ... A 9.0

..

95 VALL'S P... 2017-03-15 ... A 9.0

96 VIP GRILL 2017-06-12 ... A 10.0

97 WAHIZZA 2017-04-13 ... A 10.0

98 WANG MAN... 2017-08-29 ... A 12.0

99 XIAOYAN ... 2017-08-29 ... Z 49.0

Restructuring Data into a Tidy Form

392

6. The dataset is tidy, but there is some annoying leftover pandas debris that needs to
be removed. Let's use the .droplevel method to remove the top column level and
then rename the index level to None:
>>> (inspections

... .set_index(['Name','Date', 'Info'])

... .unstack('Info')

... .reset_index(col_level=-1)

... .droplevel(0, axis=1)

... .rename_axis(None, axis=1)

...)

 Name Date ... Grade Score

0 3 STAR J... 2017-05-10 ... A 12.0

1 A & L PI... 2017-08-22 ... A 9.0

2 AKSARAY ... 2017-07-25 ... A 13.0

3 ANTOJITO... 2017-06-01 ... A 10.0

4 BANGIA 2017-06-16 ... A 9.0

..

95 VALL'S P... 2017-03-15 ... A 9.0

96 VIP GRILL 2017-06-12 ... A 10.0

97 WAHIZZA 2017-04-13 ... A 10.0

98 WANG MAN... 2017-08-29 ... A 12.0

99 XIAOYAN ... 2017-08-29 ... Z 49.0

7. The creation of the column MultiIndex in step 4 could have been avoided by
converting that one column DataFrame in step 3 into a Series with the .squeeze
method. The following code produces the same result as the previous step:

>>> (inspections

... .set_index(['Name','Date', 'Info'])

... .squeeze()

... .unstack('Info')

... .reset_index()

... .rename_axis(None, axis='columns')

...)

 Name Date ... Grade Score

0 3 STAR J... 2017-05-10 ... A 12.0

1 A & L PI... 2017-08-22 ... A 9.0

2 AKSARAY ... 2017-07-25 ... A 13.0

3 ANTOJITO... 2017-06-01 ... A 10.0

Chapter 10

393

4 BANGIA 2017-06-16 ... A 9.0

..

95 VALL'S P... 2017-03-15 ... A 9.0

96 VIP GRILL 2017-06-12 ... A 10.0

97 WAHIZZA 2017-04-13 ... A 10.0

98 WANG MAN... 2017-08-29 ... A 12.0

99 XIAOYAN ... 2017-08-29 ... Z 49.0

How it works…
In step 1, we notice that there are five variables placed vertically in the Info column with
their corresponding value in the Value column. Because we need to pivot each of these five
variables as horizontal column names, it would seem that the .pivot method would work.
Unfortunately, pandas developers have yet to implement this special case when there is more
than one non-pivoted column. We are forced to use a different method.

The .unstack method also pivots vertical data, but only for data in the index. Step 3 begins
this process by moving both the columns that will and will not be pivoted into the index with
the .set_index method. Once these columns are in the index, the .unstack method can
be put to work, as done in step 4.

Notice that as we are unstacking a DataFrame, pandas keeps the original column names
(here, it is just a single column, Value) and creates a MultiIndex with the old column
names as the upper level. The dataset is now essentially tidy, but we go ahead and make our
non-pivoted columns normal columns with the .reset_index method. Because we have
MultiIndex columns, we can choose which level the new column names will belong to with
the col_level parameter. By default, the names are inserted into the uppermost level (level
0). We use -1 to indicate the bottommost level.

After all this, we have some excess DataFrame names and indexes that need to be discarded.
We use .droplevel and .rename_axis to remedy that. These columns still have a useless
.name attribute, Info, which is renamed None.

Cleaning up the MultiIndex columns could have been avoided by forcing the resulting
DataFrame from step 3 to a Series. The .squeeze method works on single-column
DataFrames and turns them into Series.

There's more…
It is possible to use the .pivot_table method, which has no restrictions on how many non-
pivoted columns are allowed. The .pivot_table method differs from .pivot by performing
an aggregation for all the values that correspond to the intersection between the columns in
the index and columns parameters.

Restructuring Data into a Tidy Form

394

Because there may be multiple values in this intersection, .pivot_table requires the user
to pass it an aggregating function to output a single value. We use the first aggregating
function, which takes the first of the values of the group. In this particular example, there
is exactly one value for each intersection, so there is nothing to be aggregated. The default
aggregation function is the mean, which will produce an error here, since some of the values
are strings:

>>> (inspections

... .pivot_table(index=['Name', 'Date'],

... columns='Info',

... values='Value',

... aggfunc='first')

... .reset_index()

... .rename_axis(None, axis='columns')

...)

 Name Date ... Grade Score

0 3 STAR J... 2017-05-10 ... A 12.0

1 A & L PI... 2017-08-22 ... A 9.0

2 AKSARAY ... 2017-07-25 ... A 13.0

3 ANTOJITO... 2017-06-01 ... A 10.0

4 BANGIA 2017-06-16 ... A 9.0

..

95 VALL'S P... 2017-03-15 ... A 9.0

96 VIP GRILL 2017-06-12 ... A 10.0

97 WAHIZZA 2017-04-13 ... A 10.0

98 WANG MAN... 2017-08-29 ... A 12.0

99 XIAOYAN ... 2017-08-29 ... Z 49.0

Tidying when two or more values are stored
in the same cell

Tabular data, by nature, is two-dimensional, and thus, there is a limited amount of information
that can be presented in a single cell. As a workaround, you will occasionally see datasets
with more than a single value stored in the same cell. Tidy data allows for just a single value
for each cell. To rectify these situations, you will typically need to parse the string data into
multiple columns with the methods from the .str attribute.

Chapter 10

395

In this recipe, we examine a dataset that has a column containing multiple different variables
in each cell. We use the .str attribute to parse these strings into separate columns to tidy
the data.

How to do it...
1. Read in the Texas cities dataset:

>>> cities = pd.read_csv('data/texas_cities.csv')

>>> cities

 City Geolocation

0 Houston 29.7604° N, 95.3698° W

1 Dallas 32.7767° N, 96.7970° W

2 Austin 30.2672° N, 97.7431° W

2. The City column looks good and contains exactly one value. The Geolocation
column, on the other hand, contains four variables: latitude, latitude direction,
longitude, and longitude direction. Let's split the Geolocation column into four
separate columns. We will use the regular expression that matches any character
followed by a space:
>>> geolocations = cities.Geolocation.str.split(pat='. ',

... expand=True)

>>> geolocations.columns = ['latitude', 'latitude direction',

... 'longitude', 'longitude direction']

3. Because the original data type for the Geolocation was an object, all the new
columns are also objects. Let's change latitude and longitude into float types:
>>> geolocations = geolocations.astype({'latitude':'float',

... 'longitude':'float'})

>>> geolocations.dtypes

latitude float64

latitude direction object

longitude float64

longitude direction object

dtype: object

4. Combine these new columns with the City column from the original:

>>> (geolocations

... .assign(city=cities['City'])

...)

Restructuring Data into a Tidy Form

396

 latitude latitude direction ... longitude direction city

0 29.7604 N ... W Houston

1 32.7767 N ... W Dallas

2 30.2672 N ... W Austin

How it works…
After reading the data, we decide how many variables there are in the dataset. Here, we chose
to split the Geolocation column into four variables, but we could have just chosen two for
latitude and longitude and used a negative sign to differentiate between west and east
and south and north.

There are a few ways to parse the Geolocation column with the methods from the .str
attribute. The easiest way is to use the .split method. We pass it a regular expression
defined by any character (the period) and a space. When a space follows any character, a split
is made, and a new column is formed. The first occurrence of this pattern takes place at the
end of the latitude. A space follows the degree character, and a split is formed. The splitting
characters are discarded and not kept in the resulting columns. The next split matches the
comma and space following directly after the latitude direction.

A total of three splits are made, resulting in four columns. The second line in step 2 provides
them with meaningful names. Even though the resulting latitude and longitude columns
appear to be float types, they are not. They were originally parsed from an object column
and therefore remain object data types. Step 3 uses a dictionary to map the column names
to their new types.

Instead of using a dictionary, which would require a lot of typing if you had many column
names, you can use the function to_numeric to attempt to convert each column to either
integer or float. To apply this function iteratively over each column, use the .apply
method with the following:

>>> geolocations.apply(pd.to_numeric, errors='ignore')

 latitude latitude direction longitude longitude direction

0 29.7604 N 95.3698 W

1 32.7767 N 96.7970 W

2 30.2672 N 97.7431 W

Step 4 concatenates the city to the DataFrame to complete the process of making tidy data.

Chapter 10

397

There's more…
The .split method worked well in this example with a regular expression. For other
examples, some columns might require you to create splits on several different patterns.
To search for multiple regular expressions, use the pipe character (|). For instance, if we
wanted to split only the degree symbol and comma, each followed by a space, we would
do the following:

>>> cities.Geolocation.str.split(pat=r'° |, ', expand=True)

 0 1 2 3

0 29.7604 N 95.3698 W

1 32.7767 N 96.7970 W

2 30.2672 N 97.7431 W

This returns the same DataFrame from step 2. Any number of additional split patterns may be
appended to the preceding string pattern with the pipe character.

The .extract method is another method that allows you to extract specific groups within
each cell. These capture groups must be enclosed in parentheses. Anything that matches
outside the parentheses is not present in the result. The following line produces the same
output as step 2:

''' {.sourceCode .pycon}

>>> cities.Geolocation.str.extract(r'([0-9.]+). (N|S), ([0-9.]+). (E|W)',

... expand=True)

 0 1 2 3

0 29.7604 N 95.3698 W

1 32.7767 N 96.7970 W

2 30.2672 N 97.7431 W

'''

This regular expression has four capture groups. The first and third groups search for at
least one or more consecutive digits with decimals. The second and fourth groups search
for a single character (the direction). The first and third capture groups are separated by any
character followed by a space. The second capture group is separated by a comma and then
a space.

Restructuring Data into a Tidy Form

398

Tidying when variables are stored in column
names and values

One particularly difficult form of messy data to diagnose appears whenever variables are
stored both horizontally across the column names and vertically down column values.
This type of dataset usually is not found in a database, but from a summarized report that
someone else has already generated.

How to do it…
In this recipe, data is reshaped into tidy data with the .melt and .pivot_table methods.

1. Read in the sensors dataset:
>>> sensors = pd.read_csv('data/sensors.csv')

>>> sensors

 Group Property 2012 2013 2014 2015 2016

0 A Pressure 928 873 814 973 870

1 A Temperature 1026 1038 1009 1036 1042

2 A Flow 819 806 861 882 856

3 B Pressure 817 877 914 806 942

4 B Temperature 1008 1041 1009 1002 1013

5 B Flow 887 899 837 824 873

2. The only variable placed correctly in a vertical column is Group. The Property
column appears to have three unique variables, Pressure, Temperature, and
Flow. The rest of the columns 2012 to 2016 are themselves a single variable, which
we can sensibly name Year. It isn't possible to restructure this kind of messy data
with a single DataFrame method. Let's begin with the .melt method to pivot the
years into their own column:
>>> sensors.melt(id_vars=['Group', 'Property'], var_name='Year')

 Group Property Year value

0 A Pressure 2012 928

1 A Temperature 2012 1026

2 A Flow 2012 819

3 B Pressure 2012 817

4 B Temperature 2012 1008

..

25 A Temperature 2016 1042

Chapter 10

399

26 A Flow 2016 856

27 B Pressure 2016 942

28 B Temperature 2016 1013

29 B Flow 2016 873

3. This takes care of one of our issues. Let's use the .pivot_table method to pivot
the Property column into new column names:

>>> (sensors

... .melt(id_vars=['Group', 'Property'], var_name='Year')

... .pivot_table(index=['Group', 'Year'],

... columns='Property', values='value')

... .reset_index()

... .rename_axis(None, axis='columns')

...)

 Group Year Flow Pressure Temperature

0 A 2012 819 928 1026

1 A 2013 806 873 1038

2 A 2014 861 814 1009

3 A 2015 882 973 1036

4 A 2016 856 870 1042

5 B 2012 887 817 1008

6 B 2013 899 877 1041

7 B 2014 837 914 1009

8 B 2015 824 806 1002

9 B 2016 873 942 1013

How it works…
Once we have identified the variables in step 1, we can begin our restructuring. pandas does
not have a method to pivot columns simultaneously, so we must take on this task one step
at a time. We correct the years by keeping the Property column vertical by passing it to the
id_vars parameter in the .melt method.

The result is now the pattern of messy data found in the recipe before last. As explained
in the There's more... section of that recipe, we must use .pivot_table to pivot a
DataFrame when using more than one column in the index parameter. After pivoting, the
Group and Year variables are stuck in the index. We push them back out as columns with
.reset_index. The .pivot_table method preserves the column name used in the
columns parameter as the name of the column index. After resetting the index, this name is
meaningless, and we remove it with .rename_axis.

Restructuring Data into a Tidy Form

400

There's more…
Whenever a solution involves .melt, .pivot_table, or .pivot, you can be sure that there
is an alternative method using .stack and .unstack. The trick is first to move the columns
that are not currently being pivoted into the index:

>>> (sensors

... .set_index(['Group', 'Property'])

... .rename_axis('Year', axis='columns')

... .stack()

... .unstack('Property')

... .rename_axis(None, axis='columns')

... .reset_index()

...)

 Group Year Flow Pressure Temperature

0 A 2012 819 928 1026

1 A 2013 806 873 1038

2 A 2014 861 814 1009

3 A 2015 882 973 1036

4 A 2016 856 870 1042

5 B 2012 887 817 1008

6 B 2013 899 877 1041

7 B 2014 837 914 1009

8 B 2015 824 806 1002

9 B 2016 873 942 1013

401

11
Combining

Pandas Objects

Introduction
A wide variety of options are available to combine two or more DataFrames or Series together.
The append method is the least flexible and only allows for new rows to be appended
to a DataFrame. The concat method is very versatile and can combine any number of
DataFrames or Series on either axis. The join method provides fast lookups by aligning
a column of one DataFrame to the index of others. The merge method provides SQL-like
capabilities to join two DataFrames together.

Appending new rows to DataFrames
When performing data analysis, it is far more common to create new columns than new rows.
This is because a new row of data usually represents a new observation, and as an analyst,
it is typically not your job to continually capture new data. Data capture is usually left to other
platforms like relational database management systems. Nevertheless, it is a necessary
feature to know as it will crop up from time to time.

In this recipe, we will begin by appending rows to a small dataset with the .loc attribute and
then transition to using the .append method.

Combining Pandas Objects

402

How to do it…
1. Read in the names dataset, and output it:

>>> import pandas as pd

>>> import numpy as np

>>> names = pd.read_csv('data/names.csv')

>>> names

 Name Age

0 Cornelia 70

1 Abbas 69

2 Penelope 4

3 Niko 2

2. Let's create a list that contains some new data and use the .loc attribute to set
a single row label equal to this new data:
>>> new_data_list = ['Aria', 1]

>>> names.loc[4] = new_data_list

>>> names

 Name Age

0 Cornelia 70

1 Abbas 69

2 Penelope 4

3 Niko 2

4 Aria 1

3. The .loc attribute uses labels to refer to the rows. In this case, the row labels exactly
match the integer location. It is possible to append more rows with non-integer labels:
>>> names.loc['five'] = ['Zach', 3]

>>> names

 Name Age

0 Cornelia 70

1 Abbas 69

2 Penelope 4

3 Niko 2

4 Aria 1

five Zach 3

Chapter 11

403

4. To be more explicit in associating variables to values, you may use a dictionary. Also,
in this step, we can dynamically choose the new index label to be the length of the
DataFrame:
>>> names.loc[len(names)] = {'Name':'Zayd', 'Age':2}

>>> names

 Name Age

0 Cornelia 70

1 Abbas 69

2 Penelope 4

3 Niko 2

4 Aria 1

five Zach 3

6 Zayd 2

5. A Series can hold the new data as well and works exactly the same as a dictionary:
>>> names.loc[len(names)] = pd.Series({'Age':32, 'Name':'Dean'})

>>> names

 Name Age

0 Cornelia 70

1 Abbas 69

2 Penelope 4

3 Niko 2

4 Aria 1

five Zach 3

6 Zayd 2

7 Dean 32

6. The preceding operations all use the .loc attribute to make changes to the names
DataFrame in-place. There is no separate copy of the DataFrame that is returned.
In the next few steps, we will look at the .append method, which does not modify
the calling DataFrame. Instead, it returns a new copy of the DataFrame with the
appended row(s). Let's begin with the original names DataFrame and attempt to
append a row. The first argument to .append must be either another DataFrame,
Series, dictionary, or a list of these, but not a list like the one in step 2. Let's see
what happens when we attempt to use a dictionary with .append:
>>> names = pd.read_csv('data/names.csv')

>>> names.append({'Name':'Aria', 'Age':1})

Traceback (most recent call last):

 ...

TypeError: Can only append a Series if ignore_index=True or if the
Series has a name

Combining Pandas Objects

404

7. This error message appears to be slightly incorrect. We are passing a dictionary and
not a Series but nevertheless, it gives us instructions on how to correct it, we need
to pass the ignore_index=True parameter:
>>> names.append({'Name':'Aria', 'Age':1}, ignore_index=True)

 Name Age

0 Cornelia 70

1 Abbas 69

2 Penelope 4

3 Niko 2

4 Aria 1

8. This works but ignore_index is a sneaky parameter. When set to True, the old
index will be removed completely and replaced with a RangeIndex from 0 to n-1.
For instance, let's specify an index for the names DataFrame:
>>> names.index = ['Canada', 'Canada', 'USA', 'USA']

>>> names

 Name Age

Canada Cornelia 70

Canada Abbas 69

USA Penelope 4

USA Niko 2

9. Rerun the code from step 7, and you will get the same result. The original index
is completely ignored.

10. Let's continue with this names DataFrame with the country strings in the index.
Let's append a Series that has a name attribute with the .append method:
>>> s = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s

Name Zach

Age 3

Name: 4, dtype: object

>>> names.append(s)

 Name Age

Canada Cornelia 70

Canada Abbas 69

USA Penelope 4

USA Niko 2

4 Zach 3

Chapter 11

405

11. The .append method is more flexible than the .loc attribute. It supports appending
multiple rows at the same time. One way to accomplish this is by passing in a list of
Series:
>>> s1 = pd.Series({'Name': 'Zach', 'Age': 3}, name=len(names))

>>> s2 = pd.Series({'Name': 'Zayd', 'Age': 2}, name='USA')

>>> names.append([s1, s2])

 Name Age

Canada Cornelia 70

Canada Abbas 69

USA Penelope 4

USA Niko 2

4 Zach 3

USA Zayd 2

12. Small DataFrames with only two columns are simple enough to manually write out
all the column names and values. When they get larger, this process will be quite
painful. For instance, let's take a look at the 2016 baseball dataset:
>>> bball_16 = pd.read_csv('data/baseball16.csv')

>>> bball_16

 playerID yearID stint teamID ... HBP SH SF GIDP

0 altuv... 2016 1 HOU ... 7.0 3.0 7.0 15.0

1 bregm... 2016 1 HOU ... 0.0 0.0 1.0 1.0

2 castr... 2016 1 HOU ... 1.0 1.0 0.0 9.0

3 corre... 2016 1 HOU ... 5.0 0.0 3.0 12.0

4 gatti... 2016 1 HOU ... 4.0 0.0 5.0 12.0

..

11 reedaj01 2016 1 HOU ... 0.0 0.0 1.0 1.0

12 sprin... 2016 1 HOU ... 11.0 0.0 1.0 12.0

13 tucke... 2016 1 HOU ... 2.0 0.0 0.0 2.0

14 valbu... 2016 1 HOU ... 1.0 3.0 2.0 5.0

15 white... 2016 1 HOU ... 2.0 0.0 2.0 6.0

13. This dataset contains 22 columns and it would be easy to mistype a column name or
forget one altogether if you were manually entering new rows of data. To help protect
against these mistakes, let's select a single row as a Series and chain the .to_dict
method to it to get an example row as a dictionary:
>>> data_dict = bball_16.iloc[0].to_dict()

>>> data_dict

Combining Pandas Objects

406

{'playerID': 'altuvjo01', 'yearID': 2016, 'stint': 1, 'teamID':
'HOU', 'lgID': 'AL', 'G': 161, 'AB': 640, 'R': 108, 'H': 216,
'2B': 42, '3B': 5, 'HR': 24, 'RBI': 96.0, 'SB': 30.0, 'CS': 10.0,
'BB': 60, 'SO': 70.0, 'IBB': 11.0, 'HBP': 7.0, 'SH': 3.0, 'SF':
7.0, 'GIDP': 15.0}

14. Clear the old values with a dictionary comprehension assigning any previous string
value as an empty string and all others as missing values. This dictionary can now
serve as a template for any new data you would like to enter:

>>> new_data_dict = {k: '' if isinstance(v, str) else
... np.nan for k, v in data_dict.items()}

>>> new_data_dict

{'playerID': '', 'yearID': nan, 'stint': nan, 'teamID': '',
'lgID': '', 'G': nan, 'AB': nan, 'R': nan, 'H': nan, '2B': nan,
'3B': nan, 'HR': nan, 'RBI': nan, 'SB': nan, 'CS': nan, 'BB': nan,
'SO': nan, 'IBB': nan, 'HBP': nan, 'SH': nan, 'SF': nan, 'GIDP':
nan}

How it works…
The .loc attribute is used to select and assign data based on the row and column labels. The
first value passed to it represents the row label. In step 2, names.loc[4] refers to the row
with a label equal to the integer 4. This label does not currently exist in the DataFrame. The
assignment statement creates a new row with data provided by the list. As was mentioned
in the recipe, this operation modifies the names DataFrame itself. If there were a previously
existing row with a label equal to the integer 4, this command would have written over it. Using
in-place modification makes this indexing operator riskier to use than the .append method,
which never modifies the original calling DataFrame. Throughout this book we have advocated
chaining operations, and you should follow suit.

Any valid label may be used with the .loc attribute, as seen in step 3. Regardless of what the
new label value is, the new row is always appended to the end. Even though assigning with
a list works, for clarity, it is best to use a dictionary so that we know exactly which columns
are associated with each value, as done in step 4.

Steps 4 and 5 show a trick to dynamically set the new label to be the current number of rows
in the DataFrame. Data stored in a Series will also get assigned correctly as long as the index
labels match the column names.

The rest of the steps use the .append method, which is a method that only appends new
rows to DataFrames. Most DataFrame methods allow both row and column manipulation
through an axis parameter. One exception is the .append method, which can only append
rows to DataFrames.

Chapter 11

407

Using a dictionary of column names mapped to values isn't enough information for .append
to work, as seen by the error message in step 6. To correctly append a dictionary without a row
name, you will have to set the .ignore_index parameter to True.

Step 10 shows you how to keep the old index by converting your dictionary to a Series. Make
sure to use the name parameter, which is then used as the new index label. Any number
of rows may be added with append in this manner by passing a list of Series as the first
argument.

When wanting to append rows in this manner with a much larger DataFrame, you can avoid
lots of typing and mistakes by converting a single row to a dictionary with the .to_dict
method and then using a dictionary comprehension to clear out all the old values replacing
them with some defaults. This can serve as a template for new rows.

There's more…
Appending a single row to a DataFrame is a fairly expensive operation and if you find yourself
writing a loop to append single rows of data to a DataFrame, then you are doing it wrong. Let's
first create 1,000 rows of new data as a list of Series:

>>> random_data = []

>>> for i in range(1000):

... d = dict()

... for k, v in data_dict.items():

... if isinstance(v, str):

... d[k] = np.random.choice(list('abcde'))

... else:

... d[k] = np.random.randint(10)

... random_data.append(pd.Series(d, name=i + len(bball_16)))

>>> random_data[0]

2B 3

3B 9

AB 3

BB 9

CS 4

Name: 16, dtype: object

Let's time how long it takes to loop through each item making one append at a time:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()

Combining Pandas Objects

408

>>> for row in random_data:

... bball_16_copy = bball_16_copy.append(row)

4.88 s ± 190 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

That took nearly five seconds for only 1,000 rows. If we instead pass in the entire list of
Series, we get an enormous speed increase:

>>> %%timeit

>>> bball_16_copy = bball_16.copy()

>>> bball_16_copy = bball_16_copy.append(random_data)

78.4 ms ± 6.2 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

If you pass in a list of Series objects, the time has been reduced to under one-tenth of
a second. Internally, pandas converts the list of Series to a single DataFrame and then
appends the data.

Concatenating multiple DataFrames
together

The concat function enables concatenating two or more DataFrames (or Series) together,
both vertically and horizontally. As per usual, when dealing with multiple pandas objects
simultaneously, concatenation doesn't happen haphazardly but aligns each object by
their index.

In this recipe, we combine DataFrames both horizontally and vertically with the concat
function and then change the parameter values to yield different results.

How to do it…
1. Read in the 2016 and 2017 stock datasets, and make their ticker symbol the index:

>>> stocks_2016 = pd.read_csv('data/stocks_2016.csv',

... index_col='Symbol')

>>> stocks_2017 = pd.read_csv('data/stocks_2017.csv',

... index_col='Symbol')

>>> stocks_2016

 Shares Low High

Symbol

AAPL 80 95 110

Chapter 11

409

TSLA 50 80 130

WMT 40 55 70

>>> stocks_2017

 Shares Low High

Symbol

AAPL 50 120 140

GE 100 30 40

IBM 87 75 95

SLB 20 55 85

TXN 500 15 23

TSLA 100 100 300

2. Place all the stock datasets into a single list, and then call the concat function
to concatenate them together along the default axis (0):
>>> s_list = [stocks_2016, stocks_2017]

>>> pd.concat(s_list)

 Shares Low High

Symbol

AAPL 80 95 110

TSLA 50 80 130

WMT 40 55 70

AAPL 50 120 140

GE 100 30 40

IBM 87 75 95

SLB 20 55 85

TXN 500 15 23

TSLA 100 100 300

3. By default, the concat function concatenates DataFrames vertically, one on
top of the other. One issue with the preceding DataFrame is that there is no way
to identify the year of each row. The concat function allows each piece of the
resulting DataFrame to be labeled with the keys parameter. This label will appear
in the outermost index level of the concatenated frame and force the creation of a
MultiIndex. Also, the names parameter has the ability to rename each index level
for clarity:
>>> pd.concat(s_list, keys=['2016', '2017'],

... names=['Year', 'Symbol'])

 Shares Low High

Combining Pandas Objects

410

Year Symbol

2016 AAPL 80 95 110

 TSLA 50 80 130

 WMT 40 55 70

2017 AAPL 50 120 140

 GE 100 30 40

 IBM 87 75 95

 SLB 20 55 85

 TXN 500 15 23

 TSLA 100 100 300

4. It is also possible to concatenate horizontally by changing the axis parameter
to columns or 1:
>>> pd.concat(s_list, keys=['2016', '2017'],

... axis='columns', names=['Year', None])

Year 2016 2017

 Shares Low High Shares Low High

AAPL 80.0 95.0 110.0 50.0 120.0 140.0

GE NaN NaN NaN 100.0 30.0 40.0

IBM NaN NaN NaN 87.0 75.0 95.0

SLB NaN NaN NaN 20.0 55.0 85.0

TSLA 50.0 80.0 130.0 100.0 100.0 300.0

TXN NaN NaN NaN 500.0 15.0 23.0

WMT 40.0 55.0 70.0 NaN NaN NaN

5. Notice that missing values appear whenever a stock symbol is present in one year
but not the other. The concat function, by default, uses an outer join, keeping all
rows from each DataFrame in the list. However, it gives us an option to keep only
rows that have the same index values in both DataFrames. This is referred to as
an inner join. We set the join parameter to inner to change the behavior:

>>> pd.concat(s_list, join='inner', keys=['2016', '2017'],

... axis='columns', names=['Year', None])

Year 2016 2017

 Shares Low High Shares Low High

Symbol

AAPL 80 95 110 50 120 140

TSLA 50 80 130 100 100 300

Chapter 11

411

How it works…
The concat function accepts a list as the first parameter. This list must be a sequence
of pandas objects, typically a list of DataFrames or Series. By default, all these objects
will be stacked vertically, one on top of the other. In this recipe, only two DataFrames are
concatenated, but any number of pandas objects work. When we were concatenating
vertically, the DataFrames align by their column names.

In this dataset, all the column names were the same so each column in the 2017 data lined
up precisely under the same column name in the 2016 data. However, when they were
concatenated horizontally, as in step 4, only two of the index labels matched from both years
– AAPL and TSLA. Therefore, these ticker symbols had no missing values for either year. There
are two types of alignment possible using concat, outer (the default), and inner referred
to by the join parameter.

There's more…
The .append method is a heavily watered-down version of concat that can only append new
rows to a DataFrame. Internally, .append just calls the concat function. For instance, step 2
from this recipe may be duplicated with the following:

>>> stocks_2016.append(stocks_2017)

Shares Low High

Symbol

AAPL 80 95 110

TSLA 50 80 130

WMT 40 55 70

AAPL 50 120 140

GE 100 30 40

IBM 87 75 95

SLB 20 55 85

TXN 500 15 23

TSLA 100 100 300

Understanding the differences between
concat, join, and merge

The .merge and .join DataFrame (and not Series) methods and the concat function all
provide very similar functionality to combine multiple pandas objects together. As they are
so similar and they can replicate each other in certain situations, it can get very confusing
regarding when and how to use them correctly.

Combining Pandas Objects

412

To help clarify their differences, take a look at the following outline:

concat:

 f A pandas function

 f Combines two or more pandas objects vertically or horizontally

 f Aligns only on the index

 f Errors whenever a duplicate appears in the index

 f Defaults to outer join with the option for inner join

.join:

 f A DataFrame method

 f Combines two or more pandas objects horizontally

 f Aligns the calling DataFrame's column(s) or index with the other object's index (and
not the columns)

 f Handles duplicate values on the joining columns/index by performing a Cartesian
product

 f Defaults to left join with options for inner, outer, and right

.merge:

 f A DataFrame method

 f Combines exactly two DataFrames horizontally

 f Aligns the calling DataFrame's column(s) or index with the other DataFrame's
column(s) or index

 f Handles duplicate values on the joining columns or index by performing a cartesian
product

 f Defaults to inner join with options for left, outer, and right

In this recipe, we will combine DataFrames. The first situation is simpler with concat while
the second is simpler with .merge.

How to do it…
1. Let's read in stock data for 2016, 2017, and 2018 into a list of DataFrames using a

loop instead of three different calls to the read_csv function:
>>> years = 2016, 2017, 2018

>>> stock_tables = [pd.read_csv(

... f'data/stocks_{year}.csv', index_col='Symbol')

Chapter 11

413

... for year in years]

>>> stocks_2016, stocks_2017, stocks_2018 = stock_tables

>>> stocks_2016

 Shares Low High

Symbol

AAPL 80 95 110

TSLA 50 80 130

WMT 40 55 70

>>> stocks_2017

 Shares Low High

Symbol

AAPL 50 120 140

GE 100 30 40

IBM 87 75 95

SLB 20 55 85

TXN 500 15 23

TSLA 100 100 300

>>> stocks_2018

 Shares Low High

Symbol

AAPL 40 135 170

AMZN 8 900 1125

TSLA 50 220 400

2. The concat function is the only pandas method that is able to combine DataFrames
vertically. Let's do this by passing it the list stock_tables:
>>> pd.concat(stock_tables, keys=[2016, 2017, 2018])

 Shares Low High

 Symbol

2016 AAPL 80 95 110

 TSLA 50 80 130

 WMT 40 55 70

2017 AAPL 50 120 140

 GE 100 30 40

...

Combining Pandas Objects

414

 TXN 500 15 23

 TSLA 100 100 300

2018 AAPL 40 135 170

 AMZN 8 900 1125

 TSLA 50 220 400

3. It can also combine DataFrames horizontally by changing the axis parameter
to columns:
>>> pd.concat(dict(zip(years, stock_tables)), axis='columns')

 2016 ... 2018

 Shares Low High ... Shares Low High

AAPL 80.0 95.0 110.0 ... 40.0 135.0 170.0

AMZN NaN NaN NaN ... 8.0 900.0 1125.0

GE NaN NaN NaN ... NaN NaN NaN

IBM NaN NaN NaN ... NaN NaN NaN

SLB NaN NaN NaN ... NaN NaN NaN

TSLA 50.0 80.0 130.0 ... 50.0 220.0 400.0

TXN NaN NaN NaN ... NaN NaN NaN

WMT 40.0 55.0 70.0 ... NaN NaN NaN

4. Now that we have started combining DataFrames horizontally, we can use the .join
and .merge methods to replicate this functionality of concat. Here, we use the
.join method to combine the stock_2016 and stock_2017 DataFrames. By
default, the DataFrames align on their index. If any of the columns have the same
names, then you must supply a value to the lsuffix or rsuffix parameters to
distinguish them in the result:
>>> stocks_2016.join(stocks_2017, lsuffix='_2016',

... rsuffix='_2017', how='outer')

 Shares_2016 Low_2016 ... Low_2017 High_2017

Symbol ...

AAPL 80.0 95.0 ... 120.0 140.0

GE NaN NaN ... 30.0 40.0

IBM NaN NaN ... 75.0 95.0

SLB NaN NaN ... 55.0 85.0

TSLA 50.0 80.0 ... 100.0 300.0

TXN NaN NaN ... 15.0 23.0

WMT 40.0 55.0 ... NaN NaN

Chapter 11

415

5. To replicate the output of the concat function from step 3, we can pass a list
of DataFrames to the .join method:
>>> other = [stocks_2017.add_suffix('_2017'),

... stocks_2018.add_suffix('_2018')]

>>> stocks_2016.add_suffix('_2016').join(other, how='outer')

 Shares_2016 Low_2016 ... Low_2018 High_2018

AAPL 80.0 95.0 ... 135.0 170.0

TSLA 50.0 80.0 ... 220.0 400.0

WMT 40.0 55.0 ... NaN NaN

GE NaN NaN ... NaN NaN

IBM NaN NaN ... NaN NaN

SLB NaN NaN ... NaN NaN

TXN NaN NaN ... NaN NaN

AMZN NaN NaN ... 900.0 1125.0

6. Let's check whether they are equal:
>>> stock_join = stocks_2016.add_suffix('_2016').join(other,

... how='outer')

>>> stock_concat = (

... pd.concat(

... dict(zip(years, stock_tables)), axis="columns")

... .swaplevel(axis=1)

... .pipe(lambda df_:

... df_.set_axis(df_.columns.to_flat_index(), axis=1))

... .rename(lambda label:

... "_".join([str(x) for x in label]), axis=1)

...)

>>> stock_join.equals(stock_concat)

True

7. Now, let's turn to the .merge method that, unlike concat and .join, can only
combine two DataFrames together. By default, .merge attempts to align the values
in the columns that have the same name for each of the DataFrames. However, you
can choose to have it align on the index by setting the Boolean parameters left_
index and right_index to True. Let's merge the 2016 and 2017 stock data
together:
>>> stocks_2016.merge(stocks_2017, left_index=True,

Combining Pandas Objects

416

... right_index=True)

 Shares_x Low_x High_x Shares_y Low_y High_y

Symbol

AAPL 80 95 110 50 120 140

TSLA 50 80 130 100 100 300

8. By default, .merge uses an inner join and automatically supplies suffixes for
identically named columns. Let's change to an outer join and then perform another
outer join of the 2018 data to replicate the behavior of concat. Note that in pandas
1.0, the merge index will be sorted and the concat version won't be:
>>> stock_merge = (stocks_2016

... .merge(stocks_2017, left_index=True,

... right_index=True, how='outer',

... suffixes=('_2016', '_2017'))

... .merge(stocks_2018.add_suffix('_2018'),

... left_index=True, right_index=True,

... how='outer')

...)

>>> stock_concat.sort_index().equals(stock_merge)

True

9. Now let's turn our comparison to datasets where we are interested in aligning
together the values of columns and not the index or column labels themselves. The
.merge method is built for this situation. Let's take a look at two new small datasets,
food_prices and food_transactions:
>>> names = ['prices', 'transactions']

>>> food_tables = [pd.read_csv('data/food_{}.csv'.format(name))

... for name in names]

>>> food_prices, food_transactions = food_tables

>>> food_prices

 item store price Date

0 pear A 0.99 2017

1 pear B 1.99 2017

2 peach A 2.99 2017

3 peach B 3.49 2017

4 banana A 0.39 2017

5 banana B 0.49 2017

6 steak A 5.99 2017

Chapter 11

417

7 steak B 6.99 2017

8 steak B 4.99 2015

>>> food_transactions

 custid item store quantity

0 1 pear A 5

1 1 banana A 10

2 2 steak B 3

3 2 pear B 1

4 2 peach B 2

5 2 steak B 1

6 2 coconut B 4

10. If we wanted to find the total amount of each transaction, we would need to join these
tables on the item and store columns:
>>> food_transactions.merge(food_prices, on=['item', 'store'])

 custid item store quantity price Date

0 1 pear A 5 0.99 2017

1 1 banana A 10 0.39 2017

2 2 steak B 3 6.99 2017

3 2 steak B 3 4.99 2015

4 2 steak B 1 6.99 2017

5 2 steak B 1 4.99 2015

6 2 pear B 1 1.99 2017

7 2 peach B 2 3.49 2017

11. The price is now aligned correctly with its corresponding item and store, but there is
a problem. Customer 2 has a total of four steak items. As the steak item appears
twice in each table for store B, a Cartesian product takes place between them,
resulting in four rows. Also, notice that the item, coconut, is missing because there
was no corresponding price for it. Let's fix both of these issues:
>>> food_transactions.merge(food_prices.query('Date == 2017'),

... how='left')

 custid item store quantity price Date

0 1 pear A 5 0.99 2017.0

1 1 banana A 10 0.39 2017.0

2 2 steak B 3 6.99 2017.0

Combining Pandas Objects

418

3 2 pear B 1 1.99 2017.0

4 2 peach B 2 3.49 2017.0

5 2 steak B 1 6.99 2017.0

6 2 coconut B 4 NaN NaN

12. We can replicate this with the .join method, but we must first put the joining
columns of the food_prices DataFrame into the index:
>>> food_prices_join = food_prices.query('Date == 2017') \

... .set_index(['item', 'store'])

>>> food_prices_join

 price Date

item store

pear A 0.99 2017

 B 1.99 2017

peach A 2.99 2017

 B 3.49 2017

banana A 0.39 2017

 B 0.49 2017

steak A 5.99 2017

 B 6.99 2017

13. The .join method only aligns with the index of the passed DataFrame but can use
the index or the columns of the calling DataFrame. To use columns for alignment
on the calling DataFrame, you will need to pass them to the on parameter:

>>> food_transactions.join(food_prices_join, on=['item', 'store'])

 custid item store quantity price Date

0 1 pear A 5 0.99 2017.0

1 1 banana A 10 0.39 2017.0

2 2 steak B 3 6.99 2017.0

3 2 pear B 1 1.99 2017.0

4 2 peach B 2 3.49 2017.0

5 2 steak B 1 6.99 2017.0

6 2 coconut B 4 NaN NaN

The output matches the result from step 11. To replicate this with the concat
function, you would need to put the item and store columns into the index of
both DataFrames. However, in this particular case, an error would be produced as
a duplicate index value occurs in at least one of the DataFrames (with item steak
and store B):

Chapter 11

419

>>> pd.concat([food_transactions.set_index(['item', 'store']),

... food_prices.set_index(['item', 'store'])],

... axis='columns')

Traceback (most recent call last):

 ...

ValueError: cannot handle a non-unique multi-index!

How it works…
It can be tedious to repeatedly write the read_csv function when importing many
DataFrames at the same time. One way to automate this process is to put all the
filenames in a list and iterate through them with a for loop. This was done in step 1 with
a list comprehension.

At the end of step 1, we unpack the list of DataFrames into their own appropriately named
variables so that each table may be easily and clearly referenced. The nice thing about having
a list of DataFrames is that it is the exact requirement for the concat function, as seen in
step 2. Notice how step 2 uses the keys parameter to name each chunk of data. This can
be also be accomplished by passing a dictionary to concat, as done in step 3.

In step 4, we must change the type of .join to outer to include all of the rows in the passed
DataFrame that do not have an index present in the calling DataFrame. In step 5, the passed
list of DataFrames cannot have any columns in common. Although there is an rsuffix
parameter, it only works when passing a single DataFrame and not a list of them. To work
around this limitation, we change the names of the columns beforehand with the .add_
suffix method, and then call the .join method.

In step 7, we use .merge, which defaults to aligning on all column names that are the
same in both DataFrames. To change this default behavior, and align on the index of either
one or both, set the left_index or right_index parameters to True. Step 8 finishes
the replication with two calls to .merge. As you can see, when you are aligning multiple
DataFrames on their index, concat is usually going to be a far better choice than .merge.

In step 9, we switch gears to focus on a situation where the .merge method has the
advantage. The .merge method is the only one capable of aligning both the calling and
passed DataFrame by column values. Step 10 shows you how easy it is to merge two
DataFrames. The on parameter is not necessary but provided for clarity.

Unfortunately, it is very easy to duplicate or drop data when combining DataFrames, as shown
in step 10. It is vital to take some time to do some sanity checks after combining data. In
this instance, the food_prices dataset had a duplicate price for steak in store B, so we
eliminated this row by querying for only the current year in step 11. We also change to a left
join to ensure that each transaction is kept regardless if a price is present or not.

Combining Pandas Objects

420

It is possible to use .join in these instances, but all the columns in the passed DataFrame
must be moved into the index first. Finally, concat is going to be a poor choice whenever
you intend to align data by values in their columns.

In summary, I find myself using .merge unless I know that the indexes align.

There's more…
It is possible to read all files from a particular directory into DataFrames without knowing their
names. Python provides a few ways to iterate through directories, with the glob module being
a popular choice. The gas prices directory contains five different CSV files, each having
weekly prices of a particular grade of gas beginning from 2007. Each file has just two columns
– the date for the week and the price. This is a perfect situation to iterate through all the files,
read them into DataFrames, and combine them all together with the concat function.

The glob module has the glob function, which takes a single parameter – the location of the
directory you would like to iterate through as a string. To get all the files in the directory, use
the string *. In this example, ''*.csv' returns only files that end in .csv. The result from
the glob function is a list of string filenames, which can be passed to the read_csv function:

>>> import glob

>>> df_list = []

>>> for filename in glob.glob('data/gas prices/*.csv'):

... df_list.append(pd.read_csv(filename, index_col='Week',

... parse_dates=['Week']))

>>> gas = pd.concat(df_list, axis='columns')

>>> gas

 Midgrade Premium Diesel All Grades Regular

Week

2017-09-25 2.859 3.105 2.788 2.701 2.583

2017-09-18 2.906 3.151 2.791 2.750 2.634

2017-09-11 2.953 3.197 2.802 2.800 2.685

2017-09-04 2.946 3.191 2.758 2.794 2.679

2017-08-28 2.668 2.901 2.605 2.513 2.399

...

2007-01-29 2.277 2.381 2.413 2.213 2.165

2007-01-22 2.285 2.391 2.430 2.216 2.165

2007-01-15 2.347 2.453 2.463 2.280 2.229

2007-01-08 2.418 2.523 2.537 2.354 2.306

2007-01-01 2.442 2.547 2.580 2.382 2.334

Chapter 11

421

Connecting to SQL databases
Learning SQL is a useful skill. Much of the world's data is stored in databases that accept SQL
statements. There are many dozens of relational database management systems, with SQLite
being one of the most popular and easy to use.

We will be exploring the chinook sample database provided by SQLite that contains 11 tables
of data for a music store. One of the best things to do when first diving into a proper relational
database is to study a database diagram (sometimes called an entity relationship diagram)
to understand how tables are related. The following diagram will be immensely helpful when
navigating through this recipe:

SQL relationships

In order for this recipe to work, you will need to have the sqlalchemy Python package
installed. If you installed the Anaconda distribution, then it should already be available to
you. SQLAlchemy is the preferred pandas tool when making connections to databases. In
this recipe, you will learn how to connect to a SQLite database. You will then ask two different
queries, and answer them by joining together tables with the .merge method.

How to do it…
1. Before we can begin reading tables from the chinook database, we need to set up our

SQLAlchemy engine:
>>> from sqlalchemy import create_engine

>>> engine = create_engine('sqlite:///data/chinook.db')

Combining Pandas Objects

422

2. We can now step back into the world of pandas and remain there for the rest of
the recipe. Let's complete a command and read in the tracks table with the
read_sql_table function. The name of the table is the first argument and the
SQLAlchemy engine is the second:
>>> tracks = pd.read_sql_table('tracks', engine)

>>> tracks

 TrackId ... UnitPrice

0 1 ... 0.99

1 2 ... 0.99

2 3 ... 0.99

3 4 ... 0.99

4 5 ... 0.99

...

3498 3499 ... 0.99

3499 3500 ... 0.99

3500 3501 ... 0.99

3501 3502 ... 0.99

3502 3503 ... 0.99

3. For the rest of the recipe, we will answer a couple of different specific queries with
help from the database diagram. To begin, let's find the average length of song per
genre:
>>> (pd.read_sql_table('genres', engine)

... .merge(tracks[['GenreId', 'Milliseconds']],

... on='GenreId', how='left')

... .drop('GenreId', axis='columns')

...)

 Name Milliseconds

0 Rock 343719

1 Rock 342562

2 Rock 230619

3 Rock 252051

4 Rock 375418

...

3498 Classical 286741

3499 Classical 139200

3500 Classical 66639

3501 Classical 221331

3502 Opera 174813

Chapter 11

423

4. Now we can easily find the average length of each song per genre. To help ease
interpretation, we convert the Milliseconds column to the timedelta data type:
>>> (pd.read_sql_table('genres', engine)

... .merge(tracks[['GenreId', 'Milliseconds']],

... on='GenreId', how='left')

... .drop('GenreId', axis='columns')

... .groupby('Name')

... ['Milliseconds']

... .mean()

... .pipe(lambda s_: pd.to_timedelta(s_, unit='ms')

... .rename('Length'))

... .dt.floor('s')

... .sort_values()

...)

Name

Rock And Roll 00:02:14

Opera 00:02:54

Hip Hop/Rap 00:02:58

Easy Listening 00:03:09

Bossa Nova 00:03:39

 ...

Comedy 00:26:25

TV Shows 00:35:45

Drama 00:42:55

Science Fiction 00:43:45

Sci Fi & Fantasy 00:48:31

Name: Length, Length: 25, dtype: timedelta64[ns]

5. Now let's find the total amount spent per customer. We will need the customers,
invoices, and invoice_items tables all connected to each other:
>>> cust = pd.read_sql_table('customers', engine,

... columns=['CustomerId','FirstName',

... 'LastName'])

>>> invoice = pd.read_sql_table('invoices', engine,

... columns=['InvoiceId','CustomerId'])

>>> invoice_items = pd.read_sql_table('invoice_items', engine,

... columns=['InvoiceId', 'UnitPrice', 'Quantity'])

Combining Pandas Objects

424

>>> (cust

... .merge(invoice, on='CustomerId')

... .merge(invoice_items, on='InvoiceId')

...)

 CustomerId FirstName ... UnitPrice Quantity

0 1 Luís ... 1.99 1

1 1 Luís ... 1.99 1

2 1 Luís ... 0.99 1

3 1 Luís ... 0.99 1

4 1 Luís ... 0.99 1

...

2235 59 Puja ... 0.99 1

2236 59 Puja ... 0.99 1

2237 59 Puja ... 0.99 1

2238 59 Puja ... 0.99 1

2239 59 Puja ... 0.99 1

6. We can now multiply the quantity by the unit price and then find the total amount
spent per customer:

>>> (cust

... .merge(invoice, on='CustomerId')

... .merge(invoice_items, on='InvoiceId')

... .assign(Total=lambda df_:df_.Quantity * df_.UnitPrice)

... .groupby(['CustomerId', 'FirstName', 'LastName'])

... ['Total']

... .sum()

... .sort_values(ascending=False)

...)

CustomerId FirstName LastName

6 Helena Holý 49.62

26 Richard Cunningham 47.62

57 Luis Rojas 46.62

46 Hugh O'Reilly 45.62

45 Ladislav Kovács 45.62

 ...

32 Aaron Mitchell 37.62

31 Martha Silk 37.62

Chapter 11

425

29 Robert Brown 37.62

27 Patrick Gray 37.62

59 Puja Srivastava 36.64

Name: Total, Length: 59, dtype: float64

How it works…
The create_engine function requires a connection string to work properly. The connection
string for SQLite is the location of the database, which is located in the data directory. Other
relational database management systems have more complex connection strings. You will
need to provide a username, password, hostname, port, and optionally, a database. You will
also need to supply the SQL dialect and the driver. The general form for the connection string
is as follows: dialect+driver://username:password@host:port/database. The
driver for your particular relational database might need to be installed separately.

Once we have created the engine, selecting entire tables into DataFrames is very easy with
the read_sql_table function in step 2. Each of the tables in the database has a primary
key identifying each row. It is identified graphically with a key symbol in the diagram. In step 3,
we link genres to tracks through GenreId. As we only care about the track length, we trim
the tracks DataFrame down to just the columns we need before performing the merge. Once
the tables have merged, we can answer the query with a basic .groupby operation.

We go one step further and convert the integer milliseconds into a Timedelta object that
is far easier to read. The key is passing in the correct unit of measurement as a string. Now
that we have a Timedelta Series, we can use the .dt attribute to access the .floor method,
which rounds the time down to the nearest second.

The query required to answer step 5 involves three tables. We can trim the tables down
significantly to only the columns we need by passing them to the columns parameter. When
using .merge, the joining columns are not kept when they have the same name. In step 6,
we could have assigned a column for the price times quantity with the following:

cust_inv['Total'] = cust_inv['Quantity'] * cust_inv['UnitPrice']

As has been emphasized through this book, we prefer chaining operations when possible,
and hence you see .assign used frequently.

There's more…
If you are adept with SQL, you can write a SQL query as a string and pass it to the read_sql_
query function. For example, the following will reproduce the output from step 4:

>>> sql_string1 = '''

... SELECT

Combining Pandas Objects

426

... Name,

... time(avg(Milliseconds) / 1000, 'unixepoch') as avg_time

... FROM (

... SELECT

... g.Name,

... t.Milliseconds

... FROM

... genres as g

... JOIN

... tracks as t on

... g.genreid == t.genreid

...)

... GROUP BY Name

... ORDER BY avg_time'''

>>> pd.read_sql_query(sql_string1, engine)

 Name avg_time

0 Rock And Roll 00:02:14

1 Opera 00:02:54

2 Hip Hop/Rap 00:02:58

3 Easy Listening 00:03:09

4 Bossa Nova 00:03:39

..

20 Comedy 00:26:25

21 TV Shows 00:35:45

22 Drama 00:42:55

23 Science Fiction 00:43:45

24 Sci Fi & Fantasy 00:48:31

To reproduce the answer from step 6, use the following SQL query:

>>> sql_string2 = '''

... SELECT

... c.customerid,

... c.FirstName,

... c.LastName,

... sum(ii.quantity * ii.unitprice) as Total

... FROM

Chapter 11

427

... customers as c

... JOIN

... invoices as i

... on c.customerid = i.customerid

... JOIN

... invoice_items as ii

... on i.invoiceid = ii.invoiceid

... GROUP BY

... c.customerid, c.FirstName, c.LastName

... ORDER BY

... Total desc'''

>>> pd.read_sql_query(sql_string2, engine)

 CustomerId FirstName LastName Total

0 6 Helena Holý 49.62

1 26 Richard Cunningham 47.62

2 57 Luis Rojas 46.62

3 45 Ladislav Kovács 45.62

4 46 Hugh O'Reilly 45.62

..

54 53 Phil Hughes 37.62

55 54 Steve Murray 37.62

56 55 Mark Taylor 37.62

57 56 Diego Gutiérrez 37.62

58 59 Puja Srivastava 36.64

429

12
Time Series Analysis

Introduction
The roots of pandas lay in analyzing financial time series data. Time series are points of data
gathered over time. Generally, the time is evenly spaced between each data point. However,
there may be gaps in the observations. pandas includes functionality to manipulate dates,
aggregate over different time periods, sample different periods of time, and more.

Understanding the difference between
Python and pandas date tools

Before we get to pandas, it can help to be aware of and understand core Python's date
and time functionality. The datetime module provides three data types: date, time, and
datetime. Formally, a date is a moment in time consisting of just the year, month, and day.
For instance, June 7, 2013 would be a date. A time consists of hours, minutes, seconds,
and microseconds (one-millionth of a second) and is unattached to any date. An example
of time would be 12 hours and 30 minutes. A datetime consists of both the elements
of a date and time together.

On the other hand, pandas has a single object to encapsulate date and time called a
Timestamp. It has nanosecond (one-billionth of a second) precision and is derived from
NumPy's datetime64 data type. Both Python and pandas each have a timedelta object
that is useful when doing date addition and subtraction.

In this recipe, we will first explore Python's datetime module and then turn to the
corresponding date tools in pandas.

Time Series Analysis

430

How to do it…
1. Let's begin by importing the datetime module into our namespace and creating

a date, time, and datetime object:
>>> import pandas as pd

>>> import numpy as np

>>> import datetime

>>> date = datetime.date(year=2013, month=6, day=7)

>>> time = datetime.time(hour=12, minute=30,

... second=19, microsecond=463198)

>>> dt = datetime.datetime(year=2013, month=6, day=7,

... hour=12, minute=30, second=19,

... microsecond=463198)

>>> print(f"date is {date}")

date is 2013-06-07

>>> print(f"time is {time}")

time is 12:30:19.463198

>>> print(f"datetime is {dt}")

datetime is 2013-06-07 12:30:19.463198

2. Let's construct and print out a timedelta object, the other major data type from
the datetime module:
>>> td = datetime.timedelta(weeks=2, days=5, hours=10,

... minutes=20, seconds=6.73,

... milliseconds=99, microseconds=8)

>>> td

datetime.timedelta(days=19, seconds=37206, microseconds=829008)

3. Add this td to the date and dt objects from step 1:
>>> print(f'new date is {date+td}')

new date is 2013-06-26

>>> print(f'new datetime is {dt+td}')

new datetime is 2013-06-26 22:50:26.292206

Chapter 12

431

4. Attempting to add a timedelta to a time object is not possible:
>>> time + td

Traceback (most recent call last):

 ...

TypeError: unsupported operand type(s) for +: 'datetime.time' and
'datetime.timedelta'

5. Let's turn to pandas and its Timestamp object, which is a moment in time with
nanosecond precision. The Timestamp constructor is very flexible, and handles
a wide variety of inputs:
>>> pd.Timestamp(year=2012, month=12, day=21, hour=5,

... minute=10, second=8, microsecond=99)

Timestamp('2012-12-21 05:10:08.000099')

>>> pd.Timestamp('2016/1/10')

Timestamp('2016-01-10 00:00:00')

>>> pd.Timestamp('2014-5/10')

Timestamp('2014-05-10 00:00:00')

>>> pd.Timestamp('Jan 3, 2019 20:45.56')

Timestamp('2019-01-03 20:45:33')

>>> pd.Timestamp('2016-01-05T05:34:43.123456789')

Timestamp('2016-01-05 05:34:43.123456789')

6. It's also possible to pass in a single integer or float to the Timestamp constructor,
which returns a date equivalent to the number of nanoseconds after the Unix epoch
(January 1, 1970):
>>> pd.Timestamp(500)

Timestamp('1970-01-01 00:00:00.000000500')

>>> pd.Timestamp(5000, unit='D')

Timestamp('1983-09-10 00:00:00')

7. pandas provides the to_datetime function that works similarly to the Timestamp
constructor, but comes with a few different parameters for special situations. This
comes in useful for converting string columns in DataFrames to dates.

Time Series Analysis

432

But it also works on scalar dates; see the following examples:
>>> pd.to_datetime('2015-5-13')

Timestamp('2015-05-13 00:00:00')

>>> pd.to_datetime('2015-13-5', dayfirst=True)

Timestamp('2015-05-13 00:00:00')

>>> pd.to_datetime('Start Date: Sep 30, 2017 Start Time: 1:30 pm',

... format='Start Date: %b %d, %Y Start Time: %I:%M %p')

Timestamp('2017-09-30 13:30:00')

>>> pd.to_datetime(100, unit='D', origin='2013-1-1')

Timestamp('2013-04-11 00:00:00')

8. The to_datetime function comes equipped with even more functionality. It is
capable of converting entire lists or Series of strings or integers to Timestamp
objects. Since we are far more likely to interact with Series or DataFrames and not
single scalar values, you are far more likely to use to_datetime than Timestamp:
>>> s = pd.Series([10, 100, 1000, 10000])

>>> pd.to_datetime(s, unit='D')

0 1970-01-11

1 1970-04-11

2 1972-09-27

3 1997-05-19

dtype: datetime64[ns]

>>> s = pd.Series(['12-5-2015', '14-1-2013',

... '20/12/2017', '40/23/2017'])

>>> pd.to_datetime(s, dayfirst=True, errors='coerce')

0 2015-05-12

1 2013-01-14

2 2017-12-20

3 NaT

dtype: datetime64[ns]

>>> pd.to_datetime(['Aug 3 1999 3:45:56', '10/31/2017'])

DatetimeIndex(['1999-08-03 03:45:56', '2017-10-31 00:00:00'],
dtype='datetime64[ns]', freq=None)

Chapter 12

433

9. Like the Timestamp constructor and the to_datetime function, pandas
has Timedelta and to_timedelta to represent an amount of time. Both
the Timedelta constructor and the to_timedelta function can create a
single Timedelta object. Like to_datetime, to_timedelta has a bit more
functionality and can convert entire lists or Series into Timedelta objects:
>>> pd.Timedelta('12 days 5 hours 3 minutes 123456789
nanoseconds')

Timedelta('12 days 05:03:00.123456')

>>> pd.Timedelta(days=5, minutes=7.34)

Timedelta('5 days 00:07:20.400000')

>>> pd.Timedelta(100, unit='W')

Timedelta('700 days 00:00:00')

>>> pd.to_timedelta('67:15:45.454')

Timedelta('2 days 19:15:45.454000')

>>> s = pd.Series([10, 100])

>>> pd.to_timedelta(s, unit='s')

0 00:00:10

1 00:01:40

dtype: timedelta64[ns]

>>> time_strings = ['2 days 24 minutes 89.67 seconds',

... '00:45:23.6']

>>> pd.to_timedelta(time_strings)

TimedeltaIndex(['2 days 00:25:29.670000', '0 days
00:45:23.600000'], dtype='timedelta64[ns]', freq=None)

10. A Timedelta may be added or subtracted from another Timestamp. They may even
be divided from each other to return a float:
>>> pd.Timedelta('12 days 5 hours 3 minutes') * 2

Timedelta('24 days 10:06:00')

>>> (pd.Timestamp('1/1/2017') +

... pd.Timedelta('12 days 5 hours 3 minutes') * 2)

Timestamp('2017-01-25 10:06:00')

Time Series Analysis

434

>>> td1 = pd.to_timedelta([10, 100], unit='s')

>>> td2 = pd.to_timedelta(['3 hours', '4 hours'])

>>> td1 + td2

TimedeltaIndex(['03:00:10', '04:01:40'], dtype='timedelta64[ns]',
freq=None)

>>> pd.Timedelta('12 days') / pd.Timedelta('3 days')

4.0

11. Both Timestamp and Timedelta have a large number of features available as
attributes and methods. Let's sample a few of them:

>>> ts = pd.Timestamp('2016-10-1 4:23:23.9')

>>> ts.ceil('h')

Timestamp('2016-10-01 05:00:00')

>>> ts.year, ts.month, ts.day, ts.hour, ts.minute, ts.second

(2016, 10, 1, 4, 23, 23)

>>> ts.dayofweek, ts.dayofyear, ts.daysinmonth

(5, 275, 31)

>>> ts.to_pydatetime()

datetime.datetime(2016, 10, 1, 4, 23, 23, 900000)

>>> td = pd.Timedelta(125.8723, unit='h')

>>> td

Timedelta('5 days 05:52:20.280000')

>>> td.round('min')

Timedelta('5 days 05:52:00')

>>> td.components

Components(days=5, hours=5, minutes=52, seconds=20,
milliseconds=280, microseconds=0, nanoseconds=0)

>>> td.total_seconds()

453140.28

Chapter 12

435

How it works…
The datetime module is part of the Python standard library. It is a good idea to have some
familiarity with it, as you will likely cross paths with it. The datetime module has only six types
of objects: date, time, datetime, timedelta, timezone, and tzinfo. The pandas Timestamp and
Timedelta objects have all the functionality of their datetime module counterparts and more. It
will be possible to remain completely in pandas when working with time series.

Steps 1 and 2 show how to create datetimes, dates, times, and timedeltas with the datetime
module. Only integers may be used as parameters of the date or time. Compare this to step
5, where the pandas Timestamp constructor can accept the same parameters, as well as
a wide variety of date strings. In addition to integer components and strings, step 6 shows
how a single numeric scalar can be used as a date. The units of this scalar are defaulted to
nanoseconds (ns) but are changed to days (D) in the second statement with the other options
being hours (h), minutes (m), seconds (s), milliseconds (ms), and microseconds (μs).

Step 2 details the construction of the datetime module's timedelta object with all of its
parameters. Again, compare this to the pandas Timedelta constructor shown in step 9,
which accepts these same parameters along with strings and scalar numerics.

In addition to the Timestamp and Timedelta constructors, which are only capable of
creating a single object, the to_datetime and to_timedelta functions can convert entire
sequences of integers or strings to the desired type. These functions also provide several
more parameters not available with the constructors. One of these parameters is errors,
which is defaulted to the string value raise but can also be set to ignore or coerce.

Whenever a string date is unable to be converted, the errors parameter determines what
action to take. When set to raise, an exception is raised, and program execution stops. When
set to ignore, the original sequence gets returned as it was prior to entering the function.
When set to coerce, the NaT (not a time) object is used to represent the new value. The
second call to to_datetime in step 8 converts all values to a Timestamp correctly, except
for the last one, which is forced to become NaT.

Another one of these parameters available only to to_datetime is format, which
is particularly useful whenever a string contains a particular date pattern that is not
automatically recognized by pandas. In the third statement of step 7, we have a datetime
enmeshed inside some other characters. We substitute the date and time pieces of the string
with their respective formatting directives.

A date formatting directive appears as a single percent sign (%), followed by a single character.
Each directive specifies some part of a date or time. See the official Python documentation for
a table of all the directives (http://bit.ly/2kePoRe).

http://bit.ly/2kePoRe

Time Series Analysis

436

Slicing time series intelligently
DataFrame selection and slicing was covered previously. When the DataFrame has
a DatetimeIndex, even more opportunities arise for selection and slicing.

In this recipe, we will use partial date matching to select and slice a DataFrame with
a DatetimeIndex.

How to do it…
1. Read in the Denver crimes dataset from the hdf5 file crimes.h5, and output the

column data types and the first few rows. The hdf5 file format allows efficient storage
of large amounts of data and is different from a CSV text file:
>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.dtypes

OFFENSE_TYPE_ID category

OFFENSE_CATEGORY_ID category

REPORTED_DATE datetime64[ns]

GEO_LON float64

GEO_LAT float64

NEIGHBORHOOD_ID category

IS_CRIME int64

IS_TRAFFIC int64

dtype: object

2. Notice that there are three categorical columns and a Timestamp (denoted by
NumPy's datetime64 object). These data types were stored whenever the data file
was created, unlike a CSV file, which only stores raw text. Set the REPORTED_DATE
column as the index to make intelligent Timestamp slicing possible:
>>> crime = crime.set_index('REPORTED_DATE')

>>> crime

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2014-06-29 02:01:00 traffic-accident-dui-duid ...

2014-06-29 01:54:00 vehicular-eluding-no-chase ...

2014-06-29 02:00:00 disturbing-the-peace ...

2014-06-29 02:18:00 curfew ...

2014-06-29 04:17:00 aggravated-assault ...

Chapter 12

437

...

2017-09-13 05:48:00 burglary-business-by-force ...

2017-09-12 20:37:00 weapon-unlawful-discharge-of ...

2017-09-12 16:32:00 traf-habitual-offender ...

2017-09-12 13:04:00 criminal-mischief-other ...

2017-09-12 09:30:00 theft-other ...

3. As usual, it is possible to select all the rows equal to a single index by passing that
value to the .loc attribute:
>>> crime.loc['2016-05-12 16:45:00']

 OFFENSE_TYPE_ID OFFENSE_CATEGORY_ID GEO_LON

 OFFENSE_TYPE_ID ... IS_TRAFFIC

REPORTED_DATE ...

2016-05-12 16:45:00 traffic-accident ... 1

2016-05-12 16:45:00 traffic-accident ... 1

2016-05-12 16:45:00 fraud-identity-theft ... 0

4. With a Timestamp in the index, it is possible to select all rows that partially match
an index value. For instance, if we wanted all the crimes from May 5, 2016, we would
select it as follows:
>>> crime.loc['2016-05-12']

 OFFENSE_TYPE_ID ... IS_TRAFFIC

REPORTED_DATE ...

2016-05-12 23:51:00 criminal-mischief-other ... 0

2016-05-12 18:40:00 liquor-possession ... 0

2016-05-12 22:26:00 traffic-accident ... 1

2016-05-12 20:35:00 theft-bicycle ... 0

2016-05-12 09:39:00 theft-of-motor-vehicle ... 0

...

2016-05-12 17:55:00 public-peace-other ... 0

2016-05-12 19:24:00 threats-to-injure ... 0

2016-05-12 22:28:00 sex-aslt-rape ... 0

2016-05-12 15:59:00 menacing-felony-w-weap ... 0

2016-05-12 16:39:00 assault-dv ... 0

5. Not only can you select a single date inexactly, but you can do so for an entire month,
year, or even hour of the day:
>>> crime.loc['2016-05'].shape

(8012, 7)

Time Series Analysis

438

>>> crime.loc['2016'].shape

(91076, 7)

>>> crime.loc['2016-05-12 03'].shape

(4, 7)

6. The selection strings may also contain the name of the month:
>>> crime.loc['Dec 2015'].sort_index()

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2015-12-01 00:48:00 drug-cocaine-possess ...

2015-12-01 00:48:00 theft-of-motor-vehicle ...

2015-12-01 01:00:00 criminal-mischief-other ...

2015-12-01 01:10:00 traf-other ...

2015-12-01 01:10:00 traf-habitual-offender ...

...

2015-12-31 23:35:00 drug-cocaine-possess ...

2015-12-31 23:40:00 traffic-accident ...

2015-12-31 23:44:00 drug-cocaine-possess ...

2015-12-31 23:45:00 violation-of-restraining-order ...

2015-12-31 23:50:00 weapon-poss-illegal-dangerous ...

7. Many other string patterns with month name included also work:
>>> crime.loc['2016 Sep, 15'].shape

(252, 7)

>>> crime.loc['21st October 2014 05'].shape

(4, 7)

8. In addition to selection, you may use the slice notation to select a precise range of
data. This example will include all values starting from March 4, 2015 through the
end of January 1, 2016:
>>> crime.loc['2015-3-4':'2016-1-1'].sort_index()

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2015-03-04 00:11:00 assault-dv ...

2015-03-04 00:19:00 assault-dv ...

2015-03-04 00:27:00 theft-of-services ...

2015-03-04 00:49:00 traffic-accident-hit-and-run ...

2015-03-04 01:07:00 burglary-business-no-force ...

Chapter 12

439

...

2016-01-01 23:15:00 traffic-accident-hit-and-run ...

2016-01-01 23:16:00 traffic-accident ...

2016-01-01 23:40:00 robbery-business ...

2016-01-01 23:45:00 drug-cocaine-possess ...

2016-01-01 23:48:00 drug-poss-paraphernalia ...

9. Notice that all crimes committed on the end date regardless of the time are included
in the returned result. This is true for any result using the label-based .loc attribute.
You can provide as much precision (or lack thereof) to any start or end portion of the
slice:
>>> crime.loc['2015-3-4 22':'2016-1-1 11:22:00'].sort_index()

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2015-03-04 22:25:00 traffic-accident-hit-and-run ...

2015-03-04 22:30:00 traffic-accident ...

2015-03-04 22:32:00 traffic-accident-hit-and-run ...

2015-03-04 22:33:00 traffic-accident-hit-and-run ...

2015-03-04 22:36:00 theft-unauth-use-of-ftd ...

...

2016-01-01 11:10:00 theft-of-motor-vehicle ...

2016-01-01 11:11:00 traffic-accident ...

2016-01-01 11:11:00 traffic-accident-hit-and-run ...

2016-01-01 11:16:00 traf-other ...

2016-01-01 11:22:00 traffic-accident ...

How it works…
One of the features of hdf5 files is their ability to preserve the data types of each column,
which reduces the memory required. In this case, three of these columns are stored as a
pandas category instead of as an object. Storing them as objects will lead to a four times
increase in memory usage:

>>> mem_cat = crime.memory_usage().sum()

>>> mem_obj = (crime

... .astype({'OFFENSE_TYPE_ID':'object',

... 'OFFENSE_CATEGORY_ID':'object',

... 'NEIGHBORHOOD_ID':'object'})

Time Series Analysis

440

... .memory_usage(deep=True)

... .sum()

...)

>>> mb = 2 ** 20

>>> round(mem_cat / mb, 1), round(mem_obj / mb, 1)

(29.4, 122.7)

To select and slice rows by date using the indexing operator, the index must contain date
values. In step 2, we move the REPORTED_DATE column into the index and to create
a DatetimeIndex as the new index:

>>> crime.index[:2]

DatetimeIndex(['2014-06-29 02:01:00', '2014-06-29 01:54:00'],
dtype='datetime64[ns]', name='REPORTED_DATE', freq=None)

With a DatetimeIndex, a huge variety of strings may be used to select rows with the .loc
attribute. In fact, all strings that can be sent to the pandas Timestamp constructor will work
here. Surprisingly, it is not necessary to use the .loc attribute for any of the selections or
slices in this recipe. The index operator by itself will work in the same manner. For instance,
the second statement of step 7 may be written as crime['21st October 2014 05'].

Personally, I prefer using the .loc attribute when selecting rows and would always use it over
the index operator on a DataFrame. The .loc indexer is explicit, and it is unambiguous that
the first value passed to it is always used to select rows.

Steps 8 and 9 show how slicing works with timestamps. Any date that partially matches either
the start or end value of the slice is included in the result.

There's more…
Our original crimes DataFrame was not sorted and slicing still worked as expected. Sorting the
index will lead to large gains in performance. Let's see the difference with slicing done from
step 8:

>>> %timeit crime.loc['2015-3-4':'2016-1-1']

12.2 ms ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> crime_sort = crime.sort_index()

>>> %timeit crime_sort.loc['2015-3-4':'2016-1-1']

1.44 ms ± 41.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

The sorted DataFrame provides an eight times performance improvement over the original.

Chapter 12

441

Filtering columns with time data
The last section showed how to filter data that has a DatetimeIndex. Often, you will have
columns with dates in them, and it does not make sense to have that column be the index.
In this section, we will reproduce the slicing of the preceding section with columns. Sadly,
the slicing constructs do not work on columns, so we will have to take a different tack.

How to do it…
1. Read in the Denver crimes dataset from the hdf5 file crimes.h5 and inspect the

column types:
>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime.dtypes

OFFENSE_TYPE_ID category

OFFENSE_CATEGORY_ID category

REPORTED_DATE datetime64[ns]

GEO_LON float64

GEO_LAT float64

NEIGHBORHOOD_ID category

IS_CRIME int64

IS_TRAFFIC int64

dtype: object

2. Select all the rows where the REPORTED_DATE column has a certain value. We will
use a Boolean array to filter. Note, that we can compare the a datetime column to
a string:
>>> (crime

... [crime.REPORTED_DATE == '2016-05-12 16:45:00']

...)

 OFFEN/PE_ID ... IS_TRAFFIC

300905 traffic-accident ... 1

302354 traffic-accident ... 1

302373 fraud-identity-theft ... 0

3. Select all rows with a partial date match. If we try this with the equality operator,
it fails. We do not get an error, but there are no rows returned:
>>> (crime

... [crime.REPORTED_DATE == '2016-05-12']

Time Series Analysis

442

...)

Empty DataFrame

Columns: [OFFENSE_TYPE_ID, OFFENSE_CATEGORY_ID, REPORTED_DATE,
GEO_LON, GEO_LAT, NEIGHBORHOOD_ID, IS_CRIME, IS_TRAFFIC]

Index: []

This also fails if we try and compare to the .dt.date attribute. That is because
this is a series of Python datetime.date objects, and they do not support that
comparison:
>>> (crime

... [crime.REPORTED_DATE.dt.date == '2016-05-12']

...)

Empty DataFrame

Columns: [OFFENSE_TYPE_ID, OFFENSE_CATEGORY_ID, REPORTED_DATE,
GEO_LON, GEO_LAT, NEIGHBORHOOD_ID, IS_CRIME, IS_TRAFFIC]

Index: []

4. If we want a partial date match, we can use the .between method, which supports
partial date strings. Note that the start and end dates (the parameter names are
left and right respectively) are inclusive by default. If there were a row with
a date on midnight May 13, 2016, it would be included here:
>>> (crime

... [crime.REPORTED_DATE.between(

... '2016-05-12', '2016-05-13')]

...)

 OFFEN/PE_ID ... IS_TRAFFIC

295715 criminal-mischief-other ... 0

296474 liquor-possession ... 0

297204 traffic-accident ... 1

299383 theft-bicycle ... 0

299389 theft-of-motor-vehicle ... 0

...

358208 public-peace-other ... 0

358448 threats-to-injure ... 0

363134 sex-aslt-rape ... 0

365959 menacing-felony-w-weap ... 0

378711 assault-dv ... 0

Chapter 12

443

5. Because .between supports partial date strings, we can replicate most of the slicing
functionality of the previous section with it. We can match just a month, year, or hour
of the day:
>>> (crime

... [crime.REPORTED_DATE.between(

... '2016-05', '2016-06')]

... .shape

...)

(8012, 8)

>>> (crime

... [crime.REPORTED_DATE.between(

... '2016', '2017')]

... .shape

...)

(91076, 8)

>>> (crime

... [crime.REPORTED_DATE.between(

... '2016-05-12 03', '2016-05-12 04')]

... .shape

...)

(4, 8)

6. We can use other string patterns:
>>> (crime

... [crime.REPORTED_DATE.between(

... '2016 Sep, 15', '2016 Sep, 16')]

... .shape

...)

(252, 8)

>>> (crime

... [crime.REPORTED_DATE.between(

... '21st October 2014 05', '21st October 2014 06')]

... .shape

...)

(4, 8)

Time Series Analysis

444

7. Because .loc is closed and includes both start and end, the functionality of
.between mimics that. However, in a partial date string there is a slight difference.
Ending a slice on 2016-1-1 will include all values for January 1, 2016. Using that
value as the end value will include values up to the start of that day. To replicate the
slice ['2015-3-4':'2016-1-1'], we need to add the last time of the end day:
>>> (crime

... [crime.REPORTED_DATE.between(

... '2015-3-4','2016-1-1 23:59:59')]

... .shape

...)

(75403, 8)

8. We can tweak this dates as needed. Below replicates the behavior of the last step
of the previous recipe:

>>> (crime

... [crime.REPORTED_DATE.between(

... '2015-3-4 22','2016-1-1 11:22:00')]

... .shape

...)

(75071, 8)

How it works…
The pandas library can slice index values, but not columns. To replicate DatetimeIndex
slicing on a column, we need to use the .between method. The body of this method is just
seven lines of code:

def between(self, left, right, inclusive=True):

if inclusive:

lmask = self >= left

rmask = self <= right

else:

lmask = self > left

rmask = self < right

return lmask & rmask

This gives us insight that we can build up mask and combine them as needed. For example,
we can replicate step 7 using two masks:

Chapter 12

445

>>> lmask = crime.REPORTED_DATE >= '2015-3-4 22'

>>> rmask = crime.REPORTED_DATE <= '2016-1-1 11:22:00'

>>> crime[lmask & rmask].shape

(75071, 8)

There's more…
Let's compare timing of .loc on the index and .between on a column:

>>> ctseries = crime.set_index('REPORTED_DATE')

>>> %timeit ctseries.loc['2015-3-4':'2016-1-1']

11 ms ± 3.1 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

>>> %timeit crime[crime.REPORTED_DATE.between('2015-3-4','2016-1-1')]

20.1 ms ± 525 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

Having the date information in the index provides a slight speed improvement. If you need
to perform date slicing on a single column, it might make sense to set the index to a date
column. Note that there is also overhead for setting the index to a column, and if you are only
slicing a single time, the overhead makes the time for these two operations about the same.

Using methods that only work with a
DatetimeIndex

There are a number of DataFrame and Series methods that only work with
a DatetimeIndex. If the index is of any other type, these methods will fail.

In this recipe, we will first use methods to select rows of data by their time component.
We will then learn about the powerful DateOffset objects and their aliases.

How to do it…
1. Read in the crime hdf5 dataset, set the index as REPORTED_DATE, and ensure that

we have a DatetimeIndex:
>>> crime = (pd.read_hdf('data/crime.h5', 'crime')

... .set_index('REPORTED_DATE')

...)

Time Series Analysis

446

>>> type(crime.index)

<class 'pandas.core.indexes.datetimes.DatetimeIndex'>

2. Use the .between_time method to select all crimes that occurred between 2 A.M.
and 5 A.M., regardless of the date:
>>> crime.between_time('2:00', '5:00', include_end=False)

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2014-06-29 02:01:00 traffic-accident-dui-duid ...

2014-06-29 02:00:00 disturbing-the-peace ...

2014-06-29 02:18:00 curfew ...

2014-06-29 04:17:00 aggravated-assault ...

2014-06-29 04:22:00 violation-of-restraining-order ...

...

2017-08-25 04:41:00 theft-items-from-vehicle ...

2017-09-13 04:17:00 theft-of-motor-vehicle ...

2017-09-13 02:21:00 assault-simple ...

2017-09-13 03:21:00 traffic-accident-dui-duid ...

2017-09-13 02:15:00 traffic-accident-hit-and-run ...

3. Select all dates at a specific time with .at_time:
>>> crime.at_time('5:47')

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2013-11-26 05:47:00 criminal-mischief-other ...

2017-04-09 05:47:00 criminal-mischief-mtr-veh ...

2017-02-19 05:47:00 criminal-mischief-other ...

2017-02-16 05:47:00 aggravated-assault ...

2017-02-12 05:47:00 police-interference ...

...

2013-09-10 05:47:00 traffic-accident ...

2013-03-14 05:47:00 theft-other ...

2012-10-08 05:47:00 theft-items-from-vehicle ...

2013-08-21 05:47:00 theft-items-from-vehicle ...

2017-08-23 05:47:00 traffic-accident-hit-and-run ...

Chapter 12

447

4. The .first methods provide an elegant way of selecting the first n segments of
time, where n is an integer. These segments of time are represented by DateOffset
objects that can be in the pd.offsets module. The DataFrame must be sorted on
its index to guarantee that this method will work. Let's select the first six months of
crime data:
>>> crime_sort = crime.sort_index()

>>> crime_sort.first(pd.offsets.MonthBegin(6))

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-06-30 23:40:00 traffic-accident-dui-duid ...

2012-06-30 23:44:00 traffic-accident ...

2012-06-30 23:50:00 criminal-mischief-mtr-veh ...

2012-06-30 23:54:00 traffic-accident-hit-and-run ...

2012-07-01 00:01:00 robbery-street ...

5. This captured the data from January through June but also, surprisingly, selected a
single row in July. The reason for this is that pandas uses the time component of the
first element in the index, which, in this example, is 6 minutes. Let's use MonthEnd, a
slightly different offset:
>>> crime_sort.first(pd.offsets.MonthEnd(6))

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-06-29 23:01:00 aggravated-assault ...

2012-06-29 23:11:00 traffic-accident ...

2012-06-29 23:41:00 robbery-street ...

2012-06-29 23:57:00 assault-simple ...

2012-06-30 00:04:00 traffic-accident ...

Time Series Analysis

448

6. This captured nearly the same amount of data but if you look closely, only a single
row from June 30th was captured. Again, this is because the time component of
the first index was preserved. The exact search went to 2012-06-30 00:06:00.
So, how do we get exactly six months of data? There are a couple of ways. All
DateOffset objects have a normalize parameter that, when set to True, sets all
the time components to zero. The following should get us very close to what we want:
>>> crime_sort.first(pd.offsets.MonthBegin(6, normalize=True))

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-06-30 23:40:00 traffic-accident-hit-and-run ...

2012-06-30 23:40:00 traffic-accident-dui-duid ...

2012-06-30 23:44:00 traffic-accident ...

2012-06-30 23:50:00 criminal-mischief-mtr-veh ...

2012-06-30 23:54:00 traffic-accident-hit-and-run ...

7. This method has successfully captured all the data for the first six months of the year.
With normalize set to True, the search went to 2012-07-01 00:00:00, which
would include any crimes reported exactly on this date and time. There is no possible
way to use the .first method to ensure that only data from January to June is
captured. The following slice would yield the exact result:
>>> crime_sort.loc[:'2012-06']

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-06-30 23:40:00 traffic-accident-hit-and-run ...

2012-06-30 23:40:00 traffic-accident-dui-duid ...

2012-06-30 23:44:00 traffic-accident ...

2012-06-30 23:50:00 criminal-mischief-mtr-veh ...

2012-06-30 23:54:00 traffic-accident-hit-and-run ...

Chapter 12

449

8. There are a dozen DateOffset objects for moving forward or backward to the next
nearest offset. Instead of hunting down the DateOffset objects in pd.offsets,
you can use a string called an offset alias instead. For instance, the string for
MonthEnd is M and for MonthBegin is MS. To denote the number of these offset
aliases, place an integer in front of it. Use this table to find all the aliases (https://
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.
html#timeseries-offset-aliases). Let's see some examples of offset
aliases with the description of what is being selected in the comments:

>>> crime_sort.first('5D') # 5 days

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-01-06 23:11:00 theft-items-from-vehicle ...

2012-01-06 23:23:00 violation-of-restraining-order ...

2012-01-06 23:30:00 assault-dv ...

2012-01-06 23:44:00 theft-of-motor-vehicle ...

2012-01-06 23:55:00 threats-to-injure ...

>>> crime_sort.first('5B') # 5 business days

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-01-08 23:46:00 theft-items-from-vehicle ...

2012-01-08 23:51:00 burglary-residence-no-force ...

2012-01-08 23:52:00 theft-other ...

2012-01-09 00:04:00 traffic-accident-hit-and-run ...

2012-01-09 00:05:00 fraud-criminal-impersonation ...

https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases

Time Series Analysis

450

>>> crime_sort.first('7W') # 7 weeks, with weeks ending on Sunday

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-02-18 21:57:00 traffic-accident ...

2012-02-18 22:19:00 criminal-mischief-graffiti ...

2012-02-18 22:20:00 traffic-accident-dui-duid ...

2012-02-18 22:44:00 criminal-mischief-mtr-veh ...

2012-02-18 23:27:00 theft-items-from-vehicle ...

>>> crime_sort.first('3QS') # 3rd quarter start

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-09-30 23:17:00 drug-hallucinogen-possess ...

2012-09-30 23:29:00 robbery-street ...

2012-09-30 23:29:00 theft-of-motor-vehicle ...

2012-09-30 23:41:00 traffic-accident-hit-and-run ...

2012-09-30 23:43:00 robbery-business ...

>>> crime_sort.first('A') # one year end

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2012-01-02 00:06:00 aggravated-assault ...

2012-01-02 00:06:00 violation-of-restraining-order ...

Chapter 12

451

2012-01-02 00:16:00 traffic-accident-dui-duid ...

2012-01-02 00:47:00 traffic-accident ...

2012-01-02 01:35:00 aggravated-assault ...

...

2012-12-30 23:13:00 traffic-accident ...

2012-12-30 23:14:00 burglary-residence-no-force ...

2012-12-30 23:39:00 theft-of-motor-vehicle ...

2012-12-30 23:41:00 traffic-accident ...

2012-12-31 00:05:00 assault-simple ...

How it works…
Once we ensure that our index is a DatetimeIndex, we can take advantage of all the
methods in this recipe. It is impossible to do selection or slicing based on just the time
component of a Timestamp with the .loc attribute. To select all dates by a range of time,
you must use the .between_time method, or to select an exact time, use .at_time. Make
sure that the passed string for start and end times consists of at least the hour and minute. It
is also possible to use time objects from the datetime module. For instance, the following
command would yield the same result as in step 2:

>>> import datetime

>>> crime.between_time(datetime.time(2,0), datetime.time(5,0),

... include_end=False)

 OFFENSE_TYPE_ID ...

REPORTED_DATE ...

2014-06-29 02:01:00 traffic-accident-dui-duid ...

2014-06-29 02:00:00 disturbing-the-peace ...

2014-06-29 02:18:00 curfew ...

2014-06-29 04:17:00 aggravated-assault ...

2014-06-29 04:22:00 violation-of-restraining-order ...

...

2017-08-25 04:41:00 theft-items-from-vehicle ...

2017-09-13 04:17:00 theft-of-motor-vehicle ...

2017-09-13 02:21:00 assault-simple ...

2017-09-13 03:21:00 traffic-accident-dui-duid ...

2017-09-13 02:15:00 traffic-accident-hit-and-run ...

Time Series Analysis

452

In step 4, we begin using the .first method, but with a complicated parameter offset. It
must be a DateOffset object or an offset alias as a string. To help understand DateOffset
objects, it's best to see what they do to a single Timestamp. For example, let's take the first
element of the index and add six months to it in two different ways:

>>> first_date = crime_sort.index[0]

>>> first_date

Timestamp('2012-01-02 00:06:00')

>>> first_date + pd.offsets.MonthBegin(6)

Timestamp('2012-07-01 00:06:00')

>>> first_date + pd.offsets.MonthEnd(6)

Timestamp('2012-06-30 00:06:00')

Neither the MonthBegin not the MonthEnd offsets add or subtract an exact amount of time
but effectively round up to the next beginning or end of the month regardless of what day it is.
Internally, the .first method uses the very first index element of the DataFrame and adds
the DateOffset passed to it. It then slices up until this new date. For instance, step 4 is
equivalent to the following:

>>> step4 = crime_sort.first(pd.offsets.MonthEnd(6))

>>> end_dt = crime_sort.index[0] + pd.offsets.MonthEnd(6)

>>> step4_internal = crime_sort[:end_dt]

>>> step4.equals(step4_internal)

True

In step 8, offset aliases make for a much more compact method of referencing
DateOffsets.

There's more…
It is possible to build a custom DateOffset when those available do not suit your needs:

>>> dt = pd.Timestamp('2012-1-16 13:40')

>>> dt + pd.DateOffset(months=1)

Timestamp('2012-02-16 13:40:00')

Notice that this custom DateOffset increased the Timestamp by exactly one month. Let's
look at one more example using many more date and time components:

>>> do = pd.DateOffset(years=2, months=5, days=3,

Chapter 12

453

... hours=8, seconds=10)

>>> pd.Timestamp('2012-1-22 03:22') + do

Timestamp('2014-06-25 11:22:10')

Counting the number of weekly crimes
The Denver crime dataset is huge, with over 460,000 rows each marked with a reported
date. Counting the number of weekly crimes is one of many queries that can be answered
by grouping according to some period of time. The .resample method provides an easy
interface to grouping by any possible span of time.

In this recipe, we will use both the .resample and .groupby methods to count the number
of weekly crimes.

How to do it…
1. Read in the crime hdf5 dataset, set the index as the REPORTED_DATE, and then sort

it to increase performance for the rest of the recipe:
>>> crime_sort = (pd.read_hdf('data/crime.h5', 'crime')

... .set_index('REPORTED_DATE')

... .sort_index()

...)

2. To count the number of crimes per week, we need to form a group for each week. The
.resample method takes a DateOffset object or alias and returns an object ready
to perform an action on all groups. The object returned from the .resample method
is very similar to the object produced after calling the .groupby method:
>>> crime_sort.resample('W')

<pandas.core.resample.DatetimeIndexResampler object at
0x10f07acf8>

3. The offset alias, W, was used to inform pandas that we want to group by each week.
There isn't much that happened in the preceding step. pandas has validated our
offset and returned an object that is ready to perform an action on each week as
a group. There are several methods that we can chain after calling .resample to
return some data. Let's chain the .size method to count the number of weekly
crimes:
>>> (crime_sort

... .resample('W')

... .size()

Time Series Analysis

454

...)

REPORTED_DATE

2012-01-08 877

2012-01-15 1071

2012-01-22 991

2012-01-29 988

2012-02-05 888

 ...

2017-09-03 1956

2017-09-10 1733

2017-09-17 1976

2017-09-24 1839

2017-10-01 1059

Freq: W-SUN, Length: 300, dtype: int64

4. We now have the weekly crime count as a Series with the new index incrementing
one week at a time. There are a few things that happen by default that are very
important to understand. Sunday is chosen as the last day of the week and is also
the date used to label each element in the resulting Series. For instance, the first
index value January 8, 2012 is a Sunday. There were 877 crimes committed during
that week ending on the 8th. The week of Monday, January 9th to Sunday, January
15th recorded 1,071 crimes. Let's do some sanity checks and ensure that our
resampling is doing this:
>>> len(crime_sort.loc[:'2012-1-8'])

877

>>> len(crime_sort.loc['2012-1-9':'2012-1-15'])

1071

5. Let's choose a different day to end the week besides Sunday with an anchored offset:
>>> (crime_sort

... .resample('W-THU')

... .size()

...)

REPORTED_DATE

2012-01-05 462

2012-01-12 1116

2012-01-19 924

2012-01-26 1061

2012-02-02 926

Chapter 12

455

 ...

2017-09-07 1803

2017-09-14 1866

2017-09-21 1926

2017-09-28 1720

2017-10-05 28

Freq: W-THU, Length: 301, dtype: int64

6. Nearly all the functionality of .resample may be reproduced by the .groupby
method. The only difference is that you must pass the offset into a pd.Grouper
object:

>>> weekly_crimes = (crime_sort

... .groupby(pd.Grouper(freq='W'))

... .size()

...)

>>> weekly_crimes

REPORTED_DATE

2012-01-08 877

2012-01-15 1071

2012-01-22 991

2012-01-29 988

2012-02-05 888

 ...

2017-09-03 1956

2017-09-10 1733

2017-09-17 1976

2017-09-24 1839

2017-10-01 1059

Freq: W-SUN, Length: 300, dtype: int64

How it works…
The .resample method, by default, works implicitly with a DatetimeIndex, which is why we
set it to REPORTED_DATE in step 1. In step 2, we created an intermediate object that helps us
understand how to form groups within the data. The first parameter to .resample is the rule
determining how the Timestamps in the index will be grouped. In this instance, we use the
offset alias W to form groups one week in length ending on Sunday. The default ending day is
Sunday, but may be changed with an anchored offset by appending a dash and the first three
letters of a day of the week.

Time Series Analysis

456

Once we have formed groups with .resample, we must chain a method to take action on
each of them. In step 3, we use the .size method to count the number of crimes per week.
You might be wondering what are all the possible attributes and methods available to use
after calling .resample. The following examines the .resample object and outputs them:

>>> r = crime_sort.resample('W')

>>> [attr for attr in dir(r) if attr[0].islower()]

['agg', 'aggregate', 'apply', 'asfreq', 'ax', 'backfill', 'bfill',
'count',

'ffill', 'fillna', 'first', 'get_group', 'groups', 'indices',

'interpolate', 'last', 'max', 'mean', 'median', 'min', 'ndim', 'ngroups',

'nunique', 'obj', 'ohlc', 'pad', 'plot', 'prod', 'sem', 'size', 'std',

'sum', 'transform', 'var']

Step 4 verifies the accuracy of the count from step 3 by slicing the data by week and counting
the number of rows. The .resample method is not necessary to group by Timestamp as
the functionality is available from the .groupby method itself. However, you must pass an
instance of pd.Grouper to the groupby method using the freq parameter for the offset,
as done in step 6.

There's more…
It is possible to use .resample even when the index does not contain a Timestamp. You can
use the on parameter to select the column with Timestamps that will be used to form groups:

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> weekly_crimes2 = crime.resample('W', on='REPORTED_DATE').size()

>>> weekly_crimes2.equals(weekly_crimes)

True

This is also possible using groupby with pd.Grouper by selecting the Timestamp column with
the key parameter:

>>> weekly_crimes_gby2 = (crime

... .groupby(pd.Grouper(key='REPORTED_DATE', freq='W'))

... .size()

...)

>>> weekly_crimes2.equals(weekly_crimes)

True

We can also produce a line plot of all the crimes in Denver (including traffic accidents) by
calling the .plot method on our Series of weekly crimes:

Chapter 12

457

>>> import matplotlib.pyplot as plt

>>> fig, ax = plt.subplots(figsize=(16, 4))

>>> weekly_crimes.plot(title='All Denver Crimes', ax=ax)

>>> fig.savefig('c12-crimes.png', dpi=300)

Weekly crime plot

Aggregating weekly crime and traffic
accidents separately

The Denver crime dataset has all crime and traffic accidents together in one table, and
separates them through the binary columns: IS_CRIME and IS_TRAFFIC. The .resample
method allows you to group by a period of time and aggregate specific columns separately.

In this recipe, we will use the .resample method to group by each quarter of the year and
then sum up the number of crimes and traffic accidents separately.

How to do it…
1. Read in the crime hdf5 dataset, set the index as REPORTED_DATE, and then sort

it to increase performance for the rest of the recipe:
>>> crime = (pd.read_hdf('data/crime.h5', 'crime')

... .set_index('REPORTED_DATE')

... .sort_index()

...)

2. Use the .resample method to group by each quarter of the year and then sum the
IS_CRIME and IS_TRAFFIC columns for each group:
>>> (crime

Time Series Analysis

458

... .resample('Q')

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

...)

 IS_CRIME IS_TRAFFIC

REPORTED_DATE

2012-03-31 7882 4726

2012-06-30 9641 5255

2012-09-30 10566 5003

2012-12-31 9197 4802

2013-03-31 8730 4442

...

2016-09-30 17427 6199

2016-12-31 15984 6094

2017-03-31 16426 5587

2017-06-30 17486 6148

2017-09-30 17990 6101

3. Notice that the dates all appear as the last day of the quarter. This is because the
offset alias, Q, represents the end of the quarter. Let's use the offset alias QS to
represent the start of the quarter:
>>> (crime

... .resample('QS')

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

...)

 IS_CRIME IS_TRAFFIC

REPORTED_DATE

2012-01-01 7882 4726

2012-04-01 9641 5255

2012-07-01 10566 5003

2012-10-01 9197 4802

2013-01-01 8730 4442

...

2016-07-01 17427 6199

2016-10-01 15984 6094

2017-01-01 16426 5587

Chapter 12

459

2017-04-01 17486 6148

2017-07-01 17990 6101

4. Let's verify these results by checking whether the second quarter of data is correct:
>>> (crime

... .loc['2012-4-1':'2012-6-30', ['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

...)

IS_CRIME 9641

IS_TRAFFIC 5255

dtype: int64

5. It is possible to replicate this operation using the .groupby method:
>>> (crime

... .groupby(pd.Grouper(freq='Q'))

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

...)

 IS_CRIME IS_TRAFFIC

REPORTED_DATE

2012-03-31 7882 4726

2012-06-30 9641 5255

2012-09-30 10566 5003

2012-12-31 9197 4802

2013-03-31 8730 4442

...

2016-09-30 17427 6199

2016-12-31 15984 6094

2017-03-31 16426 5587

2017-06-30 17486 6148

2017-09-30 17990 6101

6. Let's make a plot to visualize the trends in crime and traffic accidents over time:

>>> fig, ax = plt.subplots(figsize=(16, 4))

>>> (crime

... .groupby(pd.Grouper(freq='Q'))

... [['IS_CRIME', 'IS_TRAFFIC']]

Time Series Analysis

460

... .sum()

... .plot(color=['black', 'lightgrey'], ax=ax,

... title='Denver Crimes and Traffic Accidents')

...)

>>> fig.savefig('c12-crimes2.png', dpi=300)

Quarterly crime plot

How it works…
After reading in and preparing our data in step 1, we begin grouping and aggregating in step
2. Immediately after calling the .resample method, we can continue either by chaining a
method or by selecting a group of columns to aggregate. We choose to select the IS_CRIME
and IS_TRAFFIC columns to aggregate. If we didn't select just these two, then all of the
numeric columns would have been summed with the following outcome:

>>> (crime

... .resample('Q')

... .sum()

...)

 GEO_LON ... IS_TRAFFIC

REPORTED_DATE ...

2012-03-31 -1.313006e+06 ... 4726

2012-06-30 -1.547274e+06 ... 5255

2012-09-30 -1.615835e+06 ... 5003

2012-12-31 -1.458177e+06 ... 4802

2013-03-31 -1.368931e+06 ... 4442

...

2016-09-30 -2.459343e+06 ... 6199

Chapter 12

461

2016-12-31 -2.293628e+06 ... 6094

2017-03-31 -2.288383e+06 ... 5587

2017-06-30 -2.453857e+06 ... 6148

2017-09-30 -2.508001e+06 ... 6101

By default, the offset alias Q technically uses December 31st as the last day of the year. The
span of dates that represent a single quarter are all calculated using this ending date. The
aggregated result uses the last day of the quarter as its label. Step 3 uses the offset alias
QS, which, by default, calculates quarters using January 1st as the first day of the year.

Most public businesses report quarterly earnings but they do not all have the same calendar
year beginning in January. For instance, if we wanted our quarters to begin March 1st, then
we could use QS-MAR to anchor our offset alias:

>>> (crime_sort

... .resample('QS-MAR')

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

...)

 IS_CRIME IS_TRAFFIC

REPORTED_DATE

2011-12-01 5013 3198

2012-03-01 9260 4954

2012-06-01 10524 5190

2012-09-01 9450 4777

2012-12-01 9003 4652

...

2016-09-01 16932 6202

2016-12-01 15615 5731

2017-03-01 17287 5940

2017-06-01 18545 6246

2017-09-01 5417 1931

As in the preceding recipe, we verify our results via manual slicing in step 4. In step 5 we
replicate the result of step 3 with the .groupby method using pd.Grouper to set our group
length. In step 6, we call the DataFrame .plot method. By default, a line is plotted for each
column of data. The plot clearly shows a sharp increase in reported crimes during the first
three quarters of the year. There also appears to be a seasonal component to both crime
and traffic, with numbers lower in the cooler months and higher in the warmer months.

Time Series Analysis

462

There's more…
To get a different visual perspective, we can plot the percentage increase in crime and traffic,
instead of the raw count. Let's divide all the data by the first row and plot again:

>>> crime_begin = (crime

... .resample('Q')

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

... .iloc[0]

...)

>>> fig, ax = plt.subplots(figsize=(16, 4))

>>> (crime

... .resample('Q')

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

... .div(crime_begin)

... .sub(1)

... .round(2)

... .mul(100)

... .plot.bar(color=['black', 'lightgrey'], ax=ax,

... title='Denver Crimes and Traffic Accidents % Increase')

...)

>>> fig.autofmt_xdate()

>>> fig.savefig('c12-crimes3.png', dpi=300, bbox_inches='tight')

Quarterly crime plot

Chapter 12

463

Measuring crime by weekday and year
Measuring crimes by weekday and by year simultaneously requires the functionality to pull
this information from a Timestamp. Thankfully, this functionality is built into any Timestamp
column with the .dt attribute.

In this recipe, we will use the .dt attribute to provide us with both the weekday name and
year of each crime as a Series. We count all of the crimes by forming groups using both of
these Series. Finally, we adjust the data to consider partial years and population before
creating a heatmap of the total amount of crime.

How to do it…
1. Read in the Denver crime hdf5 dataset leaving the REPORTED_DATE as a column:

>>> crime = pd.read_hdf('data/crime.h5', 'crime')

>>> crime

 OFFEN/PE_ID ... IS_TRAFFIC

0 traffic-accident-dui-duid ... 1

1 vehicular-eluding-no-chase ... 0

2 disturbing-the-peace ... 0

3 curfew ... 0

4 aggravated-assault ... 0

...

460906 burglary-business-by-force ... 0

460907 weapon-unlawful-discharge-of ... 0

460908 traf-habitual-offender ... 0

460909 criminal-mischief-other ... 0

460910 theft-other ... 0

2. All Timestamp columns have a special attribute, .dt, which gives access to a variety
of extra attributes and methods specifically designed for dates. Let's find the day
name of each REPORTED_DATE and then count these values:
>>> (crime

... ['REPORTED_DATE']

... .dt.day_name()

... .value_counts()

...)

Monday 70024

Time Series Analysis

464

Friday 69621

Wednesday 69538

Thursday 69287

Tuesday 68394

Saturday 58834

Sunday 55213

Name: REPORTED_DATE, dtype: int64

3. The weekends appear to have substantially less crime and traffic accidents. Let's put
this data in correct weekday order and make a horizontal bar plot:
>>> days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

... 'Friday', 'Saturday', 'Sunday']

>>> title = 'Denver Crimes and Traffic Accidents per Weekday'

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> (crime

... ['REPORTED_DATE']

... .dt.day_name()

... .value_counts()

... .reindex(days)

... .plot.barh(title=title, ax=ax)

...)

>>> fig.savefig('c12-crimes4.png', dpi=300, bbox_inches='tight')

Weekday crime plot

Chapter 12

465

4. We can do a very similar procedure to plot the count by year:
>>> title = 'Denver Crimes and Traffic Accidents per Year'

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> (crime

... ['REPORTED_DATE']

... .dt.year

... .value_counts()

... .sort_index()

... .plot.barh(title=title, ax=ax)

...)

>>> fig.savefig('c12-crimes5.png', dpi=300, bbox_inches='tight')

Yearly crime plot

5. We need to group by both weekday and year. One way of doing this is to use these
attributes in the .groupby method:
>>> (crime

... .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

... crime['REPORTED_DATE'].dt.day_name().
rename('day')])

... .size()

...)

year day

2012 Friday 8549

 Monday 8786

 Saturday 7442

Time Series Analysis

466

 Sunday 7189

 Thursday 8440

 ...

2017 Saturday 8514

 Sunday 8124

 Thursday 10545

 Tuesday 10628

 Wednesday 10576

Length: 42, dtype: int64

6. We have aggregated the data correctly, but the structure is not conducive to make
comparisons easily. Let's use the .unstack method to get a more readable table:
>>> (crime

... .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

... crime['REPORTED_DATE'].dt.day_name().
rename('day')])

... .size()

... .unstack('day')

...)

day Friday Monday Saturday Sunday Thursday Tuesday

year

2012 8549 8786 7442 7189 8440 8191

2013 10380 10627 8875 8444 10431 10416

2014 12683 12813 10950 10278 12309 12440

2015 13273 13452 11586 10624 13512 13381

2016 14059 13708 11467 10554 14050 13338

2017 10677 10638 8514 8124 10545 10628

7. We now have a nicer representation that is easier to read but noticeably, the 2017
numbers are incomplete. To help make a fairer comparison, we can make a linear
extrapolation to estimate the final number of crimes. Let's first find the last day that
we have data for in 2017:
>>> criteria = crime['REPORTED_DATE'].dt.year == 2017

>>> crime.loc[criteria, 'REPORTED_DATE'].dt.dayofyear.max()

272

8. A naive estimate would be to assume a constant rate of crime throughout the year
and multiply all values in the 2017 table by 365/272. However, we can do a little
better and look at our historical data and calculate the average percentage of crimes
that have taken place through the first 272 days of the year:

Chapter 12

467

>>> round(272 / 365, 3)

0.745

>>> crime_pct = (crime

... ['REPORTED_DATE']

... .dt.dayofyear.le(272)

... .groupby(crime.REPORTED_DATE.dt.year)

... .mean()

... .mul(100)

... .round(2)

...)

>>> crime_pct

REPORTED_DATE

2012 74.84

2013 72.54

2014 75.06

2015 74.81

2016 75.15

2017 100.00

Name: REPORTED_DATE, dtype: float64

>>> crime_pct.loc[2012:2016].median()

74.84

9. It turns out (perhaps coincidentally) that the percentage of crimes that happen during
the first 272 days of the year is almost exactly proportional to the percentage of days
passed in the year. Let's now update the row for 2017 and change the column order
to match the weekday order:
>>> def update_2017(df_):

... df_.loc[2017] = (df_

... .loc[2017]

... .div(.748)

... .astype('int')

...)

... return df_

>>> (crime

... .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

Time Series Analysis

468

... crime['REPORTED_DATE'].dt.day_name().
rename('day')])

... .size()

... .unstack('day')

... .pipe(update_2017)

... .reindex(columns=days)

...)

day Monday Tuesday Wednesday ... Friday Saturday Sunday

year ...

2012 8786 8191 8440 ... 8549 7442 7189

2013 10627 10416 10354 ... 10380 8875 8444

2014 12813 12440 12948 ... 12683 10950 10278

2015 13452 13381 13320 ... 13273 11586 10624

2016 13708 13338 13900 ... 14059 11467 10554

2017 14221 14208 14139 ... 14274 11382 10860

10. We could make a bar or line plot, but this is also a good situation for a heatmap,
which is in the seaborn library:
>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> table = (crime

... .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

... crime['REPORTED_DATE'].dt.day_name().
rename('day')])

... .size()

... .unstack('day')

... .pipe(update_2017)

... .reindex(columns=days)

...)

>>> sns.heatmap(table, cmap='Greys', ax=ax)

>>> fig.savefig('c12-crimes6.png', dpi=300, bbox_inches='tight')

Chapter 12

469

Yearly crime heatmap

11. Crime seems to be rising every year but this data does not account for rising
population. Let's read in a table for the Denver population for each year that we
have data:
>>> denver_pop = pd.read_csv('data/denver_pop.csv',

... index_col='Year')

>>> denver_pop

 Population

Year

2017 705000

2016 693000

2015 680000

2014 662000

2013 647000

2012 634000

Time Series Analysis

470

12. Many crime metrics are reported as rates per 100,000 residents. Let's divide the
population by 100,000 and then divide the raw crime counts by this number to get
the crime rate per 100,000 residents:
>>> den_100k = denver_pop.div(100_000).squeeze()

>>> normalized = (crime

... .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

... crime['REPORTED_DATE'].dt.day_name().
rename('day')])

... .size()

... .unstack('day')

... .pipe(update_2017)

... .reindex(columns=days)

... .div(den_100k, axis='index')

... .astype(int)

...)

>>> normalized

day Monday Tuesday Wednesday ... Friday Saturday Sunday

2012 1385 1291 1331 ... 1348 1173 1133

2013 1642 1609 1600 ... 1604 1371 1305

2014 1935 1879 1955 ... 1915 1654 1552

2015 1978 1967 1958 ... 1951 1703 1562

2016 1978 1924 2005 ... 2028 1654 1522

2017 2017 2015 2005 ... 2024 1614 1540

13. Once again, we can make a heatmap that, even after adjusting for population
increase, looks nearly identical to the first one:

>>> import seaborn as sns

>>> fig, ax = plt.subplots(figsize=(6, 4))

>>> sns.heatmap(normalized, cmap='Greys', ax=ax)

>>> fig.savefig('c12-crimes7.png', dpi=300, bbox_inches='tight')

Chapter 12

471

Normalized yearly crime heatmap

How it works…
All DataFrame columns containing Timestamps have access to numerous other attributes and
methods with the .dt attribute. In fact, all of these methods and attributes available from the
.dt attribute are also available on a Timestamp object.

In step 2, we use the .dt attribute (which only works on a Series) to extract the day name and
count the occurrences. Before making a plot in step 3, we manually rearrange the order of the
index with the .reindex method, which, in its most basic use case, accepts a list containing
the desired order. This task could have also been accomplished with the .loc indexer like
this:

>>> (crime

... ['REPORTED_DATE']

... .dt.day_name()

... .value_counts()

... .loc[days]

...)

Monday 70024

Tuesday 68394

Wednesday 69538

Thursday 69287

Time Series Analysis

472

Friday 69621

Saturday 58834

Sunday 55213

Name: REPORTED_DATE, dtype: int64

The .reindex method is more performant and has many parameters for more diverse
situations than .loc.

In step 4, we do a very similar procedure and retrieve the year using the .dt attribute again,
and then count the occurrences with the .value_counts method. In this instance, we use
.sort_index over .reindex, as years will naturally sort in the desired order.

The goal of the recipe is to group by both weekday and year together, which we do in step 5.
The .groupby method is flexible and can form groups in multiple ways. In this recipe, we
pass it two Series derived from the year and weekday columns. We then chain the .size
method to it, which returns a single value, the length of each group.

After step 5, our Series is long with only a single column of data, which makes it difficult to
make comparisons by year and weekday.

To ease the readability, we pivot the weekday level into horizontal column names with .unstack
in step 6. Step 6 is doing a cross tabulation. Here is another way to do this in pandas:

>>> (crime

... .assign(year=crime.REPORTED_DATE.dt.year,

... day=crime.REPORTED_DATE.dt.day_name())

... .pipe(lambda df_: pd.crosstab(df_.year, df_.day))

...)

day Friday Monday ... Tuesday Wednesday

year ...

2012 8549 8786 ... 8191 8440

2013 10380 10627 ... 10416 10354

2014 12683 12813 ... 12440 12948

2015 13273 13452 ... 13381 13320

2016 14059 13708 ... 13338 13900

2017 10677 10638 ... 10628 10576

In step 7, we use Boolean indexing to select only the crimes in 2017 and then use
.dayofyear from the .dt attribute to find the total elapsed days from the beginning of
the year. The maximum of this Series should tell us how many days we have data for in 2017.

Chapter 12

473

Step 8 is quite complex. We first create a Boolean Series by testing whether each crime
was committed on or before the 272nd day of the year with crime['REPORTED_DATE'].
dt.dayofyear.le(272). From here, we again use the .groupby method to form
groups by the previously calculated year Series and then use the .mean method to find the
percentage of crimes committed on or before the 272nd day for each year.

The .loc attribute selects the entire 2017 row of data in step 9. We adjust this row by
dividing by the median percentage found in step 8.

Lots of crime visualizations are done with heatmaps, and one is done here in step 10 with
the help of the seaborn library. The cmap parameter takes a string name of the several dozen
available matplotlib colormaps.

In step 12, we create a crime rate per 100k residents by dividing by the population of that
year. This is another fairly tricky operation. Normally, when you divide one DataFrame by
another, they align on their columns and index. However, in this step, there are no columns in
common with denver_pop so no values will align if we try and divide them. To work around
this, we create the den_100k Series with the squeeze method. We still can't divide these two
objects as, by default, division between a DataFrame and a Series aligns the columns of the
DataFrame with the index of the Series, like this:

>>> (crime

... .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

... crime['REPORTED_DATE'].dt.day_name().rename('day')])

... .size()

... .unstack('day')

... .pipe(update_2017)

... .reindex(columns=days)

...) / den_100k

 2012 2013 2014 ... Thursday Tuesday Wednesday

year ...

2012 NaN NaN NaN ... NaN NaN NaN

2013 NaN NaN NaN ... NaN NaN NaN

2014 NaN NaN NaN ... NaN NaN NaN

2015 NaN NaN NaN ... NaN NaN NaN

2016 NaN NaN NaN ... NaN NaN NaN

2017 NaN NaN NaN ... NaN NaN NaN

We need the index of the DataFrame to align with the index of Series, and to do this, we
use the .div method, which allows us to change the direction of alignment with the axis
parameter. A heatmap of the adjusted crime rate is plotted in step 13.

Time Series Analysis

474

There's more…
If we wanted to look at specific types of crimes we could do the following:

>>> days = ['Monday', 'Tuesday', 'Wednesday', 'Thursday',

... 'Friday', 'Saturday', 'Sunday']

>>> crime_type = 'auto-theft'

>>> normalized = (crime

... .query('OFFENSE_CATEGORY_ID == @crime_type')

... .groupby([crime['REPORTED_DATE'].dt.year.rename('year'),

... crime['REPORTED_DATE'].dt.day_name().rename('day')])

... .size()

... .unstack('day')

... .pipe(update_2017)

... .reindex(columns=days)

... .div(den_100k, axis='index')

... .astype(int)

...)

>>> normalized

day Monday Tuesday Wednesday ... Friday Saturday Sunday

2012 95 72 72 ... 71 78 76

2013 85 74 74 ... 65 68 67

2014 94 76 72 ... 76 67 67

2015 108 102 89 ... 92 85 78

2016 119 102 100 ... 97 86 85

2017 114 118 111 ... 111 91 102

Grouping with anonymous functions with
a DatetimeIndex

Using DataFrames with a DatetimeIndex opens the door to many new and different
operations as seen with several recipes in this chapter.

In this recipe, we will show the versatility of using the .groupby method for DataFrames that
have a DatetimeIndex.

Chapter 12

475

How to do it…
1. Read in the Denver crime hdf5 file, place the REPORTED_DATE column in the index,

and sort it:
>>> crime = (pd.read_hdf('data/crime.h5', 'crime')

... .set_index('REPORTED_DATE')

... .sort_index()

...)

2. The DatetimeIndex has many of the same attributes and methods as a pandas
Timestamp. Let's take a look at some that they have in common:
>>> common_attrs = (set(dir(crime.index)) &

... set(dir(pd.Timestamp)))

>>> [attr for attr in common_attrs if attr[0] != '_']

['tz_convert', 'is_month_start', 'nanosecond', 'day_name',
'microsecond', 'quarter', 'time', 'tzinfo', 'week', 'year',
'to_period', 'freqstr', 'dayofyear', 'is_year_end', 'weekday_
name', 'month_name', 'minute', 'hour', 'dayofweek', 'second',
'max', 'min', 'to_numpy', 'tz_localize', 'is_quarter_end', 'to_
julian_date', 'strftime', 'day', 'days_in_month', 'weekofyear',
'date', 'daysinmonth', 'month', 'weekday', 'is_year_start', 'is_
month_end', 'ceil', 'timetz', 'freq', 'tz', 'is_quarter_start',
'floor', 'normalize', 'resolution', 'is_leap_year', 'round', 'to_
pydatetime']

3. We can then use the .index to find weekday names, similarly to what was done in
step 2 of the preceding recipe:
>>> crime.index.day_name().value_counts()

Monday 70024

Friday 69621

Wednesday 69538

Thursday 69287

Tuesday 68394

Saturday 58834

Sunday 55213

Name: REPORTED_DATE, dtype: int64

4. The .groupby method can accept a function as an argument. This function will be
passed the .index and the return value is used to form groups. Let's see this in
action by grouping with a function that turns the .index into a weekday name and
then counts the number of crimes and traffic accidents separately:
>>> (crime

Time Series Analysis

476

... .groupby(lambda idx: idx.day_name())

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

...)

 IS_CRIME IS_TRAFFIC

Friday 48833 20814

Monday 52158 17895

Saturday 43363 15516

Sunday 42315 12968

Thursday 49470 19845

Tuesday 49658 18755

Wednesday 50054 19508

5. You can use a list of functions to group by both the hour of day and year, and then
reshape the table to make it more readable:
>>> funcs = [lambda idx: idx.round('2h').hour, lambda idx: idx.
year]

>>> (crime

... .groupby(funcs)

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

... .unstack()

...)

 IS_CRIME ... IS_TRAFFIC

 2012 2013 2014 ... 2015 2016 2017

0 2422 4040 5649 ... 1136 980 782

2 1888 3214 4245 ... 773 718 537

4 1472 2181 2956 ... 471 464 313

6 1067 1365 1750 ... 494 593 462

8 2998 3445 3727 ... 2331 2372 1828

..

14 4266 5698 6708 ... 2840 2763 1990

16 4113 5889 7351 ... 3160 3527 2784

18 3660 5094 6586 ... 3412 3608 2718

20 3521 4895 6130 ... 2071 2184 1491

22 3078 4318 5496 ... 1671 1472 1072

Chapter 12

477

6. If you are using Jupyter, you can add .style.highlight_
max(color='lightgrey') to bring attention to the largest value in each column:
>>> funcs = [lambda idx: idx.round('2h').hour, lambda idx: idx.
year]

>>> (crime

... .groupby(funcs)

... [['IS_CRIME', 'IS_TRAFFIC']]

... .sum()

... .unstack()

... .style.highlight_max(color='lightgrey')

...)

Popular crime hours

How it works…
In step 1, we read in our data and placed a Timestamp column into the index to create
a DatetimeIndex. In step 2, we see that a DatetimeIndex has lots of the same
functionality that a single Timestamp object has. In step 3, we use these extra features
of the DatetimeIndex to extract the day name.

Time Series Analysis

478

In step 4, we take advantage of the .groupby method to accept a function that is passed
the DatetimeIndex. The idx in the anonymous function is the DatetimeIndex, and we use
it to retrieve the day name. It is possible to pass .groupby a list of any number of custom
functions, as done in step 5. Here, the first function uses the .round DatetimeIndex
method to round each value to the nearest second hour. The second function returns the
.year attribute. After the grouping and aggregating, we .unstack the years as columns.
We then highlight the maximum value of each column. Crime is reported most often between
3 and 5 P.M. Most traffic accidents occur between 5 P.M. and 7 P.M.

Grouping by a Timestamp and another
column

The .resample method is unable to group by anything other than periods of time. The
.groupby method, however, has the ability to group by both periods of time and other
columns.

In this recipe, we will show two very similar but different approaches to group by Timestamps
and another column.

How to do it…
1. Read in the employee dataset, and create a DatetimeIndex with the HIRE_DATE

column:
>>> employee = pd.read_csv('data/employee.csv',

... parse_dates=['JOB_DATE', 'HIRE_DATE'],

... index_col='HIRE_DATE')

>>> employee

 UNIQUE_ID ... JOB_DATE

HIRE_DATE ...

2006-06-12 0 ... 2012-10-13

2000-07-19 1 ... 2010-09-18

2015-02-03 2 ... 2015-02-03

1982-02-08 3 ... 1991-05-25

1989-06-19 4 ... 1994-10-22

...

2014-06-09 1995 ... 2015-06-09

2003-09-02 1996 ... 2013-10-06

2014-10-13 1997 ... 2015-10-13

2009-01-20 1998 ... 2011-07-02

2009-01-12 1999 ... 2010-07-12

Chapter 12

479

2. Let's first do a grouping by just gender, and find the average salary for each:
>>> (employee

... .groupby('GENDER')

... ['BASE_SALARY']

... .mean()

... .round(-2)

...)

GENDER

Female 52200.0

Male 57400.0

Name: BASE_SALARY, dtype: float64

3. Let's find the average salary based on hire date, and group everyone into 10-year
buckets:
>>> (employee

... .resample('10AS')

... ['BASE_SALARY']

... .mean()

... .round(-2)

...)

HIRE_DATE

1958-01-01 81200.0

1968-01-01 106500.0

1978-01-01 69600.0

1988-01-01 62300.0

1998-01-01 58200.0

2008-01-01 47200.0

Freq: 10AS-JAN, Name: BASE_SALARY, dtype: float64

4. If we wanted to group by both gender and a ten-year time span, we can call
.resample after calling .groupby:
>>> (employee

... .groupby('GENDER')

... .resample('10AS')

... ['BASE_SALARY']

... .mean()

... .round(-2)

Time Series Analysis

480

...)

GENDER HIRE_DATE

Female 1975-01-01 51600.0

 1985-01-01 57600.0

 1995-01-01 55500.0

 2005-01-01 51700.0

 2015-01-01 38600.0

 ...

Male 1968-01-01 106500.0

 1978-01-01 72300.0

 1988-01-01 64600.0

 1998-01-01 59700.0

 2008-01-01 47200.0

Name: BASE_SALARY, Length: 11, dtype: float64

5. Now, this does what we set out to do, but we run into a slight issue whenever we want
to compare female to male salaries. Let's .unstack the gender level and see what
happens:
>>> (employee

... .groupby('GENDER')

... .resample('10AS')

... ['BASE_SALARY']

... .mean()

... .round(-2)

... .unstack('GENDER')

...)

GENDER Female Male

HIRE_DATE

1958-0... NaN 81200.0

1968-0... NaN 106500.0

1975-0... 51600.0 NaN

1978-0... NaN 72300.0

1985-0... 57600.0 NaN

...

1995-0... 55500.0 NaN

1998-0... NaN 59700.0

2005-0... 51700.0 NaN

Chapter 12

481

2008-0... NaN 47200.0

2015-0... 38600.0 NaN

6. The 10-year periods for males and females do not begin on the same date. This
happened because the data was first grouped by gender and then, within each
gender, more groups were formed based on hire dates. Let's verify that the first hired
male was in 1958 and the first hired female was in 1975:
>>> employee[employee['GENDER'] == 'Male'].index.min()

Timestamp('1958-12-29 00:00:00')

>>> employee[employee['GENDER'] == 'Female'].index.min()

Timestamp('1975-06-09 00:00:00')

7. To resolve this issue, we must group the date together with the gender, and this is
only possible with the .groupby method:
>>> (employee

... .groupby(['GENDER', pd.Grouper(freq='10AS')])

... ['BASE_SALARY']

... .mean()

... .round(-2)

...)

GENDER HIRE_DATE

Female 1968-01-01 NaN

 1978-01-01 57100.0

 1988-01-01 57100.0

 1998-01-01 54700.0

 2008-01-01 47300.0

 ...

Male 1968-01-01 106500.0

 1978-01-01 72300.0

 1988-01-01 64600.0

 1998-01-01 59700.0

 2008-01-01 47200.0

Name: BASE_SALARY, Length: 11, dtype: float64

8. Now we can .unstack the gender and get our rows aligned perfectly:
>>> (employee

... .groupby(['GENDER', pd.Grouper(freq='10AS')])

... ['BASE_SALARY']

... .mean()

Time Series Analysis

482

... .round(-2)

... .unstack('GENDER')

...)

GENDER Female Male

HIRE_DATE

1958-0... NaN 81200.0

1968-0... NaN 106500.0

1978-0... 57100.0 72300.0

1988-0... 57100.0 64600.0

1998-0... 54700.0 59700.0

2008-0... 47300.0 47200.0

How it works…
The read_csv function in step 1 allows to both convert columns into Timestamps and put
them in the index at the same time creating a DatetimeIndex. Step 2 does a .groupby
operation with a single grouping column, gender. Step 3 uses the .resample method with
the offset alias 10AS to form groups in 10-year increments of time. The A is the alias for year,
and the S informs us that the beginning of the period is used as the label. For instance, the
data for the label 1988-01-01 spans that date until December 31, 1997.

In step 4, for each gender, male and female, completely different starting dates for the
10-year periods are calculated based on the earliest hired employee. Step 5 shows how this
causes misalignment when we try to compare salaries of females to males. They don't have
the same 10-year periods. Step 6 verifies that the year of the earliest hired employee for each
gender matches the output from step 4.

To alleviate this issue, we must group both the gender and Timestamp together. The
.resample method is only capable of grouping by a single column of Timestamps. We can
only complete this operation with the .groupby method. With pd.Grouper, we can replicate
the functionality of .resample. We pass the offset alias to the freq parameter and then
place the object in a list with all the other columns that we wish to group, as done in step 7.

As both males and females now have the same starting dates for the 10-year period, the
reshaped data in step 8 will align for each gender making comparisons much easier. It
appears that male salaries tend to be higher given a longer length of employment, though
both genders have the same average salary with under ten years of employment.

Chapter 12

483

There's more…
From an outsider's perspective, it would not be obvious that the rows from the output in step
8 represented 10-year intervals. One way to improve the index labels would be to show the
beginning and end of each time interval. We can achieve this by concatenating the current
index year with 9 added to itself:

>>> sal_final = (employee

... .groupby(['GENDER', pd.Grouper(freq='10AS')])

... ['BASE_SALARY']

... .mean()

... .round(-2)

... .unstack('GENDER')

...)

>>> years = sal_final.index.year

>>> years_right = years + 9

>>> sal_final.index = years.astype(str) + '-' + years_right.astype(str)

>>> sal_final

GENDER Female Male

HIRE_DATE

1958-1967 NaN 81200.0

1968-1977 NaN 106500.0

1978-1987 57100.0 72300.0

1988-1997 57100.0 64600.0

1998-2007 54700.0 59700.0

2008-2017 47300.0 47200.0

There is a completely different way to do this recipe. We can use the cut function to
create equal-width intervals based on the year that each employee was hired and form
groups from it:

>>> cuts = pd.cut(employee.index.year, bins=5, precision=0)

>>> cuts.categories.values

IntervalArray([(1958.0, 1970.0], (1970.0, 1981.0], (1981.0, 1993.0],
(1993.0, 2004.0], (2004.0, 2016.0]],

closed='right',

dtype='interval[float64]')

>>> (employee

Time Series Analysis

484

... .groupby([cuts, 'GENDER'])

... ['BASE_SALARY']

... .mean()

... .unstack('GENDER')

... .round(-2)

...)

GENDER Female Male

(1958.0, 1970.0] NaN 85400.0

(1970.0, 1981.0] 54400.0 72700.0

(1981.0, 1993.0] 55700.0 69300.0

(1993.0, 2004.0] 56500.0 62300.0

(2004.0, 2016.0] 49100.0 49800.0

485

13
Visualization with

Matplotlib, Pandas,
and Seaborn

Introduction
Visualization is a critical component in exploratory data analysis, as well as presentations
and applications. During exploratory data analysis, you are usually working alone or in small
groups and need to create plots quickly to help you better understand your data. It can help
you identify outliers and missing data, or it can spark other questions of interest that will lead
to further analysis and more visualizations. This type of visualization is usually not done with
the end user in mind. It is strictly to help you better your current understanding. The plots do
not have to be perfect.

When preparing visualizations for a report or application, a different approach must be
used. You should pay attention to small details. Also, you usually will have to narrow down
all possible visualizations to only the select few that best represent your data. Good data
visualizations have the viewer enjoying the experience of extracting information. Almost like
movies that make viewers get lost in them, good visualizations will have lots of information
that really sparks interest.

The primary data visualization library in Python is matplotlib, a project begun in the early
2000s, that was built to mimic the plotting capabilities from Matlab. Matplotlib is enormously
capable of plotting most things you can imagine, and it gives its users tremendous power to
control every aspect of the plotting surface.

Visualization with Matplotlib, Pandas, and Seaborn

486

That said, it is not the friendliest library for beginners to grasp. Thankfully, pandas makes
visualizing data very easy for us and usually plots what we want with a single call to the plot
method. pandas does no plotting on its own. It internally calls matplotlib functions to create
the plots.

Seaborn is also a visualization library that wraps matplotlib and does not do any actual
plotting itself. Seaborn makes beautiful plots and has many types of plots that are not
available from matplotlib or pandas. Seaborn works with tidy (long) data, while pandas works
best with aggregated (wide) data. Seaborn also accepts pandas DataFrame objects in its
plotting functions.

Although it is possible to create plots without ever running any matplotlib code, from time to
time, it will be necessary to use it to tweak finer plot details manually. For this reason, the first
two recipes will cover some basics of matplotlib that will come in handy if you need to use it.
Other than the first two recipes, all plotting examples will use pandas or seaborn.

Visualization in Python does not have to rely on matplotlib. Bokeh is quickly becoming a very
popular interactive visualization library targeted for the web. It is completely independent of
matplotlib, and it's capable of producing entire applications. There are other plotting libraries
as well and future versions of pandas will probably have the capability to use plotting engines
other than matplotlib.

Getting started with matplotlib
For many data scientists, the vast majority of their plotting commands will use pandas or
seaborn, both rely on matplotlib to do the plotting. However, neither pandas nor seaborn
offers a complete replacement for matplotlib, and occasionally you will need to use
matplotlib. For this reason, this recipe will offer a short introduction to the most crucial
aspects of matplotlib.

One thing to be aware if you are a Jupyter user. You will want to include the:

>>> %matplotlib inline

directive in your notebook. This tells matplotlib to render plots in the notebook.

Let's begin our introduction with a look at the anatomy of a matplotlib plot in the following
figure:

Chapter 13

487

Matplotlib hierarchy

Matplotlib uses a hierarchy of objects to display all of its plotting items in the output. This
hierarchy is key to understanding everything about matplotlib. Note that these terms are
referring to matplotlib and not pandas objects with the same (perhaps confusing) name.
The Figure and Axes objects are the two main components of the hierarchy. The Figure object
is at the top of the hierarchy. It is the container for everything that will be plotted. Contained
within the Figure is one or more Axes object(s). The Axes is the primary object that you will
interact with when using matplotlib and can be thought of as the plotting surface. The Axes
contains an x-axis, a y-axis, points, lines, markers, labels, legends, and any other useful item
that is plotted.

A distinction needs to be made between an Axes and an axis. They are completely separate
objects. An Axes object, using matplotlib terminology, is not the plural of axis but instead, as
mentioned earlier, the object that creates and controls most of the useful plotting elements.
An axis refers to the x or y (or even z) axis of a plot.

All of these useful plotting elements created by an Axes object are called artists. Even the
Figure and the Axes objects themselves are artists. This distinction for artists won't be critical
to this recipe but will be useful when doing more advanced matplotlib plotting and especially
when reading through the documentation.

Visualization with Matplotlib, Pandas, and Seaborn

488

Object-oriented guide to matplotlib
Matplotlib provides two distinct interfaces for users. The stateful interface makes all of its
calls with the pyplot module. This interface is called stateful because matplotlib keeps
track internally of the current state of the plotting environment. Whenever a plot is created
in the stateful interface, matplotlib finds the current figure or current axes and makes
changes to it. This approach is fine to plot a few things quickly but can become unwieldy
when dealing with multiple figures and axes.

Matplotlib also offers a stateless, or object-oriented, interface in which you explicitly use
variables that reference specific plotting objects. Each variable can then be used to change
some property of the plot. The object-oriented approach is explicit, and you are always
aware of exactly what object is being modified.

Unfortunately, having both options can lead to lots of confusion, and matplotlib has
a reputation for being difficult to learn. The documentation has examples using both
approaches. In practice, I find it most useful to combine them. I use the subplots function
from pyplot to create a figure and axes, and then use the methods on those objects.

If you are new to matplotlib, you might not know how to recognize the difference between
each approach. With the stateful interface, all commands are functions called on the pyplot
module, which is usually aliased plt. Making a line plot and adding some labels to each
axis would look like this:

>>> import matplotlib.pyplot as plt

>>> x = [-3, 5, 7]

>>> y = [10, 2, 5]

>>> fig = plt.figure(figsize=(15,3))

>>> plt.plot(x, y)

>>> plt.xlim(0, 10)

>>> plt.ylim(-3, 8)

>>> plt.xlabel('X Axis')

>>> plt.ylabel('Y axis')

>>> plt.title('Line Plot')

>>> plt.suptitle('Figure Title', size=20, y=1.03)

>>> fig.savefig('c13-fig1.png', dpi=300, bbox_inches='tight')

Chapter 13

489

Basic plot using Matlab-like interface

The object-oriented approach is shown as follows:

>>> from matplotlib.figure import Figure

>>> from matplotlib.backends.backend_agg import FigureCanvasAgg as
FigureCanvas

>>> from IPython.core.display import display

>>> fig = Figure(figsize=(15, 3))

>>> FigureCanvas(fig)

>>> ax = fig.add_subplot(111)

>>> ax.plot(x, y)

>>> ax.set_xlim(0, 10)

>>> ax.set_ylim(-3, 8)

>>> ax.set_xlabel('X axis')

>>> ax.set_ylabel('Y axis')

>>> ax.set_title('Line Plot')

>>> fig.suptitle('Figure Title', size=20, y=1.03)

>>> display(fig)

>>> fig.savefig('c13-fig2.png', dpi=300, bbox_inches='tight')

Basic plot created with object oriented interface

Visualization with Matplotlib, Pandas, and Seaborn

490

In practice, I combine the two approaches and my code would look like this:

>>> fig, ax = plt.subplots(figsize=(15,3))

>>> ax.plot(x, y)

>>> ax.set(xlim=(0, 10), ylim=(-3, 8),

... xlabel='X axis', ylabel='Y axis',

... title='Line Plot')

>>> fig.suptitle('Figure Title', size=20, y=1.03)

>>> fig.savefig('c13-fig3.png', dpi=300, bbox_inches='tight')

Basic plot created using call to Matlab interface to create figure and axes, then using method calls

In this example, we use only two objects, the Figure, and Axes, but in general, plots can
have many hundreds of objects; each one can be used to make modifications in an extremely
finely-tuned manner, not easily doable with the stateful interface. In this chapter, we build
an empty plot and modify several of its basic properties using the object-oriented interface.

How to do it…
1. To get started with matplotlib using the object-oriented approach, you will need to

import the pyplot module and alias plt:
>>> import matplotlib.pyplot as plt

2. Typically, when using the object-oriented approach, we will create a Figure and one or
more Axes objects. Let's use the subplots function to create a figure with a single
axes:
>>> fig, ax = plt.subplots(nrows=1, ncols=1)

>>> fig.savefig('c13-step2.png', dpi=300)

Chapter 13

491

Plot of a figure

3. The subplots function returns a two-item tuple object containing the Figure and one
or more Axes objects (here it is just one), which is unpacked into the variables fig
and ax. From here on out, we will use these objects by calling methods in a normal
object-oriented approach:
>>> type(fig)

matplotlib.figure.Figure

>>> type(ax)

matplotlib.axes._subplots.AxesSubplot

4. Although you will be calling more axes than figure methods, you might still need to
interact with the figure. Let's find the size of the figure and then enlarge it:
>>> fig.get_size_inches()

array([6., 4.])

>>> fig.set_size_inches(14, 4)

>>> fig.savefig('c13-step4.png', dpi=300)

>>> fig

Visualization with Matplotlib, Pandas, and Seaborn

492

Changing figure size

5. Before we start plotting, let's examine the matplotlib hierarchy. You can collect all
the axes of the figure with the .axes attribute:
>>> fig.axes

[<matplotlib.axes._subplots.AxesSubplot at 0x112705ba8>]

6. The previous command returns a list of all the Axes objects. However, we already
have our Axes object stored in the ax variable. Let's verify that they are the same
object:
>>> fig.axes[0] is ax

True

7. To help differentiate the Figure from the Axes, we can give each one a unique
facecolor. Matplotlib accepts a variety of different input types for color. Approximately
140 HTML colors are supported by their string name (see this list: http://bit.
ly/2y52UtO). You may also use a string containing a float from zero to one to
represent shades of gray:
>>> fig.set_facecolor('.7')

>>> ax.set_facecolor('.5')

>>> fig.savefig('c13-step7.png', dpi=300, facecolor='.7')

>>> fig

http://bit.ly/2y52UtO
http://bit.ly/2y52UtO

Chapter 13

493

Setting the face color

8. Now that we have differentiated between the Figure and the Axes, let's take a look at
all of the immediate children of the Axes with the .get_children method:
>>> ax_children = ax.get_children()

>>> ax_children

[<matplotlib.spines.Spine at 0x11145b358>,

 <matplotlib.spines.Spine at 0x11145b0f0>,

 <matplotlib.spines.Spine at 0x11145ae80>,

 <matplotlib.spines.Spine at 0x11145ac50>,

 <matplotlib.axis.XAxis at 0x11145aa90>,

 <matplotlib.axis.YAxis at 0x110fa8d30>,

 ...]

9. Most plots have four spines and two axis objects. The spines represent the data
boundaries and are the four physical lines that you see bordering the darker gray
rectangle (the axes). The x and y axis objects contain more plotting objects such as
the ticks and their labels and the label of the entire axis. We can select the spines
from the result of the .get_children method, but it is easier to access them with
the .spines attribute:
>>> spines = ax.spines

>>> spines

OrderedDict([('left', <matplotlib.spines.Spine at 0x11279e320>),

 ('right', <matplotlib.spines.Spine at 0x11279e0b8>),

 ('bottom', <matplotlib.spines.Spine at 0x11279e048>),

 ('top', <matplotlib.spines.Spine at 0x1127eb5c0>)])

Visualization with Matplotlib, Pandas, and Seaborn

494

10. The spines are contained in an ordered dictionary. Let's select the left spine and
change its position and width so that it is more prominent and also make the bottom
spine invisible:
>>> spine_left = spines['left']

>>> spine_left.set_position(('outward', -100))

>>> spine_left.set_linewidth(5)

>>> spine_bottom = spines['bottom']

>>> spine_bottom.set_visible(False)

>>> fig.savefig('c13-step10.png', dpi=300, facecolor='.7')

>>> fig

Plot with spines moved or removed

11. Now, let's focus on the axis objects. We can access each axis through the .xaxis
and .yaxis attributes. Some axis properties are also available with the Axes object.
In this step, we change some properties of each axis in both manners:

>>> ax.xaxis.grid(True, which='major', linewidth=2,

... color='black', linestyle='--')

>>> ax.xaxis.set_ticks([.2, .4, .55, .93])

>>> ax.xaxis.set_label_text('X Axis', family='Verdana',

... fontsize=15)

>>> ax.set_ylabel('Y Axis', family='Gotham', fontsize=20)

>>> ax.set_yticks([.1, .9])

>>> ax.set_yticklabels(['point 1', 'point 9'], rotation=45)

>>> fig.savefig('c13-step11.png', dpi=300, facecolor='.7')

Chapter 13

495

Plot with labels

How it works…
One of the crucial ideas to grasp with the object-oriented approach is that each plotting
element has both getter and setter methods. The getter methods all begin with get_. For
instance, ax.get_yscale() retrieves the type of scale that the y-axis is plotted with as a
string (default is linear), while ax.get_xticklabels() retrieves a list of matplotlib text
objects that each have their own getter and setter methods. Setter methods modify a specific
property or an entire group of objects. A lot of matplotlib boils down to latching onto a specific
plotting element and then examining and modifying it via the getter and setter methods.

The easiest way to start using matplotlib is with the pyplot module, which is commonly
aliased plt, as done in step 1. Step 2 shows one method to initiate the object-oriented
approach. The plt.subplots function creates a single Figure, along with a grid of Axes
objects. The first two parameters, nrows and ncols, define a uniform grid of Axes objects.
For example, plt.subplots(2,4) creates eight total Axes objects of the same size inside
one Figure.

The plt.subplots returns a tuple. The first element is the Figure, and the second element
is the Axes object. This tuple gets unpacked as two variables, fig and ax. If you are not
accustomed to tuple unpacking, it may help to see step 2 written like this:

>>> plot_objects = plt.subplots(nrows=1, ncols=1)

>>> type(plot_objects)

tuple

>>> fig = plot_objects[0]

>>> ax = plot_objects[1]

>>> fig.savefig('c13-1-works1.png', dpi=300)

Visualization with Matplotlib, Pandas, and Seaborn

496

Blot with a single axes

If you create more than one Axes with plt.subplots, then the second item in the tuple is a
NumPy array containing all the Axes. Let's demonstrate that here:

>>> fig, axs = plt.subplots(2, 4)

>>> fig.savefig('c13-1-works2.png', dpi=300)

Plot with a grid of axes

Chapter 13

497

The axs variable is a NumPy array containing a Figure as its first element and a NumPy array
as its second:

>>> axs

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x126820668>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x126844ba8>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x126ad1160>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x126afa6d8>],

 [<matplotlib.axes._subplots.AxesSubplot object at 0x126b21c50>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x126b52208>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x11f695588>,

 <matplotlib.axes._subplots.AxesSubplot object at 0x11f6b3b38>]],

 dtype=object)

Step 3 verifies that we indeed have Figure and Axes objects referenced by the appropriate
variables. In step 4, we come across the first example of getter and setter methods. Matplotlib
defaults all figures to 6 inches in width by 4 inches in height, which is not the actual size of it
on the screen, but would be the exact size if you saved the Figure to a file (with a dpi of 100
pixels per inch).

Step 5 shows that, in addition to the getter method, you can sometimes access another
plotting object by its attribute. Often, there exist both an attribute and a getter method to
retrieve the same object. For instance, look at these examples:

>>> ax = axs[0][0]

>>> fig.axes == fig.get_axes()

True

>>> ax.xaxis == ax.get_xaxis()

True

>>> ax.yaxis == ax.get_yaxis()

True

Many artists have a .facecolor property that can be set to cover the entire surface one
particular color, as in step 7. In step 8, the .get_children method can be used to get a
better understanding of the object hierarchy. A list of all the objects directly below the axes
is returned. It is possible to select all of the objects from this list and start using the setter
methods to modify properties, but this isn't customary. We usually collect our objects from
the attributes or getter methods.

Often, when retrieving a plotting object, they will be returned in a container like a list or a
dictionary. This is what happens when collecting the spines in step 9. You will have to select
the individual objects from their respective containers to use the getter or setter methods on
them, as done in step 10. It is also common to use a for loop to iterate through each of them
one at a time.

Visualization with Matplotlib, Pandas, and Seaborn

498

Step 11 adds grid lines in a peculiar way. We would expect there to be a .get_grid and
.set_grid method, but instead, there is just a .grid method, which accepts a Boolean
as the first argument to turn on and off the grid lines. Each axis has both major and minor
ticks, though by default the minor ticks are turned off. The which parameter is used to
select which type of tick has a grid line.

Notice that the first three lines of step 11 select the .xaxis attribute and call methods
from it, while the last three lines call equivalent methods from the Axes object itself. This
second set of methods is a convenience provided by matplotlib to save a few keystrokes.
Normally, most objects can only set their own properties, not those of their children. Many
of the axis-level properties are not able to be set from the Axes, but in this step, some are.
Either method is acceptable.

When adding the grid lines with the first line in step 11, we set the properties .linewidth,
.color, and .linestyle. These are all properties of a matplotlib line, formally a Line2D
object. The .set_ticks method accepts a sequence of floats and draws tick marks for only
those locations. Using an empty list will completely remove all ticks.

Each axis may be labeled with some text, for which matplotlib uses a Text object. Only
a few of all the available text properties are changed. The .set_yticklabels Axes
method takes in a list of strings to use as the labels for each of the ticks. You may set any
number of text properties along with it.

There's more…
To help find all the possible properties of each of your plotting objects, make a call to the
.properties method, which displays all of them as a dictionary. Let's see a curated list
of the properties of an axis object:

>>> ax.xaxis.properties()

{'alpha': None,

'gridlines': <a list of 4 Line2D gridline objects>,

'label': Text(0.5,22.2,'X Axis'),

'label_position': 'bottom',

'label_text': 'X Axis',

'tick_padding': 3.5,

'tick_space': 26,

'ticklabels': <a list of 4 Text major ticklabel objects>,

'ticklocs': array([0.2 , 0.4 , 0.55, 0.93]),

'ticks_position': 'bottom',

'visible': True}

Chapter 13

499

Visualizing data with matplotlib
Matplotlib has a few dozen plotting methods that make nearly any kind of plot imaginable.
Line, bar, histogram, scatter, box, violin, contour, pie, and many more plots are available as
methods on the Axes object. It was only in version 1.5 (released in 2015) that matplotlib
began accepting data from pandas DataFrames. Before this, data had to be passed to it
from NumPy arrays or Python lists.

In this section, we will plot the annual snow levels for the Alta ski resort. The plots in this
example were inspired by Trud Antzee (@Antzee_) who created similar plots of snow levels
in Norway.

How to do it…
1. Now that we know how to create axes and change their attributes, let's start

visualizing data. We will read snowfall data from the Alta ski resort in Utah and
visualize how much snow fell in each season:
>>> import pandas as pd

>>> import numpy as np

>>> alta = pd.read_csv('data/alta-noaa-1980-2019.csv')

>>> alta

 STATION NAME LATITUDE ... WT05 WT06 WT11

0 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

1 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

2 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

3 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

4 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

...

14155 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

14156 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

14157 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

14158 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

14159 USC00420072 ALTA, UT US 40.5905 ... NaN NaN NaN

2. Get the data for the 2018-2019 season:
>>> data = (alta

... .assign(DATE=pd.to_datetime(alta.DATE))

... .set_index('DATE')

... .loc['2018-09':'2019-08']

Visualization with Matplotlib, Pandas, and Seaborn

500

... .SNWD

...)

>>> data

DATE

2018-09-01 0.0

2018-09-02 0.0

2018-09-03 0.0

2018-09-04 0.0

2018-09-05 0.0

 ...

2019-08-27 0.0

2019-08-28 0.0

2019-08-29 0.0

2019-08-30 0.0

2019-08-31 0.0

Name: SNWD, Length: 364, dtype: float64

3. Use matplotlib to visualize this data. We could use the default plot, but we will
adjust the look of this plot. (Note that we need to specify facecolor when calling
.savefig or the exported image will have a white facecolor):
>>> blue = '#99ddee'

>>> white = '#ffffff'

>>> fig, ax = plt.subplots(figsize=(12,4),

... linewidth=5, facecolor=blue)

>>> ax.set_facecolor(blue)

>>> ax.spines['top'].set_visible(False)

>>> ax.spines['right'].set_visible(False)

>>> ax.spines['bottom'].set_visible(False)

>>> ax.spines['left'].set_visible(False)

>>> ax.tick_params(axis='x', colors=white)

>>> ax.tick_params(axis='y', colors=white)

>>> ax.set_ylabel('Snow Depth (in)', color=white)

>>> ax.set_title('2009-2010', color=white, fontweight='bold')

>>> ax.fill_between(data.index, data, color=white)

>>> fig.savefig('c13-alta1.png', dpi=300, facecolor=blue)

Chapter 13

501

Alta snow level plot for 2009-2010 season

4. Any number of plots may be put on a single figure. Let's refactor to a plot_year
function and plot many years:

>>> import matplotlib.dates as mdt

>>> blue = '#99ddee'

>>> white = '#ffffff'

>>> def plot_year(ax, data, years):

... ax.set_facecolor(blue)

... ax.spines['top'].set_visible(False)

... ax.spines['right'].set_visible(False)

... ax.spines['bottom'].set_visible(False)

... ax.spines['left'].set_visible(False)

... ax.tick_params(axis='x', colors=white)

... ax.tick_params(axis='y', colors=white)

... ax.set_ylabel('Snow Depth (in)', color=white)

... ax.set_title(years, color=white, fontweight='bold')

... ax.fill_between(data.index, data, color=white)

>>> years = range(2009, 2019)

>>> fig, axs = plt.subplots(ncols=2, nrows=int(len(years)/2),

... figsize=(16, 10), linewidth=5, facecolor=blue)

>>> axs = axs.flatten()

>>> max_val = None

>>> max_data = None

>>> max_ax = None

>>> for i,y in enumerate(years):

Visualization with Matplotlib, Pandas, and Seaborn

502

... ax = axs[i]

... data = (alta

... .assign(DATE=pd.to_datetime(alta.DATE))

... .set_index('DATE')

... .loc[f'{y}-09':f'{y+1}-08']

... .SNWD

...)

... if max_val is None or max_val < data.max():

... max_val = data.max()

... max_data = data

... max_ax = ax

... ax.set_ylim(0, 180)

... years = f'{y}-{y+1}'

... plot_year(ax, data, years)

>>> max_ax.annotate(f'Max Snow {max_val}',

... xy=(mdt.date2num(max_data.idxmax()), max_val),

... color=white)

>>> fig.suptitle('Alta Snowfall', color=white, fontweight='bold')

>>> fig.tight_layout(rect=[0, 0.03, 1, 0.95])

>>> fig.savefig('c13-alta2.png', dpi=300, facecolor=blue)

Alta snow level plot for many seasons

Chapter 13

503

How it works…
We load the NOAA data in step 1. In step 2, we use various pandas tricks to convert the DATE
column from a string into a date. Then we set the index to the DATE column so we can slice
off a year-long period starting from September. Finally, we pull out the SNWD (the snow depth)
column to get a pandas Series.

In step 3, we pull out all of the stops. We use the subplots function to create a figure and
an axes. We set the facecolor of both the axes and the figure to a light blue color. We also
remove the spines and set the label colors to white. Finally, we use the .fill_between
plot function to create a plot that is filled in. This plot (inspired by Trud) shows something that
I like to emphasize with matplotlib. In matplotlib, you can change almost any aspect of the
plot. Using Jupyter in combination with matplotlib allows you to try out tweaks to plots.

In step 4, we refactor step 3 into a function and then plot a decade of plots in a grid. While
we are looping over the year data, we also keep track of the maximum value. This allows us
to annotate the axis that had the maximum show depth with the .annotate method.

There's more…
When I'm teaching visualization, I always mention that our brains are not optimized for
looking at tables of data. However, visualizing said data can give us insights into the data.
In this case, it is clear that there is data that is missing, hence the gaps in the plots. In this
case, I'm going to clean up the gaps using the .interpolate method:

>>> years = range(2009, 2019)

>>> fig, axs = plt.subplots(ncols=2, nrows=int(len(years)/2),

... figsize=(16, 10), linewidth=5, facecolor=blue)

>>> axs = axs.flatten()

>>> max_val = None

>>> max_data = None

>>> max_ax = None

>>> for i,y in enumerate(years):

... ax = axs[i]

... data = (alta.assign(DATE=pd.to_datetime(alta.DATE))

... .set_index('DATE')

... .loc[f'{y}-09':f'{y+1}-08']

... .SNWD

... .interpolate()

...)

... if max_val is None or max_val < data.max():

Visualization with Matplotlib, Pandas, and Seaborn

504

... max_val = data.max()

... max_data = data

... max_ax = ax

... ax.set_ylim(0, 180)

... years = f'{y}-{y+1}'

... plot_year(ax, data, years)

>>> max_ax.annotate(f'Max Snow {max_val}',

... xy=(mdt.date2num(max_data.idxmax()), max_val),

... color=white)

>>> fig.suptitle('Alta Snowfall', color=white, fontweight='bold')

>>> fig.tight_layout(rect=[0, 0.03, 1, 0.95])

>>> fig.savefig('c13-alta3.png', dpi=300, facecolor=blue)

Alta plot plot

Even this plot still has issues. Let's dig in a little more. It looks like there are points during the
winter season when the snow level drops off too much. Let's use some pandas to find where
the absolute differences between subsequent entries is greater than some value, say 50:

>>> (alta

... .assign(DATE=pd.to_datetime(alta.DATE))

... .set_index('DATE')

Chapter 13

505

... .SNWD

... .to_frame()

... .assign(next=lambda df_:df_.SNWD.shift(-1),

... snwd_diff=lambda df_:df_.next-df_.SNWD)

... .pipe(lambda df_: df_[df_.snwd_diff.abs() > 50])

...)

 SNWD next snwd_diff

DATE

1989-11-27 60.0 0.0 -60.0

2007-02-28 87.0 9.0 -78.0

2008-05-22 62.0 0.0 -62.0

2008-05-23 0.0 66.0 66.0

2009-01-16 76.0 0.0 -76.0

...

2011-05-18 0.0 136.0 136.0

2012-02-09 58.0 0.0 -58.0

2012-02-10 0.0 56.0 56.0

2013-03-01 75.0 0.0 -75.0

2013-03-02 0.0 78.0 78.0

It looks like the data has some issues. There are spots when the data goes to zero (actually 0
and not np.nan) during the middle of the season. Let's make a fix_gaps function that we
can use with the .pipe method to clean them up:

>>> def fix_gaps(ser, threshold=50):

... 'Replace values where the shift is > threshold with nan'

... mask = (ser

... .to_frame()

... .assign(next=lambda df_:df_.SNWD.shift(-1),

... snwd_diff=lambda df_:df_.next-df_.SNWD)

... .pipe(lambda df_: df_.snwd_diff.abs() > threshold)

...)

... return ser.where(~mask, np.nan)

>>> years = range(2009, 2019)

>>> fig, axs = plt.subplots(ncols=2, nrows=int(len(years)/2),

... figsize=(16, 10), linewidth=5, facecolor=blue)

>>> axs = axs.flatten()

Visualization with Matplotlib, Pandas, and Seaborn

506

>>> max_val = None

>>> max_data = None

>>> max_ax = None

>>> for i,y in enumerate(years):

... ax = axs[i]

... data = (alta.assign(DATE=pd.to_datetime(alta.DATE))

... .set_index('DATE')

... .loc[f'{y}-09':f'{y+1}-08']

... .SNWD

... .pipe(fix_gaps)

... .interpolate()

...)

... if max_val is None or max_val < data.max():

... max_val = data.max()

... max_data = data

... max_ax = ax

... ax.set_ylim(0, 180)

... years = f'{y}-{y+1}'

... plot_year(ax, data, years)

>>> max_ax.annotate(f'Max Snow {max_val}',

... xy=(mdt.date2num(max_data.idxmax()), max_val),

... color=white)

>>> fig.suptitle('Alta Snowfall', color=white, fontweight='bold')

>>> fig.tight_layout(rect=[0, 0.03, 1, 0.95])

>>> fig.savefig('c13-alta4.png', dpi=300, facecolor=blue)

Chapter 13

507

Alta plot

Plotting basics with pandas
pandas makes plotting quite easy by automating much of the procedure for you. Plotting is
handled internally by matplotlib and is publicly accessed through the DataFrame or Series
.plot attribute (which also acts as a method, but we will use the attribute for plotting). When
you create a plot in pandas, you will be returned a matplotlib Axes or Figure. You can then use
the full power of matplotlib to tweak this plot to your heart's delight.

pandas is only able to produce a small subset of the plots available with matplotlib, such as
line, bar, box, and scatter plots, along with kernel density estimates (KDEs), and histograms.
I find that pandas makes it so easy to plot, that I generally prefer the pandas interface, as it is
usually just a single line of code.

Visualization with Matplotlib, Pandas, and Seaborn

508

One of the keys to understanding plotting in pandas is to know where the x and y-axis
come from. The default plot, a line plot, will plot the index in the x-axis and each column in
the y-axis. For a scatter plot, we need to specify the columns to use for the x and y-axis. A
histogram, boxplot, and KDE plot ignore the index and plot the distribution for each column.

This section will show various examples of plotting with pandas.

How to do it…
1. Create a small DataFrame with a meaningful index:

>>> df = pd.DataFrame(index=['Atiya', 'Abbas', 'Cornelia',

... 'Stephanie', 'Monte'],

... data={'Apples':[20, 10, 40, 20, 50],

... 'Oranges':[35, 40, 25, 19, 33]})

>>> df

 Apples Oranges

Atiya 20 35

Abbas 10 40

Cornelia 40 25

Stephanie 20 19

Monte 50 33

2. Bar plots use the index as the labels for the x-axis and the column values as the bar
heights. Use the .plot attribute with the .bar method:
>>> color = ['.2', '.7']

>>> ax = df.plot.bar(color=color, figsize=(16,4))

>>> ax.get_figure().savefig('c13-pdemo-bar1.png')

pandas bar plot

Chapter 13

509

3. A KDE plot ignores the index and uses the column names along the x-axis and uses
the column values to calculate a probability density along the y values:
>>> ax = df.plot.kde(color=color, figsize=(16,4))

>>> ax.get_figure().savefig('c13-pdemo-kde1.png')

pandas KDE plot

4. Let's plot a line plot, scatter plot, and a bar plot in a single figure. The scatter plot is
the only one that requires you to specify columns for the x and y values. If you wish
to use the index for a scatter plot, you will have to use the .reset_index method
to make it a column. The other two plots use the index for the x-axis and make a
new set of lines or bars for every single numeric column:
>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('Two Variable Plots', size=20, y=1.02)

>>> df.plot.line(ax=ax1, title='Line plot')

>>> df.plot.scatter(x='Apples', y='Oranges',

... ax=ax2, title='Scatterplot')

>>> df.plot.bar(color=color, ax=ax3, title='Bar plot')

>>> fig.savefig('c13-pdemo-scat.png')

Using pandas to plot multiple charts on a single figure

Visualization with Matplotlib, Pandas, and Seaborn

510

5. Let's put a KDE, boxplot, and histogram in the same figure as well. These plots are
used to visualize the distribution of a column:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> fig.suptitle('One Variable Plots', size=20, y=1.02)

>>> df.plot.kde(color=color, ax=ax1, title='KDE plot')

>>> df.plot.box(ax=ax2, title='Boxplot')

>>> df.plot.hist(color=color, ax=ax3, title='Histogram')

>>> fig.savefig('c13-pdemo-kde2.png')

Using pandas to plot a KDE, boxplot, and histogram

How it works…
Step 1 creates a small sample DataFrame that will help us illustrate the differences between
two and one-variable plotting with pandas. By default, pandas will use each numeric column
of the DataFrame to make a new set of bars, lines, KDEs, boxplots, or histograms and use
the index as the x values when it is a two-variable plot. One of the exceptions is the scatter
plot, which must be explicitly given a single column for the x and y values.

The pandas .plot attribute has various plotting methods with a large number of parameters
that allow you to customize the result to your liking. For instance, you can set the figure size,
turn the gridlines on and off, set the range of the x and y-axis, color the plot, rotate the tick
marks, and much more.

You can also use any of the arguments available to the specific matplotlib plotting method.
The extra arguments will be collected by the **kwds parameter from the plot method and
correctly passed to the underlying matplotlib function. For example, in step 2, we create a
bar plot. This means that we can use all of the parameters available in the matplotlib bar
function as well as the ones available in the pandas plotting method.

In step 3, we create a single-variable KDE plot, which creates a density estimate for each
numeric column in the DataFrame. Step 4 places all the two-variable plots in the same figure.
Likewise, step 5 places all the one-variable plots together.

Chapter 13

511

Each of steps 4 and 5 creates a figure with three Axes objects. The code plt.subplots(1,
3) creates a figure with three Axes spread over a single row and three columns. It returns a
two-item tuple consisting of the figure and a one-dimensional NumPy array containing the
Axes. The first item of the tuple is unpacked into the variable fig. The second item of the
tuple is unpacked into three more variables, one for each Axes. The pandas plotting methods
come with an ax parameter, allowing us to place the result of the plot into a specific Axes in
the figure.

There's more…
With the exception of the scatter plot, none of the plots specified the columns to be used.
pandas defaulted to plotting every numeric column, as well as the index in the case of two-
variable plots. You can, of course, specify the exact columns that you would like to use for
each x or y value:

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(16,4))

>>> df.sort_values('Apples').plot.line(x='Apples', y='Oranges',

... ax=ax1)

>>> df.plot.bar(x='Apples', y='Oranges', ax=ax2)

>>> df.plot.kde(x='Apples', ax=ax3)

>>> fig.savefig('c13-pdemo-kde3.png')

pandas KDE plot

Visualizing the flights dataset
Exploratory data analysis can be guided by visualizations, and pandas provides a great
interface for quickly and effortlessly creating them. One strategy when looking at a new
dataset is to create some univariate plots. These include bar charts for categorical data
(usually strings) and histograms, boxplots, or KDEs for continuous data (always numeric).

In this recipe, we do some basic exploratory data analysis on the flights dataset by creating
univariate and multivariate plots with pandas.

Visualization with Matplotlib, Pandas, and Seaborn

512

How to do it…
1. Read in the flights dataset:

>>> flights = pd.read_csv('data/flights.csv')

>>> flights

 MONTH DAY WEEKDAY ... ARR_DELAY DIVERTED CANCELLED

0 1 1 4 ... 65.0 0 0

1 1 1 4 ... -13.0 0 0

2 1 1 4 ... 35.0 0 0

3 1 1 4 ... -7.0 0 0

4 1 1 4 ... 39.0 0 0

...

58487 12 31 4 ... -19.0 0 0

58488 12 31 4 ... 4.0 0 0

58489 12 31 4 ... -5.0 0 0

58490 12 31 4 ... 34.0 0 0

58491 12 31 4 ... -1.0 0 0

2. Before we start plotting, let's calculate the number of diverted, canceled, delayed,
and ontime flights. We already have binary columns for DIVERTED and CANCELLED.
Flights are considered delayed whenever they arrive 15 minutes or more later than
scheduled. Let's create two new binary columns to track delayed and on-time arrivals:
>>> cols = ['DIVERTED', 'CANCELLED', 'DELAYED']

>>> (flights

... .assign(DELAYED=flights['ARR_DELAY'].ge(15).astype(int),

... ON_TIME=lambda df_:1 - df_[cols].any(axis=1))

... .select_dtypes(int)

... .sum()

...)

MONTH 363858

DAY 918447

WEEKDAY 229690

SCHED_DEP 81186009

DIST 51057671

SCHED_ARR 90627495

DIVERTED 137

CANCELLED 881

Chapter 13

513

DELAYED 11685

ON_TIME 45789

dtype: int64

3. Let's now make several plots on the same figure for both categorical and continuous
columns:
>>> fig, ax_array = plt.subplots(2, 3, figsize=(18,8))

>>> (ax1, ax2, ax3), (ax4, ax5, ax6) = ax_array

>>> fig.suptitle('2015 US Flights - Univariate Summary', size=20)

>>> ac = flights['AIRLINE'].value_counts()

>>> ac.plot.barh(ax=ax1, title='Airline')

>>> (flights

... ['ORG_AIR']

... .value_counts()

... .plot.bar(ax=ax2, rot=0, title='Origin City')

...)

>>> (flights

... ['DEST_AIR']

... .value_counts()

... .head(10)

... .plot.bar(ax=ax3, rot=0, title='Destination City')

...)

>>> (flights

... .assign(DELAYED=flights['ARR_DELAY'].ge(15).astype(int),

... ON_TIME=lambda df_:1 - df_[cols].any(axis=1))

... [['DIVERTED', 'CANCELLED', 'DELAYED', 'ON_TIME']]

... .sum()

... .plot.bar(ax=ax4, rot=0,

... log=True, title='Flight Status')

...)

>>> flights['DIST'].plot.kde(ax=ax5, xlim=(0, 3000),

... title='Distance KDE')

>>> flights['ARR_DELAY'].plot.hist(ax=ax6,

... title='Arrival Delay',

... range=(0,200)

...)

>>> fig.savefig('c13-uni1.png')

Visualization with Matplotlib, Pandas, and Seaborn

514

pandas univariate plots

4. This is not an exhaustive look at all the univariate statistics but gives us a good
amount of detail on some of the variables. Before we move on to multivariate plots,
let's plot the number of flights per week. This is the right situation to use a time series
plot with the dates on the x-axis. Unfortunately, we don't have pandas Timestamps in
any of the columns, but we do have the month and day. The to_datetime function
has a nifty trick that identifies column names that match Timestamp components.
For instance, if you have a DataFrame with exactly three columns titled year, month,
and day, then passing this DataFrame to the to_datetime function will return
a sequence of Timestamps. To prepare our current DataFrame, we need to add
a column for the year and use the scheduled departure time to get the hour and
minute:
>>> df_date = (flights

... [['MONTH', 'DAY']]

... .assign(YEAR=2015,

... HOUR=flights['SCHED_DEP'] // 100,

... MINUTE=flights['SCHED_DEP'] % 100)

...)

>>> df_date

 MONTH DAY YEAR HOUR MINUTE

0 1 1 2015 16 25

Chapter 13

515

1 1 1 2015 8 23

2 1 1 2015 13 5

3 1 1 2015 15 55

4 1 1 2015 17 20

...

58487 12 31 2015 5 15

58488 12 31 2015 19 10

58489 12 31 2015 18 46

58490 12 31 2015 5 25

58491 12 31 2015 8 59

5. Then, almost by magic, we can turn this DataFrame into a proper Series of
Timestamps with the to_datetime function:
>>> flight_dep = pd.to_datetime(df_date)

>>> flight_dep

0 2015-01-01 16:25:00

1 2015-01-01 08:23:00

2 2015-01-01 13:05:00

3 2015-01-01 15:55:00

4 2015-01-01 17:20:00

 ...

58487 2015-12-31 05:15:00

58488 2015-12-31 19:10:00

58489 2015-12-31 18:46:00

58490 2015-12-31 05:25:00

58491 2015-12-31 08:59:00

Length: 58492, dtype: datetime64[ns]

6. Let's use this result as our new index and then find the count of flights per week with
the .resample method:
>>> flights.index = flight_dep

>>> fc = flights.resample('W').size()

>>> fc.plot.line(figsize=(12,3), title='Flights per Week',
grid=True)

>>> fig.savefig('c13-ts1.png')

Visualization with Matplotlib, Pandas, and Seaborn

516

pandas timeseries plot

7. This plot is quite revealing. It appears that we have no data for the month of October.
Due to this missing data, it's quite difficult to analyze any trend visually, if one exists.
The first and last weeks are also lower than normal, likely because there isn't a full
week of data for them. Let's make any week of data with fewer than 600 flights
missing. Then, we can use the interpolate method to fill in this missing data:
>>> def interp_lt_n(df_, n=600):

... return (df_

... .where(df_ > n)

... .interpolate(limit_direction='both')

...)

>>> fig, ax = plt.subplots(figsize=(16,4))

>>> data = (flights

... .resample('W')

... .size()

...)

>>> (data

... .pipe(interp_lt_n)

... .iloc[1:-1]

... .plot.line(color='black', ax=ax)

...)

Chapter 13

517

>>> mask = data<600

>>> (data

... .pipe(interp_lt_n)

... [mask]

... .plot.line(color='.8', linewidth=10)

...)

>>> ax.annotate(xy=(.8, .55), xytext=(.8, .77),

... xycoords='axes fraction', s='missing data',

... ha='center', size=20, arrowprops=dict())

>>> ax.set_title('Flights per Week (Interpolated Missing Data)')

>>> fig.savefig('c13-ts2.png')

pandas timeseries plot

8. Let's change directions and focus on multivariable plotting. Let's find the 10 airports
that:

 � Have the longest average distance traveled for inbound flights

 � Have a minimum of 100 total flights

>>> fig, ax = plt.subplots(figsize=(16,4))

>>> (flights

... .groupby('DEST_AIR')

... ['DIST']

... .agg(['mean', 'count'])

... .query('count > 100')

... .sort_values('mean')

... .tail(10)

... .plot.bar(y='mean', rot=0, legend=False, ax=ax,

... title='Average Distance per Destination')

...)

>>> fig.savefig('c13-bar1.png')

Visualization with Matplotlib, Pandas, and Seaborn

518

pandas bar plot

9. It's no surprise that the top two destination airports are in Hawaii. Now let's analyze
two variables at the same time by making a scatter plot between distance and
airtime for all flights under 2,000 miles:
>>> fig, ax = plt.subplots(figsize=(8,6))

>>> (flights

... .reset_index(drop=True)

... [['DIST', 'AIR_TIME']]

... .query('DIST <= 2000')

... .dropna()

... .plot.scatter(x='DIST', y='AIR_TIME', ax=ax, alpha=.1,
s=1)

...)

>>> fig.savefig('c13-scat1.png')

pandas scatter plot

Chapter 13

519

10. As expected, a tight linear relationship exists between distance and airtime, though
the variance seems to increase as the number of miles increases. Let's look at the
correlation:
flights[['DIST', 'AIR_TIME']].corr()

11. Back to the plot. There are a few flights that are quite far outside the trendline. Let's
try and identify them. A linear regression model may be used to formally identify
them, but as pandas doesn't support linear regression, we will take a more manual
approach. Let's use the cut function to place the flight distances into one of eight
groups:
>>> (flights

... .reset_index(drop=True)

... [['DIST', 'AIR_TIME']]

... .query('DIST <= 2000')

... .dropna()

... .pipe(lambda df_:pd.cut(df_.DIST,

... bins=range(0, 2001, 250)))

... .value_counts()

... .sort_index()

...)

(0, 250] 6529

(250, 500] 12631

(500, 750] 11506

(750, 1000] 8832

(1000, 1250] 5071

(1250, 1500] 3198

(1500, 1750] 3885

(1750, 2000] 1815

Name: DIST, dtype: int64

12. We will assume that all flights within each group should have similar flight times,
and thus calculate for each flight the number of standard deviations that the flight
time deviates from the mean of that group:
>>> zscore = lambda x: (x - x.mean()) / x.std()

>>> short = (flights

... [['DIST', 'AIR_TIME']]

... .query('DIST <= 2000')

... .dropna()

... .reset_index(drop=True)

Visualization with Matplotlib, Pandas, and Seaborn

520

... .assign(BIN=lambda df_:pd.cut(df_.DIST,

... bins=range(0, 2001, 250)))

...)

>>> scores = (short

... .groupby('BIN')

... ['AIR_TIME']

... .transform(zscore)

...)

>>> (short.assign(SCORE=scores))

 DIST AIR_TIME BIN SCORE

0 590 94.0 (500, 750] 0.490966

1 1452 154.0 (1250, 1500] -1.267551

2 641 85.0 (500, 750] -0.296749

3 1192 126.0 (1000, 1250] -1.211020

4 1363 166.0 (1250, 1500] -0.521999

...

53462 1464 166.0 (1250, 1500] -0.521999

53463 414 71.0 (250, 500] 1.376879

53464 262 46.0 (250, 500] -1.255719

53465 907 124.0 (750, 1000] 0.495005

53466 522 73.0 (500, 750] -1.347036

13. We now need a way to discover the outliers. A box plot provides a visual for detecting
outliers (beyond 1.5 times the inner quartile range). To create a boxplot for each bin,
we need the bin names in the column names. We can use the .pivot method to do
this:
>>> fig, ax = plt.subplots(figsize=(10,6))

>>> (short.assign(SCORE=scores)

... .pivot(columns='BIN')

... ['SCORE']

... .plot.box(ax=ax)

...)

>>> ax.set_title('Z-Scores for Distance Groups')

>>> fig.savefig('c13-box2.png')

Chapter 13

521

pandas box plot

14. Let's examine the points that are greater than six standard deviations away from the
mean. Because we reset the index in the flights DataFrame in step 9, we can use it to
identify each unique row in the flights DataFrame. Let's create a separate DataFrame
with just the outliers:
>>> mask = (short

... .assign(SCORE=scores)

... .pipe(lambda df_:df_.SCORE.abs() >6)

...)

>>> outliers = (flights

... [['DIST', 'AIR_TIME']]

... .query('DIST <= 2000')

... .dropna()

... .reset_index(drop=True)

... [mask]

... .assign(PLOT_NUM=lambda df_:range(1, len(df_)+1))

...)

Visualization with Matplotlib, Pandas, and Seaborn

522

>>> outliers

 DIST AIR_TIME PLOT_NUM

14972 373 121.0 1

22507 907 199.0 2

40768 643 176.0 3

50141 651 164.0 4

52699 802 210.0 5

15. We can use this table to identify the outliers on the plot from step 9. pandas also
provides a way to attach tables to the bottom of the graph if we use the tables
parameter:

>>> fig, ax = plt.subplots(figsize=(8,6))

>>> (short

... .assign(SCORE=scores)

... .plot.scatter(x='DIST', y='AIR_TIME',

... alpha=.1, s=1, ax=ax,

... table=outliers)

...)

>>> outliers.plot.scatter(x='DIST', y='AIR_TIME',

... s=25, ax=ax, grid=True)

>>> outs = outliers[['AIR_TIME', 'DIST', 'PLOT_NUM']]

>>> for t, d, n in outs.itertuples(index=False):

... ax.text(d + 5, t + 5, str(n))

>>> plt.setp(ax.get_xticklabels(), y=.1)

>>> plt.setp(ax.get_xticklines(), visible=False)

>>> ax.set_xlabel('')

>>> ax.set_title('Flight Time vs Distance with Outliers')

>>> fig.savefig('c13-scat3.png', dpi=300, bbox_inches='tight')

Chapter 13

523

pandas scatter plot

How it works…
After reading in our data in step 1 and calculating columns for delayed and on-time flights,
we are ready to begin making univariate plots. The call to the subplots function in step
3 creates a 2 x 3 grid of equal-sized Axes. We unpack each Axes into its own variable to
reference it. Each of the calls to the plotting methods references the specific Axes in the figure
with the ax parameter. The .value_counts method is used to create the three Series that
form the plots in the top row. The rot parameter rotates the tick labels to the given angle.

Visualization with Matplotlib, Pandas, and Seaborn

524

The plot in the bottom left-hand corner uses a logarithmic scale for the y-axis, as the number
of on-time flights is about two orders of magnitude greater than the number of canceled
flights. Without the log scale, the left two bars would be difficult to see. By default, KDE plots
may result in positive areas for impossible values, such as negative miles in the plot on the
bottom row. For this reason, we limit the range of the x values with the xlim parameter.

The histogram created in the bottom right-hand corner on arrival delays was passed the
range parameter. This is not part of the method signature of the pandas .plot.hist
method. Instead, this parameter gets collected by the **kwds argument and then passed
along to the matplotlib hist function. Using xlim as done in the previous plot would not work
in this case. The plot would be cropped without recalculating the new bin widths for just that
portion of the graph. The range parameter, however, both limits the x-axis and calculates the
bin widths for just that range.

Step 4 creates a special extra DataFrame to hold columns with only datetime components
so that we can instantly turn each row into a Timestamp with the to_datetime function
in step 5.

In step 6 we use the .resample method. This method uses the index to form groups based
on the date offset alias passed. We return the number of flights per week (W) as a Series and
then call the .plot.line method on it, which formats the index as the x-axis. A glaring hole
for the month of October appears.

To fill this hole, we use the .where method to set only values less than 600 to missing
in step 7. We then fill in the missing data through linear interpolation. By default, the
.interpolate method only interpolates in a forward direction, so any missing values
at the start of the DataFrame will remain. By setting the limit_direction parameter to
both, we ensure that there are no missing values.

The new data is plotted. To show the missing data more clearly, we select the points that
were missing from the original and make a line plot on the same Axes on top of the previous
line. Typically, when we annotate the plot, we can use the data coordinates, but in this
instance, it isn't obvious what the coordinates of the x-axis are. To use the Axes coordinate
system (the one that ranges from (0,0), to (1,1)), the xycoords parameter is set to axes
fraction. This new plot now excludes the erroneous data and it makes it is much easier
to spot a trend. The summer months have much more air traffic than any other time of the
year.

In step 8, we use a long chain of methods to group by each destination airport and apply
two functions, mean and count, to the DIST column. The .query method works well in
a method for simple filtering. We have two columns in our DataFrame when we get to the
.plot.bar method, which, by default, would make a bar plot for each column. We are not
interested in the count column and therefore select only the mean column to form the bars.
Also, when plotting with a DataFrame, each column name appears in the legend. This would
put the word mean in the legend, which would not be useful, so we remove it by setting the
legend parameter to False.

Chapter 13

525

Step 9 starts to look at the relationship between distance traveled and flight airtime. Due to
the huge number of points, we shrink their size with the s parameter. We also use the alpha
parameter to reveal overlapping points.

We see a correlation and quantify that value in step 10.

To find the flights that took much longer on average to reach their destination, we group each
flight into 250-mile chunks in step 11 and find the number of standard deviations from their
group mean in step 12.

In step 13, a new box plot is created in the same Axes for every unique value of the BIN.

In step 14, the current DataFrame, short, contains the information we need to find
the slowest flights, but it does not possess all of the original data that we might want to
investigate further. Because we reset the index of short in step 12, we can use it to identify
the same row from the original. We also give each of the outlier rows a unique integer, PLOT_
NUM, to identify it later on when plotting.

In step 15, we begin with the same scatter plot as in step 9 but use the table parameter
to append the outlier table to the bottom of the plot. We then plot our outliers as a scatter
plot on top and ensure that their points are larger to identify them easily. The .itertuples
method loops through each DataFrame row and returns its values as a tuple. We unpack the
corresponding x and y values for our plot and label it with the number we assigned to it.

As the table is placed underneath of the plot, it interferes with the plotting objects on the
x-axis. We move the tick labels to the inside of the axis and remove the tick lines and axis
label. This table provides information about outlying events.

Stacking area charts to discover emerging
trends

Stacked area charts are great visualizations to discover emerging trends, especially in the
marketplace. It is a common choice to show the percentage of the market share for things
such as internet browsers, cell phones, or vehicles.

In this recipe, we will use data gathered from the popular website meetup.com. Using a
stacked area chart, we will show membership distribution between five data science-related
meetup groups.

How to do it…
1. Read in the meetup dataset, convert the join_date column into a Timestamp, and

set it as the index:
>>> meetup = pd.read_csv('data/meetup_groups.csv',

Visualization with Matplotlib, Pandas, and Seaborn

526

... parse_dates=['join_date'],

... index_col='join_date')

>>> meetup

 group ... country

join_date ...

2016-11-18 02:41:29 houston machine learning ... us

2017-05-09 14:16:37 houston machine learning ... us

2016-12-30 02:34:16 houston machine learning ... us

2016-07-18 00:48:17 houston machine learning ... us

2017-05-25 12:58:16 houston machine learning ... us

...

2017-10-07 18:05:24 houston data visualization ... us

2017-06-24 14:06:26 houston data visualization ... us

2015-10-05 17:08:40 houston data visualization ... us

2016-11-04 22:36:24 houston data visualization ... us

2016-08-02 17:47:29 houston data visualization ... us

2. Let's get the number of people who joined each group each week:
>>> (meetup

... .groupby([pd.Grouper(freq='W'), 'group'])

... .size()

...)

join_date group

2010-11-07 houstonr 5

2010-11-14 houstonr 11

2010-11-21 houstonr 2

2010-12-05 houstonr 1

2011-01-16 houstonr 2

 ..

2017-10-15 houston data science 14

 houston data visualization 13

 houston energy data science 9

 houston machine learning 11

 houstonr 2

Length: 763, dtype: int64

Chapter 13

527

3. Unstack the group level so that each meetup group has its own column of data:
>>> (meetup

... .groupby([pd.Grouper(freq='W'), 'group'])

... .size()

... .unstack('group', fill_value=0)

...)

group houston data science ... houstonr

join_date ...

2010-11-07 0 ... 5

2010-11-14 0 ... 11

2010-11-21 0 ... 2

2010-12-05 0 ... 1

2011-01-16 0 ... 2

...

2017-09-17 16 ... 0

2017-09-24 19 ... 7

2017-10-01 20 ... 1

2017-10-08 22 ... 2

2017-10-15 14 ... 2

4. This data represents the number of members who joined that particular week. Let's
take the cumulative sum of each column to get the grand total number of members:
>>> (meetup

... .groupby([pd.Grouper(freq='W'), 'group'])

... .size()

... .unstack('group', fill_value=0)

... .cumsum()

...)

group houston data science ... houstonr

join_date ...

2010-11-07 0 ... 5

2010-11-14 0 ... 16

2010-11-21 0 ... 18

2010-12-05 0 ... 19

2011-01-16 0 ... 21

...

2017-09-17 2105 ... 1056

Visualization with Matplotlib, Pandas, and Seaborn

528

2017-09-24 2124 ... 1063

2017-10-01 2144 ... 1064

2017-10-08 2166 ... 1066

2017-10-15 2180 ... 1068

5. Many stacked area charts use the percentage of the total so that each row always
adds up to 1. Let's divide each row by the row total to find the relative number:
>>> (meetup

... .groupby([pd.Grouper(freq='W'), 'group'])

... .size()

... .unstack('group', fill_value=0)

... .cumsum()

... .pipe(lambda df_: df_.div(

... df_.sum(axis='columns'), axis='index'))

...)

group houston data science ... houstonr

join_date ...

2010-11-07 0.000000 ... 1.000000

2010-11-14 0.000000 ... 1.000000

2010-11-21 0.000000 ... 1.000000

2010-12-05 0.000000 ... 1.000000

2011-01-16 0.000000 ... 1.000000

...

2017-09-17 0.282058 ... 0.141498

2017-09-24 0.282409 ... 0.141338

2017-10-01 0.283074 ... 0.140481

2017-10-08 0.284177 ... 0.139858

2017-10-15 0.284187 ... 0.139226

6. We can now create our stacked area plot, which will continually accumulate the
columns, one on top of the other:

>>> fig, ax = plt.subplots(figsize=(18,6))

>>> (meetup

... .groupby([pd.Grouper(freq='W'), 'group'])

... .size()

... .unstack('group', fill_value=0)

... .cumsum()

Chapter 13

529

... .pipe(lambda df_: df_.div(

... df_.sum(axis='columns'), axis='index'))

... .plot.area(ax=ax,

... cmap='Greys', xlim=('2013-6', None),

... ylim=(0, 1), legend=False)

...)

 >>> ax.figure.suptitle('Houston Meetup Groups', size=25)

 >>> ax.set_xlabel('')

 >>> ax.yaxis.tick_right()

 >>> kwargs = {'xycoords':'axes fraction', 'size':15}

 >>> ax.annotate(xy=(.1, .7), s='R Users',

 ... color='w', **kwargs)

 >>> ax.annotate(xy=(.25, .16), s='Data Visualization',

 ... color='k', **kwargs)

 >>> ax.annotate(xy=(.5, .55), s='Energy Data Science',

 ... color='k', **kwargs)

 >>> ax.annotate(xy=(.83, .07), s='Data Science',

 ... color='k', **kwargs)

 >>> ax.annotate(xy=(.86, .78), s='Machine Learning',

 ... color='w', **kwargs)

 >>> fig.savefig('c13-stacked1.png')

Stacked plot of meetup group distribution

Visualization with Matplotlib, Pandas, and Seaborn

530

How it works…
Our goal is to determine the distribution of members among the five largest data science
meetup groups in Houston over time. To do this, we need to find the total membership at
every point in time since each group began.

In step 2, we group by each week (offset alias W) and meetup group and return the number
of sign-ups for that week with the .size method.

The resulting Series is not suitable to make plots with pandas. Each meetup group needs
its own column, so we reshape the group index level as columns. We set the option fill_
value to zero so that groups with no memberships during a particular week will not have
missing values.

We are in need of the total number of members each week. The .cumsum method in step
4 provides this for us. We could create our stacked area plot after this step, which would
be a nice way to visualize the raw total membership.

In step 5, we find the distribution of each group as a fraction of the total members in all
groups by dividing each value by its row total. By default, pandas automatically aligns objects
by their columns, so we cannot use the division operator. Instead, we must use the .div
method and use the axis parameter with a value of index.

The data is now ready for a stacked area plot, which we create in step 6. Notice that pandas
allows you to set the axis limits with a datetime string. This will not work if done in matplotlib
using the ax.set_xlim method. The starting date for the plot is moved up a couple years
because the Houston R Users group began much earlier than any of the other groups.

Understanding the differences between
seaborn and pandas

The seaborn library is a popular Python library for creating visualizations. Like pandas, it
does not do any actual plotting itself and is a wrapper around matplotlib. Seaborn plotting
functions work with pandas DataFrames to create aesthetically pleasing visualizations.

While seaborn and pandas both reduce the overhead of matplotlib, the way they approach
data is completely different. Nearly all of the seaborn plotting functions require tidy (or long)
data.

Chapter 13

531

Processing tidy data during data analysis often creates aggregated or wide data. This data,
in wide format, is what pandas uses to make its plots.

In this recipe, we will build similar plots with both seaborn and pandas to show the types of
data (tidy versus wide) that they accept.

How to do it…
1. Read in the employee dataset:

>>> employee = pd.read_csv('data/employee.csv',

... parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> employee

 UNIQUE_ID POSITION_TITLE DEPARTMENT ... \

0 0 ASSISTAN... Municipa... ...

1 1 LIBRARY ... Library ...

2 2 POLICE O... Houston

3 3 ENGINEER... Houston

4 4 ELECTRICIAN General

...

1995 1995 POLICE O... Houston

1996 1996 COMMUNIC... Houston

1997 1997 POLICE O... Houston

1998 1998 POLICE O... Houston

1999 1999 FIRE FIG... Houston

[2000 rows x 10 columns]

2. Import the seaborn library, and alias it as sns:
>>> import seaborn as sns

3. Let's make a bar chart of the count of each department with seaborn:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> sns.countplot(y='DEPARTMENT', data=employee, ax=ax)

>>> fig.savefig('c13-sns1.png', dpi=300, bbox_inches='tight')

Visualization with Matplotlib, Pandas, and Seaborn

532

Seaborn bar plot

4. To reproduce this plot with pandas, we will need to aggregate the data beforehand:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> (employee

... ['DEPARTMENT']

... .value_counts()

... .plot.barh(ax=ax)

...)

>>> fig.savefig('c13-sns2.png', dpi=300, bbox_inches='tight')

Chapter 13

533

pandas bar plot

5. Now, let's find the average salary for each race with seaborn:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> sns.barplot(y='RACE', x='BASE_SALARY', data=employee, ax=ax)

>>> fig.savefig('c13-sns3.png', dpi=300, bbox_inches='tight')

Seaborn bar plot

Visualization with Matplotlib, Pandas, and Seaborn

534

6. To replicate this with pandas, we will need to group by RACE first:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> (employee

... .groupby('RACE', sort=False)

... ['BASE_SALARY']

... .mean()

... .plot.barh(rot=0, width=.8, ax=ax)

...)

>>> ax.set_xlabel('Mean Salary')

>>> fig.savefig('c13-sns4.png', dpi=300, bbox_inches='tight')

pandas bar plot

7. Seaborn also has the ability to distinguish groups within the data through a third
variable, hue, in most of its plotting functions. Let's find the mean salary by RACE and
GENDER:
>>> fig, ax = plt.subplots(figsize=(18, 6))

>>> sns.barplot(x='RACE', y='BASE_SALARY', hue='GENDER',

... ax=ax, data=employee, palette='Greys',

... order=['Hispanic/Latino',

... 'Black or African American',

... 'American Indian or Alaskan Native',

... 'Asian/Pacific Islander', 'Others',

Chapter 13

535

... 'White'])

>>> fig.savefig('c13-sns5.png', dpi=300, bbox_inches='tight')

Seaborn bar plot

8. With pandas, we will have to group by both RACE and GENDER and then unstack the
genders as column names:
>>> fig, ax = plt.subplots(figsize=(18, 6))

>>> (employee

... .groupby(['RACE', 'GENDER'], sort=False)

... ['BASE_SALARY']

... .mean()

... .unstack('GENDER')

... .sort_values('Female')

... .plot.bar(rot=0, ax=ax,

... width=.8, cmap='viridis')

...)

>>> fig.savefig('c13-sns6.png', dpi=300, bbox_inches='tight')

pandas bar plot

Visualization with Matplotlib, Pandas, and Seaborn

536

9. A box plot is another plot that both seaborn and pandas have in common. Let's
create a box plot of salary by RACE and GENDER with seaborn:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> sns.boxplot(x='GENDER', y='BASE_SALARY', data=employee,

... hue='RACE', palette='Greys', ax=ax)

>>> fig.savefig('c13-sns7.png', dpi=300, bbox_inches='tight')

Seaborn box plot

10. pandas is not easily able to produce an exact replication for this box plot. It can
create two separate Axes for gender and then make box plots of salaries by race:

>>> fig, axs = plt.subplots(1, 2, figsize=(12, 6), sharey=True)

>>> for g, ax in zip(['Female', 'Male'], axs):

... (employee

... .query('GENDER == @g')

... .assign(RACE=lambda df_:df_.RACE.fillna('NA'))

... .pivot(columns='RACE')

Chapter 13

537

... ['BASE_SALARY']

... .plot.box(ax=ax, rot=30)

...)

... ax.set_title(g + ' Salary')

... ax.set_xlabel('')

>>> fig.savefig('c13-sns8.png', bbox_inches='tight')

pandas box plot

How it works…
Importing seaborn in step 2 changes many of the default properties of matplotlib. There are
about 300 default plotting parameters that can be accessed within the dictionary-like object
plt.rcParams. To restore the matplotlib defaults, call the plt.rcdefaults function with
no arguments.

The style of pandas plots will also be affected when importing seaborn. Our employee dataset
meets the requirements for tidy data and thus makes it perfect to use for nearly all seaborn's
plotting functions.

Visualization with Matplotlib, Pandas, and Seaborn

538

Seaborn will do all the aggregation; you just need to supply your DataFrame to the data
parameter and refer to the columns with their string names. For instance, in step 3, the
countplot function effortlessly counts each occurrence of a DEPARTMENT to create a
bar chart. Most seaborn plotting functions have x and y parameters. We could have made
a vertical bar plot by switching the values for x and y. pandas forces you to do a bit more
work to get the same plot. In step 4, we must precalculate the height of the bins using the
.value_counts method.

Seaborn is able to do more complex aggregations, as seen in steps 5 and 7, with the
barplot function. The hue parameter further splits each of the groups on the x-axis.
pandas is capable of nearly replicating these plots by grouping by the x and hue variables
in steps 6 and 8.

Box plots are available in both seaborn and pandas and can be plotted with tidy data
without any aggregation. Even though no aggregation is necessary, seaborn still has the
upper hand, as it can split data neatly into separate groups using the hue parameter.
pandas cannot easily replicate this function from seaborn, as seen in step 10. Each group
needs to be split with the .query method and plotted on its own Axes.

Multivariate analysis with seaborn Grids
Seaborn has the ability to facet multiple plots in a grid. Certain functions in seaborn do
not work at the matplotlib axis level, but rather at the figure level. These include catplot,
lmplot, pairplot, jointplot, and clustermap.

The figure or grid functions, for the most part, use the axes functions to build the grid.
The final objects returned from the grid functions are of grid type, of which there are four
different kinds. Advanced use cases necessitate the use of grid types, but the vast majority
of the time, you will call the underlying grid functions to produce the actual Grid and not the
constructor itself.

In this recipe, we will examine the relationship between years of experience and salary by
gender and race. We will begin by creating a regression plot with a seaborn Axes function
and then add more dimensions to the plot with grid functions.

Chapter 13

539

How to do it…
1. Read in the employee dataset, and create a column for years of experience:

>>> emp = pd.read_csv('data/employee.csv',

... parse_dates=['HIRE_DATE', 'JOB_DATE'])

>>> def yrs_exp(df_):

... days_hired = pd.to_datetime('12-1-2016') - df_.HIRE_DATE

... return days_hired.dt.days / 365.25

>>> emp = (emp

... .assign(YEARS_EXPERIENCE=yrs_exp)

...)

>>> emp[['HIRE_DATE', 'YEARS_EXPERIENCE']]

 HIRE_DATE YEARS_EXPERIENCE

0 2006-06-12 10.472494

1 2000-07-19 16.369946

2 2015-02-03 1.826184

3 1982-02-08 34.812488

4 1989-06-19 27.452994

...

1995 2014-06-09 2.480544

1996 2003-09-02 13.248732

1997 2014-10-13 2.135567

1998 2009-01-20 7.863269

1999 2009-01-12 7.885172

Visualization with Matplotlib, Pandas, and Seaborn

540

2. Let's create a scatter plot with a fitted regression line to represent the relationship
between years of experience and salary:
>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> sns.regplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

... data=emp, ax=ax)

>>> fig.savefig('c13-scat4.png', dpi=300, bbox_inches='tight')

Seaborn scatter plot

3. The regplot function cannot plot multiple regression lines for different columns.
Let's use the lmplot function to plot a seaborn grid that adds regression lines for
males and females:
>>> grid = sns.lmplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

... hue='GENDER', palette='Greys',

... scatter_kws={'s':10}, data=emp)

>>> grid.fig.set_size_inches(8, 6)

>>> grid.fig.savefig('c13-scat5.png', dpi=300, bbox_
inches='tight')

Chapter 13

541

Seaborn scatter plot

4. The real power of the seaborn grid functions is their ability to add more Axes
based on another variable. The lmplot function has the col and row parameters
available to divide the data further into different groups. For instance, we can create
a separate plot for each unique race in the dataset and still fit the regression lines
by gender:

>>> grid = sns.lmplot(x='YEARS_EXPERIENCE', y='BASE_SALARY',

... hue='GENDER', col='RACE', col_wrap=3,

... palette='Greys', sharex=False,

... line_kws = {'linewidth':5},

... data=emp)

>>> grid.set(ylim=(20000, 120000))

>>> grid.fig.savefig('c13-scat6.png', dpi=300, bbox_
inches='tight')

Visualization with Matplotlib, Pandas, and Seaborn

542

Seaborn scatter plot

How it works…
In step 1, we create another continuous variable by using pandas date functionality. This data
was collected from the city of Houston on December 1, 2016. We use this date to determine
how long each employee has worked for the city. When we subtract dates, as done in the
second line of code, we are returned a Timedelta object whose largest unit is days. We
divided the days of this result by 365.25 to calculate the years of experience.

Step 2 uses the regplot function to create a scatter plot with the estimated regression line.
It returns a matplotlib Axes, which we use to change the size of the figure. To create two
separate regression lines for each gender, we must use the lmplot function, which returns
a seaborn FacetGrid. This function has a hue parameter, which overlays a new regression
line of distinct color for each unique value of that column.

The seaborn FacetGrid is essentially a wrapper around the matplotlib Figure, with a few
convenience methods to alter its elements. You can access the underlying matplotlib Figure
with their.fig attribute. Step 4 shows a common use-case for seaborn functions that return
FacetGrids, which is to create multiple plots based on a third or even fourth variable. We
set the col parameter to RACE. Six regression plots are created for each of the six unique
races in the RACE column. Normally, this would return a grid consisting of one row and six
columns, but we use the col_wrap parameter to wrap the row after three columns.

Chapter 13

543

There are other parameters to control aspects of the Grid. It is possible to use parameters
from the underlying line and scatter plot functions from matplotlib. To do so, set
the scatter_kws or the line_kws parameters to a dictionary that has the matplotlib
parameter as a key paired with the value.

There's more…
We can do a similar type of analysis when we have categorical features. First, let's reduce
the number of levels in the categorical variables RACE and DEPARTMENT to the top two and
three most common, respectively:

>>> deps = emp['DEPARTMENT'].value_counts().index[:2]

>>> races = emp['RACE'].value_counts().index[:3]

>>> is_dep = emp['DEPARTMENT'].isin(deps)

>>> is_race = emp['RACE'].isin(races)

>>> emp2 = (emp

... [is_dep & is_race]

... .assign(DEPARTMENT=lambda df_:

... df_['DEPARTMENT'].str.extract('(HPD|HFD)',

... expand=True))

...)

>>> emp2.shape

(968, 11)

>>> emp2['DEPARTMENT'].value_counts()

HPD 591

HFD 377

Name: DEPARTMENT, dtype: int64

>>> emp2['RACE'].value_counts()

White 478

Hispanic/Latino 250

Black or African American 240

Name: RACE, dtype: int64

Visualization with Matplotlib, Pandas, and Seaborn

544

Let's use one of the simpler Axes-level functions, such as violinplot to view the distribution
of years of experience by gender:

>>> common_depts = (emp

... .groupby('DEPARTMENT')

... .filter(lambda group: len(group) > 50)

...)

>>> fig, ax = plt.subplots(figsize=(8, 6))

>>> sns.violinplot(x='YEARS_EXPERIENCE', y='GENDER',

... data=common_depts)

>>> fig.savefig('c13-vio1.png', dpi=300, bbox_inches='tight')

Seaborn violin plot

We can then use the catplot to add a violin plot for each unique combination of department
and race with the col and row parameters:

>>> grid = sns.catplot(x='YEARS_EXPERIENCE', y='GENDER',

... col='RACE', row='DEPARTMENT',

... height=3, aspect=2,

... data=emp2, kind='violin')

>>> grid.fig.savefig('c13-vio2.png', dpi=300, bbox_inches='tight')

Chapter 13

545

Seaborn violin plot

Uncovering Simpson's Paradox in the
diamonds dataset with seaborn

It is unfortunately quite easy to report erroneous results when doing data analysis. Simpson's
Paradox is one of the more common phenomena that can appear. It occurs when one group
shows a higher result than another group, when all the data is aggregated, but it shows the
opposite when the data is subdivided into different segments. For instance, let's say we have
two students, A and B, who have each been given a test with 100 questions on it. Student
A answers 50% of the questions correct, while Student B gets 80% correct. This obviously
suggests Student B has greater aptitude:

Student Raw Score Percent Correct
A 50/100 50
B 80/100 80

Let's say that the two tests were very different. Student A's test consisted of 95 problems
that were difficult and only five that were easy. Student B was given a test with the exact
opposite ratio:

Student Difficult Easy
Difficult
Percent

Easy
Percent Percent

A 45/95 5/5 47 100 50
B 2/5 78/95 40 82 80

This paints a completely different picture. Student A now has a higher percentage of both
the difficult and easy problems but has a much lower percentage as a whole. This is a
quintessential example of Simpson's Paradox. The aggregated whole shows the opposite
of each individual segment.

Visualization with Matplotlib, Pandas, and Seaborn

546

In this recipe, we will first reach a perplexing result that appears to suggest that higher
quality diamonds are worth less than lower quality ones. We uncover Simpson's Paradox
by taking more finely grained glimpses into the data that suggest the opposite is true.

How to do it…
1. Read in the diamonds dataset:

>>> dia = pd.read_csv('data/diamonds.csv')

>>> dia

 carat cut color ... x y z

0 0.23 Ideal E ... 3.95 3.98 2.43

1 0.21 Premium E ... 3.89 3.84 2.31

2 0.23 Good E ... 4.05 4.07 2.31

3 0.29 Premium I ... 4.20 4.23 2.63

4 0.31 Good J ... 4.34 4.35 2.75

...

53935 0.72 Ideal D ... 5.75 5.76 3.50

53936 0.72 Good D ... 5.69 5.75 3.61

53937 0.70 Very Good D ... 5.66 5.68 3.56

53938 0.86 Premium H ... 6.15 6.12 3.74

53939 0.75 Ideal D ... 5.83 5.87 3.64

2. Before we begin analysis, let's change the cut, color, and clarity columns into
ordered categorical variables:
>>> cut_cats = ['Fair', 'Good', 'Very Good', 'Premium', 'Ideal']

>>> color_cats = ['J', 'I', 'H', 'G', 'F', 'E', 'D']

>>> clarity_cats = ['I1', 'SI2', 'SI1', 'VS2',

... 'VS1', 'VVS2', 'VVS1', 'IF']

>>> dia2 = (dia

... .assign(cut=pd.Categorical(dia['cut'],

... categories=cut_cats,

... ordered=True),

... color=pd.Categorical(dia['color'],

... categories=color_cats,

... ordered=True),

... clarity=pd.Categorical(dia['clarity'],

... categories=clarity_cats,

Chapter 13

547

... ordered=True))

...)

>>> dia2

 carat cut color ... x y z

0 0.23 Ideal E ... 3.95 3.98 2.43

1 0.21 Premium E ... 3.89 3.84 2.31

2 0.23 Good E ... 4.05 4.07 2.31

3 0.29 Premium I ... 4.20 4.23 2.63

4 0.31 Good J ... 4.34 4.35 2.75

...

53935 0.72 Ideal D ... 5.75 5.76 3.50

53936 0.72 Good D ... 5.69 5.75 3.61

53937 0.70 Very Good D ... 5.66 5.68 3.56

53938 0.86 Premium H ... 6.15 6.12 3.74

53939 0.75 Ideal D ... 5.83 5.87 3.64

3. Seaborn uses category orders for its plots. Let's make a bar plot of the mean price for
each level of the cut, color, and clarity columns:
>>> import seaborn as sns

>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='price', data=dia2, ax=ax1)

>>> sns.barplot(x='cut', y='price', data=dia2, ax=ax2)

>>> sns.barplot(x='clarity', y='price', data=dia2, ax=ax3)

>>> fig.suptitle('Price Decreasing with Increasing Quality?')

>>> fig.savefig('c13-bar4.png', dpi=300, bbox_inches='tight')

Seaborn bar plot

Visualization with Matplotlib, Pandas, and Seaborn

548

4. There seems to be a decreasing trend for color and price. The highest quality cut
and clarity levels also have low prices. How can this be? Let's dig a little deeper and
plot the price for each diamond color again, but make a new plot for each level of
the clarity column:
>>> grid = sns.catplot(x='color', y='price', col='clarity',

... col_wrap=4, data=dia2, kind='bar')

>>> grid.fig.savefig('c13-bar5.png', dpi=300, bbox_inches='tight')

Seaborn bar plot

5. This plot is a little more revealing. Although price appears to decrease as the quality
of color increases, it does not do so when clarity is at its highest level. There is a
substantial increase in price. We have yet to look at just the price of the diamond
without paying any attention to its size. Let's recreate the plot from step 3 but use the
carat size in place of price:
>>> fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(14,4))

>>> sns.barplot(x='color', y='carat', data=dia2, ax=ax1)

>>> sns.barplot(x='cut', y='carat', data=dia2, ax=ax2)

>>> sns.barplot(x='clarity', y='carat', data=dia2, ax=ax3)

>>> fig.suptitle('Diamond size decreases with quality')

>>> fig.savefig('c13-bar6.png', dpi=300, bbox_inches='tight')

Chapter 13

549

Seaborn bar plot

6. Now our story is starting to make a bit more sense. Higher quality diamonds appear
to be smaller in size, which intuitively makes sense. Let's create a new variable that
segments the carat values into five distinct sections, and then create a point plot.
The plot that follows reveals that higher quality diamonds do, in fact, cost more
money when they are segmented based on size:

>>> dia2 = (dia2

... .assign(carat_category=pd.qcut(dia2.carat, 5))

...)

>>> from matplotlib.cm import Greys

>>> greys = Greys(np.arange(50,250,40))

>>> grid = sns.catplot(x='clarity', y='price', data=dia2,

... hue='carat_category', col='color',

... col_wrap=4, kind='point', palette=greys)

>>> grid.fig.suptitle('Diamond price by size, color and clarity',

... y=1.02, size=20)

>>> grid.fig.savefig('c13-bar7.png', dpi=300, bbox_inches='tight')

Visualization with Matplotlib, Pandas, and Seaborn

550

Seaborn point plot

How it works…
In this recipe, it is important to create categorical columns, as they are allowed to be ordered.
Seaborn uses this ordering to place the labels on the plot. Steps 3 and 4 show what appears
to be a downward trend for increasing diamond quality. This is where Simpson's paradox
takes center stage. This aggregated result of the whole is being confounded by other
variables not yet examined.

The key to uncovering this paradox is to focus on carat size. Step 5 reveals to us that carat
size is also decreasing with increasing quality. To account for this fact, we cut the diamond
size into five equally-sized bins with the qcut function. By default, this function cuts the
variable into discrete categories based on the given quantiles. By passing it an integer, as was
done in this step, it creates equally-spaced quantiles. You also have the option of passing it a
sequence of explicit non-regular quantiles.

With this new variable, we can make a plot of the mean price per diamond size per group,
as done in step 6. The point plot in seaborn creates a line plot connecting the means of
each category. The vertical bar at each point is the standard deviation for that group. This
plot confirms that diamonds do indeed become more expensive as their quality increases,
as long as we hold the carat size as the constant.

Chapter 13

551

There's more…
The bar plots in steps 3 and 5 could have been created with the more advanced seaborn
PairGrid constructor, which can plot a bivariate relationship. Using a PairGrid is a
two-step process. The first step is to call the constructor and alert it to which variables will
be x and which will be y. The second step calls the .map method to apply a plot to all of the
combinations of x and y columns:

>>> g = sns.PairGrid(dia2, height=5,

... x_vars=["color", "cut", "clarity"],

... y_vars=["price"])

>>> g.map(sns.barplot)

>>> g.fig.suptitle('Replication of Step 3 with PairGrid', y=1.02)

>>> g.fig.savefig('c13-bar8.png', dpi=300, bbox_inches='tight')

Seaborn bar plot

553

14
Debugging and
Testing Pandas

Code to transform data
In this chapter, we will look at some code that analyzes survey data that Kaggle did in 2018.
The survey queried Kaggle users about socio-economic information.

This section will present the survey data along with some code to analyze it. The subtitle for
this data is "the most comprehensive dataset available on the state of machine learning and
data science". Let's dig into this data and see what it has. The data was originally available at
https://www.kaggle.com/kaggle/kaggle-survey-2018.

How to do it…
1. Load the data into a DataFrame:

>>> import pandas as pd

>>> import numpy as np

>>> import zipfile

>>> url = 'data/kaggle-survey-2018.zip'

>>> with zipfile.ZipFile(url) as z:

... print(z.namelist())

... kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

https://www.kaggle.com/kaggle/kaggle-survey-2018

Debugging and Testing Pandas

554

... df = kag.iloc[1:]

['multipleChoiceResponses.csv', 'freeFormResponses.csv',
'SurveySchema.csv']

2. Look at the data and data types:
>>> df.T

 1 2 3 ... 23857

Time from... 710 434 718 ... 370

Q1 Female Male Female ... Male

Q1_OTHER_... -1 -1 -1 ... -1

Q2 45-49 30-34 30-34 ... 22-24

Q3 United S... Indonesia United S... ... Turkey

...

Q50_Part_5 NaN NaN NaN ... NaN

Q50_Part_6 NaN NaN NaN ... NaN

Q50_Part_7 NaN NaN NaN ... NaN

Q50_Part_8 NaN NaN NaN ... NaN

Q50_OTHER... -1 -1 -1 ... -1

>>> df.dtypes

Time from Start to Finish (seconds) object

Q1 object

Q1_OTHER_TEXT object

Q2 object

Q3 object

 ...

Q50_Part_5 object

Q50_Part_6 object

Q50_Part_7 object

Q50_Part_8 object

Q50_OTHER_TEXT object

Length: 395, dtype: object

3. It turns out that most of the survey data was selecting from options of responses. We
see that the type of all of the columns is object. We could go through our standard
process of exploring these values using the .value_counts method:
>>> df.Q1.value_counts(dropna=False)

Male 19430

Chapter 14

555

Female 4010

Prefer not to say 340

Prefer to self-describe 79

Name: Q1, dtype: int64

4. To make a long story short, I pull out each column of interest as a Series. I filtered
most of the values to a limited number of values. I used the Series .rename method
to give the column a better name. Some of the values, such as the Q2, Q8, and Q9,
have range answers. In the case of age (Q2), you have values like 55-59 and 60-69.
I use the .str.slice method to pull out the first two characters, and convert the
type from string to integer.

For the education column (Q4), I convert the values to ordinal numbers. Finally, after
I have converted many columns I'm working with to numbers and cleaned up some
of the others, I put all of the Series back in a DataFrame with pd.concat.

I put all of this code into a function, tweak_kag:
>>> def tweak_kag(df):

... na_mask = df.Q9.isna()

... hide_mask = df.Q9.str.startswith('I do not').fillna(False)

... df = df[~na_mask & ~hide_mask]

...

... q1 = (df.Q1

... .replace({'Prefer not to say': 'Another',

... 'Prefer to self-describe': 'Another'})

... .rename('Gender')

...)

... q2 = df.Q2.str.slice(0,2).astype(int).rename('Age')

... def limit_countries(val):

... if val in {'United States of America', 'India',
'China'}:

... return val

... return 'Another'

... q3 = df.Q3.apply(limit_countries).rename('Country')

...

... q4 = (df.Q4

... .replace({'Master's degree': 18,

... 'Bachelor's degree': 16,

... 'Doctoral degree': 20,

... 'Some college/university study without earning a

Debugging and Testing Pandas

556

bachelor's degree': 13,

... 'Professional degree': 19,

... 'I prefer not to answer': None,

... 'No formal education past high school': 12})

... .fillna(11)

... .rename('Edu')

...)

...

... def only_cs_stat_val(val):

... if val not in {'cs', 'eng', 'stat'}:

... return 'another'

... return val

...

... q5 = (df.Q5

... .replace({

... 'Computer science (software engineering,
etc.)': 'cs',

... 'Engineering (non-computer focused)': 'eng',

... 'Mathematics or statistics': 'stat'})

... .apply(only_cs_stat_val)

... .rename('Studies'))

... def limit_occupation(val):

... if val in {'Student', 'Data Scientist', 'Software
Engineer', 'Not employed',

... 'Data Engineer'}:

... return val

... return 'Another'

...

... q6 = df.Q6.apply(limit_occupation).rename('Occupation')

...

... q8 = (df.Q8

... .str.replace('+', '')

... .str.split('-', expand=True)

... .iloc[:,0]

... .fillna(-1)

... .astype(int)

Chapter 14

557

... .rename('Experience')

...)

...

... q9 = (df.Q9

... .str.replace('+','')

... .str.replace(',','')

... .str.replace('500000', '500')

... .str.replace('I do not wish to disclose my approximate
yearly compensation','')

... .str.split('-', expand=True)

... .iloc[:,0]

... .astype(int)

... .mul(1000)

... .rename('Salary'))

... return pd.concat([q1, q2, q3, q4, q5, q6, q8, q9], axis=1)

>>> tweak_kag(df)

 Gender Age Country ... Occupation Experience

2 Male 30 Another ... Another 5

3 Female 30 United S... ... Data Sci... 0

5 Male 22 India ... Another 0

7 Male 35 Another ... Another 10

8 Male 18 India ... Another 0

...

23844 Male 30 Another ... Software... 10

23845 Male 22 Another ... Student 0

23854 Male 30 Another ... Another 5

23855 Male 45 Another ... Another 5

23857 Male 22 Another ... Software... 0

>>> tweak_kag(df).dtypes

Gender object

Age int64

Country object

Edu float64

Studies object

Debugging and Testing Pandas

558

Occupation object

Experience int64

Salary int64

dtype: object

How it works…
The survey data is rich with information, but it's a little hard to analyze it because all of the
columns come in as objects. Our tweak_kag function filters out respondents who did not
provide salary information. We also convert a few of the columns (Age, Edu, Experience,
and Salary) to numeric values for easier quantification. The remaining categorical columns
are pruned down to lower cardinality.

Cleaning up our data makes it easier to analyze. For example, we can easily group by country
and correlate salary and experience:

>>> kag = tweak_kag(df)

>>> (kag

... .groupby('Country')

... .apply(lambda g: g.Salary.corr(g.Experience))

...)

Country

Another 0.289827

China 0.252974

India 0.167335

United States of America 0.354125

dtype: float64

Apply performance
The .apply method on a Series and DataFrame is one of the slowest operations in pandas.
In this recipe, we will explore the speed of it and see if we can debug what is going on.

How to do it…
1. Let's time how long one use of the .apply method takes using the %%timeit

cell magic in Jupiter. This is the code from the tweak_kag function that limits the
cardinality of the country column (Q3):

Chapter 14

559

>>> %%timeit

>>> def limit_countries(val):

... if val in {'United States of America', 'India',
'China'}:

... return val

... return 'Another'

>>> q3 = df.Q3.apply(limit_countries).rename('Country')

6.42 ms ± 1.22 ms per loop (mean ± std. dev. of 7 runs, 100 loops
each)

2. Let's look at using the .replace method instead of .apply and see if that improves
performance:
>>> %%timeit

>>> other_values = df.Q3.value_counts().iloc[3:].index

>>> q3_2 = df.Q3.replace(other_values, 'Another')

27.7 ms ± 535 µs per loop (mean ± std. dev. of 7 runs, 10 loops
each)

3. Woah! That was slower than the .apply method! Let's try again. If we recreate this
code using the .isin method combined with .where, it runs over twice as fast as
.apply:
>>> %%timeit

>>> values = {'United States of America', 'India', 'China'}

>>> q3_3 = df.Q3.where(df.Q3.isin(values), 'Another')

3.39 ms ± 570 µs per loop (mean ± std. dev. of 7 runs, 100 loops
each)

4. Finally, let's try the np.where function. This is not part of pandas, but pandas often
works with NumPy functions:
>>> %%timeit

>>> values = {'United States of America', 'India', 'China'}

>>> q3_4 = pd.Series(np.where(df.Q3.isin(values), df.Q3,
'Another'),

... index=df.index)

2.75 ms ± 345 µs per loop (mean ± std. dev. of 7 runs, 100 loops
each)

5. Let's check if the results are the same:

>>> q3.equals(q3_2)

True

Debugging and Testing Pandas

560

>>> q3.equals(q3_3)

True

>>> q3.equals(q3_4)

True

How it works…
This recipe benchmarked the .apply, .replace, and .where methods. Of those three,
the .where method was the quickest. Finally, it showed the NumPy where function, which
is even faster than pandas. However, if we use the NumPy function, we need to convert the
result back into a series (and give it the same index as the original DataFrame).

There's more…
The documentation for the .apply method states that if you pass in a NumPy function,
it will run a fast path and pass the whole series to the function. However, if you pass in a
Python function, that function will be called for each value in the Series. This can be confusing
because the method behaves differently depending on the parameter that is passed into it.

If you find yourself in a situation where you are passing in a function to .apply (or have
done a groupby operation and are calling .agg, .transform, or some other method that
takes a function as a parameter) and cannot remember what arguments will be passed into
the function, you can use the following code to help. (Of course, you can also look at the
documentation or even look at the code for .apply):

>>> def limit_countries(val):

... if val in {'United States of America', 'India', 'China'}:

... return val

... return 'Another'

>>> q3 = df.Q3.apply(limit_countries).rename('Country')

>>> def debug(something):

... # what is something? A cell, series, dataframe?

... print(type(something), something)

... 1/0

>>> q3.apply(debug)

<class 'str'> United States of America

Chapter 14

561

Traceback (most recent call last)

...

ZeroDivisionError: division by zero

The output shows that a string (a scalar value from the series q3) was passed into the debug
function.

If you do not want to throw an exception, you can set a global variable to hold the parameter
passed into the function:

>>> the_item = None

>>> def debug(something):

... global the_item

... the_item = something

... return something

>>> _ = q3.apply(debug)

>>> the_item

'Another'

One thing to keep in mind is that the function we pass into the .apply method is called once
per item in the Series. Operating on single items is a slow path, and we should try to avoid it
if possible. The next recipe will show another option for speeding calls to .apply.

Improving apply performance with Dask,
Pandarell, Swifter, and more

Sometimes .apply is convenient. Various libraries enable parallelizing such operations.
There are various mechanisms to do this. The easiest is to try and leverage vectorization.
Math operations are vectorized in pandas, if you add a number (say 5) to a numerical series,
pandas will not add 5 to each value. Rather it will leverage a feature of modern CPUs to do the
operation one time.

If you cannot vectorize, as is the case with our limit_countries function, you have other
options. This section will show a few of them.

Note that you will need to install these libraries as they are not included with pandas.

The examples show limiting values in the country column from the survey data to a few values.

Debugging and Testing Pandas

562

How to do it…
1. Import and initialize the Pandarallel library. This library tries to parallelize pandas

operations across all available CPUs. Note that this library runs fine on Linux and
Mac. Because of the shared memory technique it leverages, it will not work on
Windows unless Python is being executed with the Windows Subsystem for Linux:
>>> from pandarallel import pandarallel

>>> pandarallel.initialize()

2. This library augments the DataFrame to add some extra methods. Use the
.parallel_apply method:
>>> def limit_countries(val):

... if val in {'United States of America', 'India',
'China'}:

... return val

... return 'Another'

>>> %%timeit

>>> res_p = df.Q3.parallel_apply(limit_countries).
rename('Country')

133 ms ± 11.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops
each)

3. Let's try another library. Import the swifter library:
>>> import swifter

4. This library also augments the DataFrame to add a .swifter accessor. Use the
swifter library:
>>> %%timeit

>>> res_s = df.Q3.swifter.apply(limit_countries).rename('Country')

187 ms ± 31.4 ms per loop (mean ± std. dev. of 7 runs, 10 loops
each)

5. Import the Dask library:
>>> import dask

6. Use the Dask .map_partitions function:
>>> %%timeit

>>> res_d = (dask.dataframe.from_pandas(

... df, npartitions=4)

... .map_partitions(lambda df: df.Q3.apply(limit_countries))

Chapter 14

563

... .rename('Countries')

...)

29.1 s ± 1.75 s per loop (mean ± std. dev. of 7 runs, 1 loop each)

7. Use np.vectorize:
>>> np_fn = np.vectorize(limit_countries)

>>> %%timeit

>>> res_v = df.Q3.apply(np_fn).rename('Country')

643 ms ± 86.8 ms per loop (mean ± std. dev. of 7 runs, 1 loop
each)

8. Import numba and decorate the function with the jit decorator:
>>> from numba import jit

>>> @jit

... def limit_countries2(val):

... if val in ['United States of America', 'India',
'China']:

... return val

... return 'Another'

9. Use the decorated numba function:

>>> %%timeit

>>> res_n = df.Q3.apply(limit_countries2).rename('Country')

158 ms ± 16.1 ms per loop (mean ± std. dev. of 7 runs, 10 loops
each)

How it works…
Note that there is overhead to parallelizing code. In the examples above, all of the code ran
faster in serial with normal pandas code. There is a crossover point where the overhead
penalty makes sense. The examples for the Pandarallel library use at least a million samples.
Our dataset is much smaller than that, so the vanilla .apply method is faster in our case.

In step 1 and 2 we use the Pandarallel library. This library leverages the multiprocessing
library from the standard library to try and run computations in parallel. When you initialize
the library, you can specify an nb_workers parameter that indicates how many CPUs to use
(by default it will use all of the CPUs). The example shows how to use the .parallel_apply
method which is analogous to the .apply method in pandas. This library also works with
groupby objects and series objects.

Debugging and Testing Pandas

564

Step 3 and 4 show use of the swifter library. This library adds a .swifter attribute to
a DataFrame and series. This library takes a different approach to speeding up code. It will
try to see if the operation can be vectorized. Otherwise, it will see how long pandas will take
(by running on a small sample), it then determines whether to leverage the Dask library, or to
just stick with pandas. Again, the logic to even determine which path to use has overhead, so
blindly using this library might not lead to the most efficient code.

The Swifter website has a notebook where they performed comparisons of Swifter,
np.vectorize, Dask, and pandas. It has extensive benchmarking on different types of
functions. For what it calls non-vectorized functions (which our limit_countries is as it
has normal Python logic), it isn't until you get to almost a million rows that the vanilla pandas
.apply method starts to lose out.

In step 5 and 6 the Dask library is presented. Note that there is a bit of overhead loading
the data and leveraging the parallelization afforded by the library. Many users of Dask forgo
pandas completely and just use Dask, as it implements similar functionality but allows
processing to scale out to big data (and running on a cluster).

Next, we try the vectorize function from NumPy in step 7. It creates a NumPy ufunc (a
universal function that operates on NumPy arrays) from an arbitrary Python function. It tries to
leverage NumPy broadcasting rules. In this case, there is no performance increase by using it.

Step 8 and 9 demonstrate using the Numba library. We leverage the jit decorator to create
a new function limit_countries2. This decorator converts the Python function into native
code. Again, this function is not amenable to speed increases from this decorator.

Many of the options illustrated here may provide a performance boost with larger datasets.
In our case, blindly applying them would slow down the code.

Inspecting code
The Jupyter environment has an extension that allows you to quickly pull up the
documentation or the source code for a class, method, or function. I strongly encourage you
to get used to using these. If you can stay in the Jupyter environment to answer questions that
may come up, you will increase your productivity.

In this section, we will show how to look at the source code for the .apply method. It
is easiest to look at the documentation for a DataFrame or series method directly on
the DataFrame or series object, respectively. Throughout this book, we have heavily
recommended chaining operations on pandas objects. Sadly Jupyter (and any other editor
environment) is not able to perform code completion or look up documentation on the
intermediate object returned from a chained method call. Hence the recommendation
to perform the lookup directly on a method that is not chained.

Chapter 14

565

How to do it…
1. Load the survey data:

>>> import zipfile

>>> url = 'data/kaggle-survey-2018.zip'

>>> with zipfile.ZipFile(url) as z:

... kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

... df = kag.iloc[1:]

2. Let's look up the documentation for .apply using the Jupyter ? extension. (We could
also hit Shift + Tab four times to get this in Jupyter):
>>> df.Q3.apply?

Signature: df.Q3.apply(func, convert_dtype=True, args=(), **kwds)

Docstring:

Invoke function on values of Series.

Can be ufunc (a NumPy function that applies to the entire Series)

or a Python function that only works on single values.

Parameters

func : function

 Python function or NumPy ufunc to apply.

convert_dtype : bool, default True

 Try to find better dtype for elementwise function results. If

 False, leave as dtype=object.

args : tuple

 Positional arguments passed to func after the series value.

**kwds

 Additional keyword arguments passed to func.

Returns

Series or DataFrame

 If func returns a Series object the result will be a
DataFrame.

Debugging and Testing Pandas

566

See Also

Series.map: For element-wise operations.

Series.agg: Only perform aggregating type operations.

Series.transform: Only perform transforming type operations.

Examples

 ...

File: ~/.env/364/lib/python3.6/site-packages/pandas/core/
series.py

Type: method

3. Let's look at the source code by using ??. (There is no Shift + Tab keyboard shortcut
to get the code):
>>> df.Q3.apply??

Signature: df.Q3.apply(func, convert_dtype=True, args=(), **kwds)

Source:

 def apply(self, func, convert_dtype=True, args=(), **kwds):

 ...

 if len(self) == 0:

 return self._constructor(dtype=self.dtype, index=self.
index).__finalize__(

 self

)

 # dispatch to agg

 if isinstance(func, (list, dict)):

 return self.aggregate(func, *args, **kwds)

 # if we are a string, try to dispatch

 if isinstance(func, str):

Chapter 14

567

 return self._try_aggregate_string_function(func,
*args, **kwds)

 # handle ufuncs and lambdas

 if kwds or args and not isinstance(func, np.ufunc):

 def f(x):

 return func(x, *args, **kwds)

 else:

 f = func

 with np.errstate(all="ignore"):

 if isinstance(f, np.ufunc):

 return f(self)

 # row-wise access

 if is_extension_type(self.dtype):

 mapped = self._values.map(f)

 else:

 values = self.astype(object).values

 mapped = lib.map_infer(values, f, convert=convert_
dtype)

 if len(mapped) and isinstance(mapped[0], Series):

 # GH 25959 use pd.array instead of tolist

 # so extension arrays can be used

 return self._constructor_expanddim(pd.array(mapped),
index=self.index)

 else:

 return self._constructor(mapped, index=self.index).__
finalize__(self)

File: ~/.env/364/lib/python3.6/site-packages/pandas/core/
series.py

Type: method

Debugging and Testing Pandas

568

4. We can see that this method tries to figure out the appropriate code to call. If those
all fail, eventually it calculates the mapped variable. Let's try and figure out what
lib.map_infer does:

>>> import pandas.core.series

>>> pandas.core.series.lib

<module 'pandas._libs.lib' from '.env/364/lib/python3.6/site-
packages/pandas/_libs/lib.cpython-36m-darwin.so'>

>>> pandas.core.series.lib.map_infer??

Docstring:

Substitute for np.vectorize with pandas-friendly dtype inference

Parameters

arr : ndarray

f : function

Returns

mapped : ndarray

Type: builtin_function_or_method

How it works…
Jupyter has the ability to inspect both the docstrings and the source code for Python objects.
The standard Python REPL can leverage the built-in help function to view a docstring, but it
cannot display the source code.

Jupyter, however has some tricks up its sleeves. If you tack on a single question mark (?)
following a function or method, it will show the documentation for that code. Note that this is
not valid Python syntax, it is a feature of Jupyter. If you add on two question marks (??), then
Jupyter will display the source code of the function or method.

This recipe showed tracing through the source code to see how the .apply method in pandas
works under the covers.

We can see a shortcut in step 3 if there are no results. We can also see how string functions
(that is, passing in the string literal mean) work. The getattr function pulls off the
corresponding method from the DataFrame.

Chapter 14

569

Next, the code checks if it is dealing with a NumPy function. Eventually, it will call the function
if it is an instance of np.ufunc, or it will call the .map method on the underlying ._values
attribute, or it will call lib.map_infer.

In step 4, we tried to inspect lib.map_infer but saw that it was an so file (pyd on
Windows). This is a compiled file that is usually the result of writing Python in C or using
Cython. Jupyter cannot show us the source of compiled files.

There's more…
When you view the source code for a function or method, Jupyter will display the file that it
belongs to at the bottom of pane. If I really need to dig into the source code, I will open that in
an editor outside of Jupyter. Then I can browse through that code and any corresponding code
with my editor (most editors have better code navigation capabilities than Jupyter).

Debugging in Jupyter
The previous recipes have shown how to understand pandas code and inspect it from Jupyter.
In this section, we will look at using the IPython debugger (ipdb) in Jupyter.

In this section, I will create a function that throws an error when I try to use it with the series
.apply method. I will use ipdb to debug it.

How to do it…
1. Load the survey data:

>>> import zipfile

>>> url = 'data/kaggle-survey-2018.zip'

>>> with zipfile.ZipFile(url) as z:

... kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

... df = kag.iloc[1:]

2. Try and run a function to add one to a series:
>>> def add1(x):

... return x + 1

>>> df.Q3.apply(add1)

--

Debugging and Testing Pandas

570

TypeError Traceback (most recent
call last)

<ipython-input-9-6ce28d2fea57> in <module>

 2 return x + 1

 3

----> 4 df.Q3.apply(add1)

~/.env/364/lib/python3.6/site-packages/pandas/core/series.py in
apply(self, func, convert_dtype, args, **kwds)

 4043 else:

 4044 values = self.astype(object).values

-> 4045 mapped = lib.map_infer(values, f,
convert=convert_dtype)

 4046

 4047 if len(mapped) and isinstance(mapped[0], Series):

pandas/_libs/lib.pyx in pandas._libs.lib.map_infer()

<ipython-input-9-6ce28d2fea57> in add1(x)

 1 def add1(x):

----> 2 return x + 1

 3

 4 df.Q3.apply(add1)

TypeError: must be str, not int

3. Use the %debug cell magic immediately following an exception to drop into a debug
window. (This might seem a little backward because you call this after you have run
a cell with an exception). This will open the debugger to the point where the exception
was thrown.

You can use the debugger commands to navigate through the stack. Hitting U key
will pop the stack to the function that called the current line. You can inspect objects
using the print command (p):

Chapter 14

571

Jupyter debugging

4. If you want to step into code without requiring that an exception be thrown, you can
use the set_trace function from the IPython debugger. This will drop you into the
debugger immediately following that line:

>>> from IPython.core.debugger import set_trace

>>> def add1(x):

... set_trace()

... return x + 1

>>> df.Q3.apply(add1)

Debugging and Testing Pandas

572

Jupyter debugging

How it works…
Jupyter (which is derived from IPython) ships with the IPython debugger. This replicates the
functionality of the pdb module in the standard library, but with niceties such as syntax
highlighting. (It also has tab completion, but this does not work in Jupyter, only in the IPython
console).

There's more…
If you are unfamiliar with using the debugger, here is a lifejacket for you: The command h will
print out all of the commands that you can run from the debugger:

ipdb> h

Documented commands (type help <topic>):

==

EOF cl disable interact next psource rv unt

a clear display j p q s until

alias commands down jump pdef quit source up

args condition enable l pdoc r step w

b cont exit list pfile restart tbreak whatis

Chapter 14

573

break continue h ll pinfo return u where

bt d help longlist pinfo2 retval unalias

c debug ignore n pp run undisplay

The most common commands that I use are s, n, l, u, d, and c. If you want to know what s
does, then type:

ipdb> h s

s(tep)

 Execute the current line, stop at the first possible occasion

 (either in a function that is called or in the current

 function).

This tells the debugger to print the help (h) documentation for step (s). Because we are
usually coding in small steps in Jupyter, a debugger is often overkill. But knowing how to use
it can come in handy, especially if you want to jump into pandas source code and understand
what is going on.

Managing data integrity with Great
Expectations

Great Expectations is a third-party tool that allows you to capture and define the properties
of a dataset. You can save these properties and then use them to validate future data to
ensure data integrity. This can be very useful when building machine learning models, as new
categorical data values and numeric outliers tend to cause a model to perform poorly or error
out.

In this section, we will look at the Kaggle dataset and make an expectation suite to test and
validate the data.

How to do it…
1. Read the data using the tweak_kag function previously defined:

>>> kag = tweak_kag(df)

2. Use the Great Expectations from_pandas function to read in a Great Expectations
DataFrame (a subclass of DataFrame with some extra methods):
>>> import great_expectations as ge

>>> kag_ge = ge.from_pandas(kag)

Debugging and Testing Pandas

574

3. Examine the extra methods on the DataFrame:
>>> sorted([x for x in set(dir(kag_ge)) - set(dir(kag))

... if not x.startswith('_')])

['autoinspect',

'batch_fingerprint',

'batch_id',

'batch_kwargs',

'column_aggregate_expectation',

'column_map_expectation',

'column_pair_map_expectation',

'discard_failing_expectations',

'edit_expectation_suite',

'expect_column_bootstrapped_ks_test_p_value_to_be_greater_than',

'expect_column_chisquare_test_p_value_to_be_greater_than',

'expect_column_distinct_values_to_be_in_set',

'expect_column_distinct_values_to_contain_set',

'expect_column_distinct_values_to_equal_set',

'expect_column_kl_divergence_to_be_less_than',

'expect_column_max_to_be_between',

'expect_column_mean_to_be_between',

'expect_column_median_to_be_between',

'expect_column_min_to_be_between',

'expect_column_most_common_value_to_be_in_set',

'expect_column_pair_values_A_to_be_greater_than_B',

'expect_column_pair_values_to_be_equal',

'expect_column_pair_values_to_be_in_set',

'expect_column_parameterized_distribution_ks_test_p_value_to_be_
greater_than',

'expect_column_proportion_of_unique_values_to_be_between',

'expect_column_quantile_values_to_be_between',

'expect_column_stdev_to_be_between',

'expect_column_sum_to_be_between',

'expect_column_to_exist',

'expect_column_unique_value_count_to_be_between',

'expect_column_value_lengths_to_be_between',

'expect_column_value_lengths_to_equal',

Chapter 14

575

'expect_column_values_to_be_between',

'expect_column_values_to_be_dateutil_parseable',

'expect_column_values_to_be_decreasing',

'expect_column_values_to_be_in_set',

'expect_column_values_to_be_in_type_list',

'expect_column_values_to_be_increasing',

'expect_column_values_to_be_json_parseable',

'expect_column_values_to_be_null',

'expect_column_values_to_be_of_type',

'expect_column_values_to_be_unique',

'expect_column_values_to_match_json_schema',

'expect_column_values_to_match_regex',

'expect_column_values_to_match_regex_list',

'expect_column_values_to_match_strftime_format',

'expect_column_values_to_not_be_in_set',
'expect_column_values_to_not_be_null',

'expect_column_values_to_not_match_regex','expect_column_values_
to_not_match_regex_list',

'expect_multicolumn_values_to_be_unique',

'expect_table_column_count_to_be_between',

'expect_table_column_count_to_equal',

'expect_table_columns_to_match_ordered_list',

'expect_table_row_count_to_be_between',

'expect_table_row_count_to_equal',

'expectation',

'find_expectation_indexes',

'find_expectations',

'from_dataset',

'get_column_count',

'get_column_count_in_range',

'get_column_hist',

'get_column_max',

'get_column_mean',

'get_column_median',

'get_column_min',

'get_column_modes',

Debugging and Testing Pandas

576

'get_column_nonnull_count',

'get_column_partition',

'get_column_quantiles',

'get_column_stdev',

'get_column_sum',

'get_column_unique_count',

'get_column_value_counts',

'get_config_value',

'get_data_asset_name',

'get_default_expectation_arguments',

'get_evaluation_parameter',

'get_expectation_suite',

'get_expectation_suite_name',

'get_expectations_config',

'get_row_count',

'get_table_columns',

'hashable_getters',

'multicolumn_map_expectation',

'profile',

'remove_expectation',

'save_expectation_suite',

'save_expectation_suite_name',

'set_config_value',

'set_data_asset_name',

'set_default_expectation_argument',

'set_evaluation_parameter',

'test_column_aggregate_expectation_function',

'test_column_map_expectation_function',

'test_expectation_function',

'validate']

4. Great Expectations has expectations for table shape, missing values, types, ranges,
strings, dates, aggregate functions, column pairs, distributions, and file properties.
Let's use some of them. As we do, the library will track the expectations we use.
We can later save these as a suite of expectations:
>>> kag_ge.expect_column_to_exist('Salary')

{'success': True}

Chapter 14

577

>>> kag_ge.expect_column_mean_to_be_between(

... 'Salary', min_value=10_000, max_value=100_000)

{'success': True,

'result': {'observed_value': 43869.66102793441,

'element_count': 15429,

'missing_count': 0,

'missing_percent': 0.0}}

>>> kag_ge.expect_column_values_to_be_between(

... 'Salary', min_value=0, max_value=500_000)

{'success': True,

'result': {'element_count': 15429,

'missing_count': 0,

'missing_percent': 0.0,

'unexpected_count': 0,

'unexpected_percent': 0.0,

'unexpected_percent_nonmissing': 0.0,

'partial_unexpected_list': []}}

>>> kag_ge.expect_column_values_to_not_be_null('Salary')

{'success': True,

'result': {'element_count': 15429,

'unexpected_count': 0,

'unexpected_percent': 0.0,

'partial_unexpected_list': []}}

>>> kag_ge.expect_column_values_to_match_regex(

... 'Country', r'America|India|Another|China')

{'success': True,

'result': {'element_count': 15429,

'missing_count': 0,

'missing_percent': 0.0,

'unexpected_count': 0,

'unexpected_percent': 0.0,

'unexpected_percent_nonmissing': 0.0,

Debugging and Testing Pandas

578

'partial_unexpected_list': []}}

>>> kag_ge.expect_column_values_to_be_of_type(

... 'Salary', type_='int')

{'success': True, 'result': {'observed_value': 'int64'}}

5. Save the expectations to a file. Great Expectations uses JSON to specify them:
>>> kag_ge.save_expectation_suite('kaggle_expectations.json')

The file should look like this:
{

 "data_asset_name": null,

 "expectation_suite_name": "default",

 "meta": {

 "great_expectations.__version__": "0.8.6"

 },

 "expectations": [

 {

 "expectation_type": "expect_column_to_exist",

 "kwargs": {

 "column": "Salary"

 }

 },

 {

 "expectation_type": "expect_column_mean_to_be_between",

 "kwargs": {

 "column": "Salary",

 "min_value": 10000,

 "max_value": 100000

 }

 },

 {

 "expectation_type": "expect_column_values_to_be_between",

 "kwargs": {

 "column": "Salary",

 "min_value": 0,

 "max_value": 500000

Chapter 14

579

 }

 },

 {

 "expectation_type": "expect_column_values_to_not_be_null",

 "kwargs": {

 "column": "Salary"

 }

 },

 {

 "expectation_type": "expect_column_values_to_match_regex",

 "kwargs": {

 "column": "Country",

 "regex": "America|India|Another|China"

 }

 },

 {

 "expectation_type": "expect_column_values_to_be_of_type",

 "kwargs": {

 "column": "Salary",

 "type_": "int"

 }

 }

],

 "data_asset_type": "Dataset"

}

6. Use the suite to evaluate data found in a CSV file. We will persist our Kaggle data to
a CSV file and test that to make sure it still passes:

>>> kag_ge.to_csv('kag.csv')

>>> import json

>>> ge.validate(ge.read_csv('kag.csv'),

... expectation_suite=json.load(

... open('kaggle_expectations.json')))

{'results': [{'success': True,

 'expectation_config': {'expectation_type': 'expect_column_to_
exist',

 'kwargs': {'column': 'Salary'}},

Debugging and Testing Pandas

580

 'exception_info': {'raised_exception': False,

 'exception_message': None,

 'exception_traceback': None}},

 {'success': True,

 'result': {'observed_value': 43869.66102793441,

 'element_count': 15429,

 'missing_count': 0,

 'missing_percent': 0.0},

 'expectation_config': {'expectation_type': 'expect_column_mean_
to_be_between',

 'kwargs': {'column': 'Salary', 'min_value': 10000, 'max_
value': 100000}},

 'exception_info': {'raised_exception': False,

 'exception_message': None,

 'exception_traceback': None}},

 {'success': True,

 'result': {'element_count': 15429,

 'missing_count': 0,

 'missing_percent': 0.0,

 'unexpected_count': 0,

 'unexpected_percent': 0.0,

 'unexpected_percent_nonmissing': 0.0,

 'partial_unexpected_list': []},

 'expectation_config': {'expectation_type': 'expect_column_
values_to_be_between',

 'kwargs': {'column': 'Salary', 'min_value': 0, 'max_value':
500000}},

 'exception_info': {'raised_exception': False,

 'exception_message': None,

 'exception_traceback': None}},

 {'success': True,

 'result': {'element_count': 15429,

 'unexpected_count': 0,

 'unexpected_percent': 0.0,

 'partial_unexpected_list': []},

 'expectation_config': {'expectation_type': 'expect_column_
values_to_not_be_null',

Chapter 14

581

 'kwargs': {'column': 'Salary'}},

 'exception_info': {'raised_exception': False,

 'exception_message': None,

 'exception_traceback': None}},

 {'success': True,

 'result': {'observed_value': 'int64'},

 'expectation_config': {'expectation_type': 'expect_column_
values_to_be_of_type',

 'kwargs': {'column': 'Salary', 'type_': 'int'}},

 'exception_info': {'raised_exception': False,

 'exception_message': None,

 'exception_traceback': None}},

 {'success': True,

 'result': {'element_count': 15429,

 'missing_count': 0,

 'missing_percent': 0.0,

 'unexpected_count': 0,

 'unexpected_percent': 0.0,

 'unexpected_percent_nonmissing': 0.0,

 'partial_unexpected_list': []},

 'expectation_config': {'expectation_type': 'expect_column_
values_to_match_regex',

 'kwargs': {'column': 'Country', 'regex': 'America|India|Anothe
r|China'}},

 'exception_info': {'raised_exception': False,

 'exception_message': None,

 'exception_traceback': None}}],

 'success': True,

 'statistics': {'evaluated_expectations': 6,

 'successful_expectations': 6,

 'unsuccessful_expectations': 0,

 'success_percent': 100.0},

 'meta': {'great_expectations.__version__': '0.8.6',

 'data_asset_name': None,

 'expectation_suite_name': 'default',

 'run_id': '2020-01-08T214957.098199Z'}}

Debugging and Testing Pandas

582

How it works…
The Great Expectations library extends a pandas DataFrame. You can use it to validate raw
data, or data that you have used pandas to tweak. In our example, we showed how to create
expectations for a DataFrame.

There are numerous built-in expectations that are listed in step 3. You can leverage those,
or build a custom expectation if you desire. The result of validating the data is a JSON object
with entries for "success". You can integrate these into a test suite to ensure that your data
processing pipeline will work with new data.

Using pytest with pandas
In this section, we will show how to test your pandas code. We do this by testing the artifacts.
We will use the third-party library, pytest, to do this testing.

For this recipe, we will not be using Jupyter, but rather the command line.

How to do it…
1. Create a project data layout. The pytest library supports projects laid out in a couple

different styles. We will create a folder structure that looks like this:
kag-demo-pytest/

├── data

│ └── kaggle-survey-2018.zip

├── kag.py

└── test

 └── test_kag.py

The kag.py file has code to load the raw data and code to tweak it. It looks like this:
import pandas as pd

import zipfile

def load_raw(zip_fname):

 with zipfile.ZipFile(zip_fname) as z:

 kag = pd.read_csv(z.open('multipleChoiceResponses.csv'))

 df = kag.iloc[1:]

Chapter 14

583

 return df

def tweak_kag(df):

 na_mask = df.Q9.isna()

 hide_mask = df.Q9.str.startswith('I do not').fillna(False)

 df = df[~na_mask & ~hide_mask]

 q1 = (df.Q1

 .replace({'Prefer not to say': 'Another',

 'Prefer to self-describe': 'Another'})

 .rename('Gender')

)

 q2 = df.Q2.str.slice(0,2).astype(int).rename('Age')

 def limit_countries(val):

 if val in {'United States of America', 'India', 'China'}:

 return val

 return 'Another'

 q3 = df.Q3.apply(limit_countries).rename('Country')

 q4 = (df.Q4

 .replace({'Master's degree': 18,

 'Bachelor's degree': 16,

 'Doctoral degree': 20,

 'Some college/university study without earning a bachelor's
degree': 13,

 'Professional degree': 19,

 'I prefer not to answer': None,

 'No formal education past high school': 12})

 .fillna(11)

 .rename('Edu')

)

 def only_cs_stat_val(val):

 if val not in {'cs', 'eng', 'stat'}:

 return 'another'

Debugging and Testing Pandas

584

 return val

 q5 = (df.Q5

 .replace({

 'Computer science (software engineering, etc.)':
'cs',

 'Engineering (non-computer focused)': 'eng',

 'Mathematics or statistics': 'stat'})

 .apply(only_cs_stat_val)

 .rename('Studies'))

 def limit_occupation(val):

 if val in {'Student', 'Data Scientist', 'Software
Engineer', 'Not employed',

 'Data Engineer'}:

 return val

 return 'Another'

 q6 = df.Q6.apply(limit_occupation).rename('Occupation')

 q8 = (df.Q8

 .str.replace('+', '')

 .str.split('-', expand=True)

 .iloc[:,0]

 .fillna(-1)

 .astype(int)

 .rename('Experience')

)

 q9 = (df.Q9

 .str.replace('+','')

 .str.replace(',','')

 .str.replace('500000', '500')

 .str.replace('I do not wish to disclose my approximate yearly
compensation','')

 .str.split('-', expand=True)

 .iloc[:,0]

 .astype(int)

Chapter 14

585

 .mul(1000)

 .rename('Salary'))

 return pd.concat([q1, q2, q3, q4, q5, q6, q8, q9], axis=1)

The test_kag.py file looks like this:
import pytest

import kag

@pytest.fixture(scope='session')

def df():

 df = kag.load_raw('data/kaggle-survey-2018.zip')

 return kag.tweak_kag(df)

def test_salary_mean(df):

 assert 10_000 < df.Salary.mean() < 100_000

def test_salary_between(df):

 assert df.Salary.min() >= 0

 assert df.Salary.max() <= 500_000

def test_salary_not_null(df):

 assert not df.Salary.isna().any()

def test_country_values(df):

 assert set(df.Country.unique()) == {'Another', 'United States
of America', 'India', 'China'}

def test_salary_dtype(df):

 assert df.Salary.dtype == int

2. Run the tests from the kag-demo directory. If you installed the pytest library, you
will have a pytest executable. If you try to run that command you will get an error:
(env)$ pytest

================== test session starts ==================

platform darwin -- Python 3.6.4, pytest-3.10.1, py-1.7.0,

Debugging and Testing Pandas

586

pluggy-0.8.0

rootdir: /Users/matt/pandas-cookbook/kag-demo, inifile:

plugins: asyncio-0.10.0

collected 0 items / 1 errors

======================== ERRORS =========================

___________ ERROR collecting test/test_kag.py ___________

ImportError while importing test module '/Users/matt/pandas-
cookbook/kag

demo/test/test_kag.py'.

Hint: make sure your test modules/packages have valid Python
names.

Traceback:

test/test_kag.py:3: in <module>

 import kag

E ModuleNotFoundError: No module named 'kag'

!!!!!!!! Interrupted: 1 errors during collection !!!!!!!!

================ 1 error in 0.15 seconds ================

This error is because pytest wants to use installed code to run the tests. Because I
have not used pip (or another mechanism) to install kag.py, pytest complains that
it cannot find the module in locations where code is installed.

3. A workaround to help pytest find the kag.py file is to invoke pytest as a module. Run
this command instead:

$ python -m pytest

=========================== test session starts

===========================

platform darwin -- Python 3.6.4, pytest-3.10.1, py-1.7.0,
pluggy-0.8.0

rootdir: /Users/matt/pandas-cookbook/kag-demo, inifile:

collected 5 items

test/test_kag.py
[100%]

================== 5 passed, 1 warnings in 3.51 seconds
==================

Invoking pytest in this manner adds the current directory to the PYTHONPATH and
now the import for the kag module succeeds.

Chapter 14

587

How it works…
Complete coverage of using the pytest library is beyond the scope of this book. However,
the test_kag.py file contains tests specified so that pytest understands them. Any function
name that begins with test_ will be recognized as a test. The parameter to these test
functions, df, is called a fixture.

Near the top of the file, I specified a function named df that was decorated with @pytest.
fixture(scope='session'). This function will be called once when the test session begins.
Any test function with the parameter named df will get the output of this function. The scope is
specified as a session scope, so that the data is only loaded once (for the entire test session). If
we did not specify the scope, the fixture scope would be at the function-level (the default). With
function-level scope, the fixture would be executed once for every test function that uses it as a
parameter, which makes the tests run in 12 seconds (instead of three on my machine).

There's more…
You can run Great Expectations test from pytest too. Add the following function to test_kag.
py (You will need to update the path to the expectation suite):

def test_ge(df):

 import json

 import great_expectations as ge

 res = ge.validate(ge.from_pandas(df),

 expectation_suite=json.load(open('kaggle_expectations.json')))

 failures = []

 for exp in res['results']:

 if not exp['success']:

 failures.append(json.dumps(exp, indent=2))

 if failures:

 assert False, '\n'.join(failures)

 else:

 assert True

Generating tests with Hypothesis
The Hypothesis library is a third-party library for generating tests, or performing property-
based testing. You create a strategy (an object that generates samples of data) and then
run your code against the generated output of the strategy. You want to test an invariant,
or something about your data that you presume to always hold true.

Debugging and Testing Pandas

588

Again, there could be a book written solely about this type of testing, but in this section we will
show an example of using the library.

We will show how to generate Kaggle survey data, then using that generated survey data,
we will run it against the tweak_kag function and validate that the function will work on
new data.

We will leverage the testing code found in the previous section. The Hypothesis library works
with pytest, so we can use the same layout.

How to do it…
1. Create a project data layout. If you had the code from the previous section, add a

test_hypot.py file and a conftest.py file:
kag-demo-hypo/

├── data

│ └── kaggle-survey-2018.zip

├── kag.py

└── test

 ├── conftest.py

 ├── test_hypot.py

 └── test_kag.py

2. We will put shared fixtures into conftest.py. This file is a special file that pytest
looks for when trying to find fixtures. We do not need to import it, but any fixture
defined in there can be used by the other test files.

Move the fixture code from test_kag.py to conftest.py so that it has the
following code. We will also do a little refactoring to create a raw_ function that
is not a fixture that we can call outside of tests:
import pytest

import kag

@pytest.fixture(scope='session')

def raw():

 return raw_()

def raw_():

 return kag.load_raw('data/kaggle-survey-2018.zip')

Chapter 14

589

@pytest.fixture(scope='session')

def df(raw):

 return kag.tweak_kag(raw)

Put the following code in test_hypot.py:
from hypothesis import given, strategies

from hypothesis.extra.pandas import column, data_frames

from conftest import raw_

import kag

def hypot_df_generator():

 df = raw_()

 cols = []

 for col in ['Q1', 'Q2', 'Q3', 'Q4', 'Q5', 'Q6', 'Q8', 'Q9']:

 cols.append(column(col, elements=strategies.sampled_
from(df[col].unique())))

 return data_frames(columns=cols)

@given(hypot_df_generator())

def test_countries(gen_df):

 if gen_df.shape[0] == 0:

 return

 kag_ = kag.tweak_kag(gen_df)

 assert len(kag_.Country.unique()) <= 4

The function hypot_df_generator constructs a Hypothesis search strategy. The
search strategy can generate data of different types. We can manually create these
strategies. In this case, I'm using the existing CSV file to populate the different values
that are possible for the columns that I am interested in.

The function test_countries is a pytest test that is decorated with the @
given(hypot_df_generator()) decorator. The decoration will pass a gen_df
object into the test function. This object will be a DataFrame that complies with the
specifications that the search strategy has. We can now test our invariants against
that DataFrame. In this case, we will run the tweak_kag function and ensure that
the number of unique countries in the Country column is less than or equal to four.

Debugging and Testing Pandas

590

3. Go to the kag_demo directory and run the test. Here is a command to run only the
test_countries test:
$ python -m pytest -k test_countries

The output looks like this:

====================== test session starts ======================

platform darwin -- Python 3.6.4, pytest-5.3.2, py-1.7.0,
pluggy-0.13.1

rootdir: /Users/matt/kag-demo

plugins: asyncio-0.10.0, hypothesis-5.1.2

collected 6 items / 5 deselected / 1 selected

test/test_hypot.py F [100%]

=========================== FAILURES ============================

________________________ test_countries _________________________

 @given(hypot_df_generator())

> def test_countries(gen_df):

test/test_hypot.py:19:

_ _

test/test_hypot.py:23: in test_countries

 kag_ = kag.tweak_kag(gen_df)

kag.py:63: in tweak_kag

 q8 = (df.Q8

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
generic.py:5175: in

__getattr__

 return object.__getattribute__(self, name)

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
accessor.py:175: in

__get__

 accessor_obj = self._accessor(obj)

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
strings.py:1917: in __init__

 self._inferred_dtype = self._validate(data)

_ _

Chapter 14

591

data = Series([], Name: Q8, dtype: float64)

 @staticmethod

 def _validate(data):

 """

 Auxiliary function for StringMethods, infers and checks
dtype of data.

 This is a "first line of defence" at the creation of the
StringMethods-

 object (see _make_accessor), and just checks that the
dtype is in the

 union of the allowed types over all string methods
below; this

 restriction is then refined on a per-method basis using
the decorator

 @forbid_nonstring_types (more info in the corresponding
docstring).

 This really should exclude all series/index with any non-
string values,

 but that isn't practical for performance reasons until we
have a str

 dtype (GH 9343 / 13877)

 Parameters

 data : The content of the Series

 Returns

 dtype : inferred dtype of data

 """

 if isinstance(data, ABCMultiIndex):

 raise AttributeError(

 "Can only use .str accessor with Index, " "not
MultiIndex"

)

Debugging and Testing Pandas

592

 # see _libs/lib.pyx for list of inferred types

 allowed_types = ["string", "empty", "bytes", "mixed",
"mixed-integer"]

 values = getattr(data, "values", data) # Series / Index

 values = getattr(values, "categories", values) #
categorical / normal

 try:

 inferred_dtype = lib.infer_dtype(values, skipna=True)

 except ValueError:

 # GH#27571 mostly occurs with ExtensionArray

 inferred_dtype = None

 if inferred_dtype not in allowed_types:

> raise AttributeError("Can only use .str accessor with
string " "values!")

E AttributeError: Can only use .str accessor with string
values!

/Users/matt/.env/364/lib/python3.6/site-packages/pandas/core/
strings.py:1967: AttributeError

-------------------------- Hypothesis ---------------------------

Falsifying example: test_countries(

 gen_df= Q1 Q2 Q3 ...
Q6 Q8 Q9

 0 Female 45-49 United States of America ... Consultant
NaN NaN

 [1 rows x 8 columns],

)

========== 1 failed, 5 deselected, 1 warning in 2.23s ===========

There is a lot of noise in the output, but if you scan through it you will find that it is
complaining about the code that processes the column Q8. The reason for this is
that it generated a single row with a NaN entry for Q8. If we run tweak_kag with this
DataFrame, pandas infers that the Q8 column has a float type and errors out when
trying to use the .str accessor.

Is this a bug? It's hard to give a definitive answer on that. But this shows that if our
raw data has only missing values then our code will not work.

Chapter 14

593

How it works…
The Hypothesis library tries to generate a span of data that conforms to a specification. You
can use this generated data to test that invariants hold. In our case, we saw that the survey
data had missing data. When we generated a DataFrame with a single row of missing data,
our tweak_kag function did not work. The .str accessor only works if there is at least one
string value in a column, and our column only had missing data (a float value).

We could address these issues and continue to test other invariants. This illustrates another
point that comes up when programming. We get caught in the forest and only see specific
trees. Sometimes we need to take a step back and look at things from a different perspective.
Using Hypothesis is one way to do this.

[595]

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Artificial Intelligence with Python – Second Edition

Alberto Artasanchez, Prateek Joshi

ISBN: 978-1-83921-953-5

 ● Understand what artificial intelligence, machine learning, and data science are
 ● Explore the most common artificial intelligence use cases
 ● Learn how to build a machine learning pipeline
 ● Assimilate the basics of feature selection and feature engineering
 ● Identify the differences between supervised and unsupervised learning
 ● Discover the most recent advances and tools offered for AI development in the

cloud
 ● Develop automatic speech recognition systems and chatbots
 ● Apply AI algorithms to time series data

https://www.packtpub.com/data/artificial-intelligence-with-python-second-edition

[596]

Other Books You May Enjoy

Mastering Machine Learning Algorithms - Second Edition

Giuseppe Bonaccorso

ISBN: 978-1-83882-029-9

 ● Understand the characteristics of a machine learning algorithm
 ● Implement algorithms from supervised, semi-supervised, unsupervised, and RL

domains
 ● Learn how regression works in time-series analysis and risk prediction
 ● Create, model, and train complex probabilistic models
 ● Cluster high-dimensional data and evaluate model accuracy
 ● Discover how artificial neural networks work – train, optimize,

and validate them
 ● Work with autoencoders, Hebbian networks, and GANs

https://www.packtpub.com/data/mastering-machine-learning-algorithms-second-edition

[597]

Other Books You May Enjoy

Leave a review - let other readers know
what you think
Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

599

Index
Symbols
.add method

working 257
.apply method

code, inspecting 564-569
performance, calculating 558-561
performance, improving with Dask

library 561-564
performance, improving with

Pandarell library 561-564
performance, improving with Swifter

library 561-564
used, for weighted mean SAT scores per

state calculation 325-329
working 560

.cummax method
working 138

.describe method 139

.groupby method
using, for DataFrames with

DatetimeIndex 474-478
.idxmax method

working 273, 274
.join method 412-419
.merge method 412-419

A
aggregation

defining 286, 288
working 289

aggregation function
customizing, with *args parameter 305-308
customizing, with **kwargs

parameter 305-308

grouping with 301-304
area charts

stacking, to discover trends 525-530
arithmetic operator

method 26
axis levels

renaming 376-381

B
Boolean array

about 19
filtering 215-219
working 218

Boolean
selecting 240-243
working 243

Boolean indexing
readability, improving with query

method 230, 231
Boolean statistics

calculating 209-212
working 211

C
Cartesian product

implementing 248-251
working 250

categorical
versus categorical values 178-185

categorical data
about 147-155
working 151, 152

college campus diversity
determining 74-78

600

column
adding, from DataFrame 260-265
creating 36-43
deleting 36-43
filtering, with time data 441-445
selecting 10-13, 127, 128
selecting, with method 48-51
working 284

column names
ordering 52-55
renaming 32-35

column types
about 143-146
working 143

comparison operator
method 26

concat function 408-413
continuous columns

comparing 169-178
working 175

continuous data
about 156-162
working 160

continuous values
comparing, with categories 163-168

continuous variables
grouping by 330-333
working 332, 333

Cramér’s V measure
reference link 181

crime, by weekday and year
measuring 463-473

CSV files
reading 86-94
working 93
writing 84, 86

D
Dask library

.apply method, performance
improving 561-564

data
selecting, with integers 203-205
selecting, with labels 203-205

data analysis routine
developing 115-117
working 118

data transform
coding 553-555
working 558

databases
working with 101, 102

data dictionary 120
DataFrame

attributes 4-6
attributes, working 5
columns, adding 260-265
creating, from scratch 81-83
rows, appending to 401-406
slicing, with DatetimeIndex 436-440
summarizing 55-57
using, in pandas 2-4
working 58, 263, 264

DataFrame columns
selecting 200-203
working 202

DataFrame method
chaining 59-61
working 60

DataFrame operation
about 62, 66
direction, transposing 71-73
performing 64, 65
working 66

DataFrame rows
masking 237-239
selecting 196-203
working 199-239

data integrity
managing, with Great Expectations

tool 573-582
data types

about 6-9
working 9

DatetimeIndex
methods, using 445-452
used, for grouping with anonymous

functions 474-478
dunder methods 26

601

E
Excel files

using 95-97
working 96

Exploratory Data Analysis (EDA)
about 115, 139
categorical data 147
column types 143
continuous data 156
summary statistics 139-141
working 142

F
fixture 587
flights dataset

counting 334-339
visualizing 511-525
working 337, 338

flow programming 27
functions

aggregating 290-296
working 293

G
Great Expectations tool

about 573
data integrity, managing 573-582

groupby aggregation
.unstack method, using 368-371
used, for replicating pivot_table 372-376

groupby object
examining 309-313
working 312

H
HTML tables

reading 106-112
working 112

Hypothesis library
about 587
tests, generating 587-593

I
idxmax

replicating, with method chaining 275-281
indexes

exploding 251-254
working 254

index filtering
versus row filtering 219-222

index sorting
slice notation, using 205-207

index object
examining 245-248
working 247

integer location
selecting 240-243
working 243

integers
used, for selecting data 203-205

IPython debugger (ipdb) 569

J
JavaScript Object Notation (JSON)

about 102
reading 102-106
working 106

Jupyter
debugging 569-573

K
Kaggle

reference link 553
kernel density estimation (KDE) 159, 507

L
labels

selecting 240-243
used, for selecting data 203-205
working 243

M
matplotlib

about 486, 487

602

data, visualizing 499-505
object-oriented guide 488-498

maximum columns
finding, with .idxmax method 282-284

melt
used, for tidying variable values as column

names 356-358
memory

reducing, by changing data types 120-125
method chaining

about 1, 27
used, for replicating idxmax 275-281

missing values
comparing 67-71

MultiIndex
removing, after grouping 296-301

multiple Boolean condition
constructing 213, 214
working 214

multiple columns
aggregating 290-296
grouping 290-295
working 293

multiple DataFrame columns
selecting 45
working 47

multiple DataFrames
concatenating 408-411

multiple values, stored in same cell scenario
tidying 394-397

multiple variables, stored as column names
scenario

tidying 382-389
multiple variables, stored as single column

scenario
tidying 389-394

multivariate analysis
with seaborn Grids 538-544

N
NaN (not a number) 3
Numba library 564
n values

replicating, with sort_values 133-135

O
on-time flight performance

finding 339-347

P
Pandarell library

about 562
.apply method, performance

improving 561-564
pandas

about 1
DataFrame, using 2-4
importing 1
plotting 507-510
pytest, using 582-587
versus seaborn 530-535, 536, 537, 538

pandas profiling library
reference link 185
using 185
working 187

pivot_table
replicating, with groupby

aggregation 372-376
property-based testing 587
pytest

using, with pandas 582-587
Python

reference link 435
versus pandas date tools 429-435

Q
query method

used, for improving Boolean indexing
readability 230, 231

R
row filtering

versus index filtering 219-222
rows

appending, to DataFrames 401-406
selecting 128-132

603

S
seaborn

about 486
Simpson’s Paradox, uncovering in diamonds

with dataset 545-551
versus pandas 530-538

seaborn Grids
used, for performing multivariate

analysis 538-544
Series data

selecting 189-193
working 194, 196

series methods
calling 14-21
chaining 27-32

series operations
about 21-27
working 24

Series size
preserving, with where method 232-236

Simpson’s Paradox
uncovering, in diamonds dataset with

seaborn 545-551
slice notation

used, for index sorting 205-207
sorted indexes

selecting 222-225
working 224

sort_values
used, for replicating n values 133-135
working 135

SQLAlchemy 421
SQL databases

connecting to 421-426
SQL WHERE clauses

translating 225-230
working 228

stack
used, for tidying variable values as column

names 351-355
stacked data

inverting 362-367
states, with minority majority

filtering 313-316

stop order price
calculating 136-138

Structured Query Language (SQL) 225
Subject Matter Expert (SME) 120
summary statistics

about 139-142
working 142

Swifter library
.apply method, performance

improving 561-564

T
tests

generating, with Hypothesis library 587-593
tidy data 350
time data

used, for filtering columns 441-445
Timestamps

grouping by 478-483
traffic accidents

aggregating 457-462

U
unique indexes

selecting 222-225
working 224

V
value

filling, with unequal indexes 255-260
highlighting, from column 266-274

variables
multiple groups, stacking

simultaneously 359-362
variables, stored in column names and values

tidying 398-400
variable values

tidying, as column names with melt 356-358
tidying, as column names with stack 351-355

W
weekly crimes

aggregating 457-462

604

numbers, counting 453-456
weighted mean SAT scores per state

calculating, with .apply method 325-329
working 328, 329

weight loss bet
transforming through 316-324

where method
used, for preserving Series size 232-235

Z
zip files

working with 97-100

	Cover
	Copyright
	Packt Page
	Contributors
	Table of Contents
	Preface
	Chapter 1: Pandas Foundations
	Importing pandas
	Introduction
	The pandas DataFrame
	DataFrame attributes
	Understanding data types
	Selecting a column
	Calling Series methods
	Series operations
	Chaining Series methods
	Renaming column names
	Creating and deleting columns

	Chapter 2: Essential DataFrame Operations
	Introduction
	Selecting multiple DataFrame columns
	Selecting columns with methods
	Ordering column names
	Summarizing a DataFrame
	Chaining DataFrame methods
	DataFrame operations
	Comparing missing values
	Transposing the direction of a DataFrame operation
	Determining college campus diversity

	Chapter 3: Creating and Persisting DataFrames
	Introduction
	Creating DataFrames from scratch
	Writing CSV
	Reading large CSV files
	Using Excel files
	Working with zip files
	Working with databases
	Reading JSON
	Reading HTML tables

	Chapter 4: Beginning Data Analysis
	Introduction
	Developing a data analysis routine
	Data dictionaries
	Reducing memory by changing data types
	Selecting the smallest of the largest
	Selecting the largest of each group by sorting
	Replicating nlargest with sort_values
	Calculating a trailing stop order price

	Chapter 5: Exploratory Data Analysis
	Introduction
	Summary statistics
	Column types
	Categorical data
	Continuous data
	Comparing continuous values across categories
	Comparing two continuous columns
	Comparing categorical and categorical values
	Using the pandas profiling library

	Chapter 6: Selecting Subsets of Data
	Introduction
	Selecting Series data
	Selecting DataFrame rows
	Selecting DataFrame rows and columns simultaneously
	Selecting data with both integers and labels
	Slicing lexicographically

	Chapter 7: Filtering Rows
	Introduction
	Calculating Boolean statistics
	Constructing multiple Boolean conditions
	Filtering with Boolean arrays
	Comparing row filtering and index filtering
	Selecting with unique and sorted indexes
	Translating SQL WHERE clauses
	Improving the readability of Boolean indexing with the query method
	Preserving Series size with the .where method
	Masking DataFrame rows
	Selecting with Booleans, integer location, and labels

	Chapter 8: Index Alignment
	Introduction
	Examining the Index object
	Producing Cartesian products
	Exploding indexes
	Filling values with unequal indexes
	Adding columns from different DataFrames
	Highlighting the maximum value from each column
	Replicating idxmax with method chaining
	Finding the most common maximum of columns

	Chapter 9: Grouping for Aggregation, Filtration, and Transformation
	Introduction
	Defining an aggregation
	Grouping and aggregating with multiple columns and functions
	Removing the MultiIndex after grouping
	Grouping with a custom aggregation function
	Customizing aggregating functions with *args and **kwargs
	Examining the groupby object
	Filtering for states with a minority majority
	Transforming through a weight loss bet
	Calculating weighted mean SAT scores per state with apply
	Grouping by continuous variables
	Counting the total number of flights between cities
	Finding the longest streak of on-time flights

	Chapter 10: Restructuring Data into a Tidy Form
	Introduction
	Tidying variable values as column names with stack
	Tidying variable values as column names with melt
	Stacking multiple groups of variables simultaneously
	Inverting stacked data
	Unstacking after a groupby aggregation
	Replicating pivot_table with a groupby aggregation
	Renaming axis levels for easy reshaping
	Tidying when multiple variables are stored as column names
	Tidying when multiple variables are stored as a single column
	Tidying when two or more values are stored in the same cell
	Tidying when variables are stored in column names and values

	Chapter 11: Combining Pandas Objects
	Introduction
	Appending new rows to DataFrames
	Concatenating multiple DataFrames together
	Understanding the differences between concat, join, and merge
	Connecting to SQL databases

	Chapter 12: Time Series Analysis
	Introduction
	Understanding the difference between Python and pandas date tools
	Slicing time series intelligently
	Filtering columns with time data
	Using methods that only work with a DatetimeIndex
	Counting the number of weekly crimes
	Aggregating weekly crime and traffic accidents separately
	Measuring crime by weekday and year
	Grouping with anonymous functions with a DatetimeIndex
	Grouping by a Timestamp and another column

	Chapter 13: Visualization with Matplotlib, Pandas, and Seaborn
	Introduction
	Getting started with matplotlib
	Object-oriented guide to matplotlib
	Visualizing data with matplotlib
	Plotting basics with pandas
	Visualizing the flights dataset
	Stacking area charts to discover emerging trends
	Understanding the differences between seaborn and pandas
	Multivariate analysis with seaborn Grids
	Uncovering Simpson's Paradox in the diamonds dataset with seaborn

	Chapter 14: Debugging and Testing Pandas
	Code to transform data
	Apply performance
	Improving apply performance with Dask, Pandarell, Swifter, and more
	Inspecting code
	Debugging in Jupyter
	Managing data integrity with Great Expectations
	Using pytest with pandas
	Generating tests with Hypothesis

	Other Books You May Enjoy
	Index

